[gdb/tui] Fix segfault in tui_find_disassembly_address

PR29040 describes a FAIL for test-case gdb.threads/next-fork-other-thread.exp
and target board unix/-m32.

The FAIL happens due to the test executable running into an assert, which is
caused by a forked child segfaulting, like so:
...
 Program terminated with signal SIGSEGV, Segmentation fault.
 #0  0x00000000 in ?? ()
...

I tried to reproduce the segfault with exec next-fork-other-thread-fork, using
TUI layout asm.

I set a breakpoint at fork and ran to the breakpoint, and somewhere during the
following session I ran into a gdb segfault here in
tui_find_disassembly_address:
...
	  /* Disassemble forward.  */
	  next_addr = tui_disassemble (gdbarch, asm_lines, new_low, max_lines);
	  last_addr = asm_lines.back ().addr;
...
due to asm_lines being empty after the call to tui_disassemble, while
asm_lines.back () assumes that it's not empty.

I have not been able to reproduce that segfault in that original setting, I'm
not sure of the exact scenario (though looking back it probably involved
"set detach-on-fork off").

What likely happened is that I managed to reproduce PR29040, and TUI (attempted
to) display the disassembly for address 0, which led to the gdb segfault.

When gdb_print_insn encounters an insn it cannot print because it can't read
the memory, it throws a MEMORY_ERROR that is caught by tui_disassemble.

The specific bit that causes the gdb segfault is that if gdb_print_insn throws
a MEMORY_ERROR for the first insn in tui_disassemble, it returns an empty
asm_lines.

FWIW, I did manage to reproduce the gdb segfault as follows:
...
$ gdb -q \
    -iex "set pagination off" \
    /usr/bin/rustc \
    -ex "set breakpoint pending on" \
    -ex "b dl_main" \
    -ex run \
    -ex "up 4" \
    -ex "layout asm" \
    -ex "print \$pc"
  ...
<TUI>
  ...
$1 = (void (*)()) 0x1
(gdb)
...
Now press <up>, and the segfault triggers.

Fix the segfault by handling asm_lines.empty () results of tui_disassemble in
tui_find_disassembly_address.

I've written a unit test that exercises this scenario.

Tested on x86_64-linux.

Reviewed-by: Kevin Buettner <kevinb@redhat.com>

PR tui/30823
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=30823
This commit is contained in:
Tom de Vries 2023-09-28 20:17:33 +02:00
parent 4ef9b04fa6
commit 72535eb14b

View File

@ -41,6 +41,8 @@
#include "objfiles.h"
#include "cli/cli-style.h"
#include "tui/tui-location.h"
#include "gdbsupport/selftest.h"
#include "inferior.h"
#include "gdb_curses.h"
@ -203,6 +205,8 @@ tui_find_disassembly_address (struct gdbarch *gdbarch, CORE_ADDR pc, int from)
instruction fails to disassemble we will take the address of the
previous instruction that did disassemble as the result. */
tui_disassemble (gdbarch, asm_lines, pc, max_lines + 1);
if (asm_lines.empty ())
return pc;
new_low = asm_lines.back ().addr;
}
else
@ -244,6 +248,8 @@ tui_find_disassembly_address (struct gdbarch *gdbarch, CORE_ADDR pc, int from)
/* Disassemble forward. */
next_addr = tui_disassemble (gdbarch, asm_lines, new_low, max_lines);
if (asm_lines.empty ())
break;
last_addr = asm_lines.back ().addr;
/* If disassembling from the current value of NEW_LOW reached PC
@ -522,3 +528,36 @@ tui_disasm_window::display_start_addr (struct gdbarch **gdbarch_p,
*gdbarch_p = m_gdbarch;
*addr_p = m_start_line_or_addr.u.addr;
}
#if GDB_SELF_TEST
namespace selftests {
namespace tui {
namespace disasm {
static void
run_tests ()
{
if (current_inferior () != nullptr)
{
struct gdbarch *gdbarch = current_inferior ()->gdbarch;
/* Check that tui_find_disassembly_address robustly handles the case of
being passed a PC for which gdb_print_insn throws a MEMORY_ERROR. */
SELF_CHECK (tui_find_disassembly_address (gdbarch, 0, 1) == 0);
SELF_CHECK (tui_find_disassembly_address (gdbarch, 0, -1) == 0);
}
}
} /* namespace disasm */
} /* namespace tui */
} /* namespace selftests */
#endif /* GDB_SELF_TEST */
void _initialize_tui_disasm ();
void
_initialize_tui_disasm ()
{
#if GDB_SELF_TEST
selftests::register_test ("tui-disasm", selftests::tui::disasm::run_tests);
#endif
}