Get rid of VEC(mem_range_s)

This patch replaces the last usages of VEC(mem_range_s) with
std::vector<mem_range>.  This allows getting rid of a few cleanups and
of the DEF_VEC_O(mem_range_s).

I added a test for normalize_mem_ranges to make sure I didn't break
anything there.

Regtested on the buildbot.

gdb/ChangeLog:

	* memrange.h (struct mem_range): Define operator< and operator==.
	(mem_range_s): Remove.
	(DEF_VEC_O (mem_range_s)): Remove.
	(normalize_mem_ranges): Change parameter type to std::vector.
	* memrange.c (compare_mem_ranges): Remove.
	(normalize_mem_ranges): Change parameter type to std::vector,
	adjust to vector change.
	* exec.c (section_table_available_memory): Return vector, remove
	parameter.
	(section_table_read_available_memory): Adjust to std::vector
	change.
	* remote.c (remote_read_bytes): Adjust to std::vector
	change.
	* tracepoint.h (traceframe_available_memory): Change parameter
	type to std::vector.
	* tracepoint.c (traceframe_available_memory): Change parameter
	type to std::vector, adjust.
	* gdb/mi/mi-main.c (mi_cmd_trace_frame_collected): Adjust to
	std::vector change.
	* gdb/Makefile.in (SUBDIR_UNITTESTS_SRCS): Add
	unittests/memrange-selftests.c.
	(SUBDIR_UNITTESTS_OBS): Add memrange-selftests.o.
	* gdb/unittests/memrange-selftests.c: New file.
This commit is contained in:
Simon Marchi 2017-10-16 10:14:53 -04:00
parent 63f0e930d4
commit a79b1bc6f6
10 changed files with 205 additions and 110 deletions

View File

@ -1,3 +1,29 @@
2017-10-16 Simon Marchi <simon.marchi@ericsson.com>
* memrange.h (struct mem_range): Define operator< and operator==.
(mem_range_s): Remove.
(DEF_VEC_O (mem_range_s)): Remove.
(normalize_mem_ranges): Change parameter type to std::vector.
* memrange.c (compare_mem_ranges): Remove.
(normalize_mem_ranges): Change parameter type to std::vector,
adjust to vector change.
* exec.c (section_table_available_memory): Return vector, remove
parameter.
(section_table_read_available_memory): Adjust to std::vector
change.
* remote.c (remote_read_bytes): Adjust to std::vector
change.
* tracepoint.h (traceframe_available_memory): Change parameter
type to std::vector.
* tracepoint.c (traceframe_available_memory): Change parameter
type to std::vector, adjust.
* gdb/mi/mi-main.c (mi_cmd_trace_frame_collected): Adjust to
std::vector change.
* gdb/Makefile.in (SUBDIR_UNITTESTS_SRCS): Add
unittests/memrange-selftests.c.
(SUBDIR_UNITTESTS_OBS): Add memrange-selftests.o.
* gdb/unittests/memrange-selftests.c: New file.
2017-10-16 Pedro Alves <palves@redhat.com>
* elfread.c (probe_key_free): Rename range-for variable.

View File

@ -530,6 +530,7 @@ SUBDIR_UNITTESTS_SRCS = \
unittests/common-utils-selftests.c \
unittests/environ-selftests.c \
unittests/function-view-selftests.c \
unittests/memrange-selftests.c \
unittests/offset-type-selftests.c \
unittests/optional-selftests.c \
unittests/ptid-selftests.c \
@ -541,6 +542,7 @@ SUBDIR_UNITTESTS_OBS = \
common-utils-selftests.o \
environ-selftests.o \
function-view-selftests.o \
memrange-selftests.o \
offset-type-selftests.o \
optional-selftests.o \
ptid-selftests.o \

View File

@ -698,20 +698,18 @@ exec_read_partial_read_only (gdb_byte *readbuf, ULONGEST offset,
return TARGET_XFER_E_IO;
}
/* Appends all read-only memory ranges found in the target section
/* Return all read-only memory ranges found in the target section
table defined by SECTIONS and SECTIONS_END, starting at (and
intersected with) MEMADDR for LEN bytes. Returns the augmented
VEC. */
intersected with) MEMADDR for LEN bytes. */
static VEC(mem_range_s) *
section_table_available_memory (VEC(mem_range_s) *memory,
CORE_ADDR memaddr, ULONGEST len,
static std::vector<mem_range>
section_table_available_memory (CORE_ADDR memaddr, ULONGEST len,
struct target_section *sections,
struct target_section *sections_end)
{
struct target_section *p;
std::vector<mem_range> memory;
for (p = sections; p < sections_end; p++)
for (target_section *p = sections; p < sections_end; p++)
{
if ((bfd_get_section_flags (p->the_bfd_section->owner,
p->the_bfd_section)
@ -722,7 +720,6 @@ section_table_available_memory (VEC(mem_range_s) *memory,
if (mem_ranges_overlap (p->addr, p->endaddr - p->addr, memaddr, len))
{
ULONGEST lo1, hi1, lo2, hi2;
struct mem_range *r;
lo1 = memaddr;
hi1 = memaddr + len;
@ -730,10 +727,10 @@ section_table_available_memory (VEC(mem_range_s) *memory,
lo2 = p->addr;
hi2 = p->endaddr;
r = VEC_safe_push (mem_range_s, memory, NULL);
CORE_ADDR start = std::max (lo1, lo2);
int length = std::min (hi1, hi2) - start;
r->start = std::max (lo1, lo2);
r->length = std::min (hi1, hi2) - r->start;
memory.emplace_back (start, length);
}
}
@ -744,51 +741,37 @@ enum target_xfer_status
section_table_read_available_memory (gdb_byte *readbuf, ULONGEST offset,
ULONGEST len, ULONGEST *xfered_len)
{
VEC(mem_range_s) *available_memory = NULL;
struct target_section_table *table;
struct cleanup *old_chain;
mem_range_s *r;
int i;
target_section_table *table = target_get_section_table (&exec_ops);
std::vector<mem_range> available_memory
= section_table_available_memory (offset, len,
table->sections, table->sections_end);
table = target_get_section_table (&exec_ops);
available_memory = section_table_available_memory (available_memory,
offset, len,
table->sections,
table->sections_end);
normalize_mem_ranges (&available_memory);
old_chain = make_cleanup (VEC_cleanup(mem_range_s),
&available_memory);
normalize_mem_ranges (available_memory);
for (i = 0;
VEC_iterate (mem_range_s, available_memory, i, r);
i++)
for (const mem_range &r : available_memory)
{
if (mem_ranges_overlap (r->start, r->length, offset, len))
if (mem_ranges_overlap (r.start, r.length, offset, len))
{
CORE_ADDR end;
enum target_xfer_status status;
/* Get the intersection window. */
end = std::min<CORE_ADDR> (offset + len, r->start + r->length);
end = std::min<CORE_ADDR> (offset + len, r.start + r.length);
gdb_assert (end - offset <= len);
if (offset >= r->start)
if (offset >= r.start)
status = exec_read_partial_read_only (readbuf, offset,
end - offset,
xfered_len);
else
{
*xfered_len = r->start - offset;
*xfered_len = r.start - offset;
status = TARGET_XFER_UNAVAILABLE;
}
do_cleanups (old_chain);
return status;
}
}
do_cleanups (old_chain);
*xfered_len = len;
return TARGET_XFER_UNAVAILABLE;

View File

@ -41,58 +41,36 @@ address_in_mem_range (CORE_ADDR address, const struct mem_range *r)
&& (address - r->start) < r->length);
}
/* qsort comparison function, that compares mem_ranges. Ranges are
sorted in ascending START order. */
static int
compare_mem_ranges (const void *ap, const void *bp)
{
const struct mem_range *r1 = (const struct mem_range *) ap;
const struct mem_range *r2 = (const struct mem_range *) bp;
if (r1->start > r2->start)
return 1;
else if (r1->start < r2->start)
return -1;
else
return 0;
}
void
normalize_mem_ranges (VEC(mem_range_s) *ranges)
normalize_mem_ranges (std::vector<mem_range> *memory)
{
/* This function must not use any VEC operation on RANGES that
reallocates the memory block as that invalidates the RANGES
pointer, which callers expect to remain valid. */
if (!VEC_empty (mem_range_s, ranges))
if (!memory->empty ())
{
struct mem_range *ra, *rb;
int a, b;
std::vector<mem_range> &m = *memory;
qsort (VEC_address (mem_range_s, ranges),
VEC_length (mem_range_s, ranges),
sizeof (mem_range_s),
compare_mem_ranges);
std::sort (m.begin (), m.end ());
a = 0;
ra = VEC_index (mem_range_s, ranges, a);
for (b = 1; VEC_iterate (mem_range_s, ranges, b, rb); b++)
int a = 0;
for (int b = 1; b < m.size (); b++)
{
/* If mem_range B overlaps or is adjacent to mem_range A,
merge them. */
if (rb->start <= ra->start + ra->length)
if (m[b].start <= m[a].start + m[a].length)
{
ra->length = std::max ((CORE_ADDR) ra->length,
(rb->start - ra->start) + rb->length);
m[a].length = std::max ((CORE_ADDR) m[a].length,
(m[b].start - m[a].start) + m[b].length);
continue; /* next b, same a */
}
a++; /* next a */
ra = VEC_index (mem_range_s, ranges, a);
if (a != b)
*ra = *rb;
m[a] = m[b];
}
VEC_truncate (mem_range_s, ranges, a + 1);
m.resize (a + 1);
}
}

View File

@ -32,6 +32,17 @@ struct mem_range
: start (start_), length (length_)
{}
bool operator< (const mem_range &other) const
{
return this->start < other.start;
}
bool operator== (const mem_range &other) const
{
return (this->start == other.start
&& this->length == other.length);
}
/* Lowest address in the range. */
CORE_ADDR start;
@ -39,10 +50,6 @@ struct mem_range
int length;
};
typedef struct mem_range mem_range_s;
DEF_VEC_O(mem_range_s);
/* Returns true if the ranges defined by [start1, start1+len1) and
[start2, start2+len2) overlap. */
@ -57,6 +64,6 @@ extern int address_in_mem_range (CORE_ADDR addr,
/* Sort ranges by start address, then coalesce contiguous or
overlapping ranges. */
extern void normalize_mem_ranges (VEC(mem_range_s) *memory);
extern void normalize_mem_ranges (std::vector<mem_range> *memory);
#endif

View File

@ -2752,40 +2752,34 @@ mi_cmd_trace_frame_collected (const char *command, char **argv, int argc)
/* Memory. */
{
struct cleanup *cleanups;
VEC(mem_range_s) *available_memory = NULL;
struct mem_range *r;
int i;
std::vector<mem_range> available_memory;
traceframe_available_memory (&available_memory, 0, ULONGEST_MAX);
cleanups = make_cleanup (VEC_cleanup(mem_range_s), &available_memory);
ui_out_emit_list list_emitter (uiout, "memory");
for (i = 0; VEC_iterate (mem_range_s, available_memory, i, r); i++)
for (const mem_range &r : available_memory)
{
struct gdbarch *gdbarch = target_gdbarch ();
ui_out_emit_tuple tuple_emitter (uiout, NULL);
uiout->field_core_addr ("address", gdbarch, r->start);
uiout->field_int ("length", r->length);
uiout->field_core_addr ("address", gdbarch, r.start);
uiout->field_int ("length", r.length);
gdb::byte_vector data (r->length);
gdb::byte_vector data (r.length);
if (memory_contents)
{
if (target_read_memory (r->start, data.data (), r->length) == 0)
if (target_read_memory (r.start, data.data (), r.length) == 0)
{
std::string data_str = bin2hex (data.data (), r->length);
std::string data_str = bin2hex (data.data (), r.length);
uiout->field_string ("contents", data_str.c_str ());
}
else
uiout->field_skip ("contents");
}
}
do_cleanups (cleanups);
}
}

View File

@ -8465,7 +8465,7 @@ remote_read_bytes (struct target_ops *ops, CORE_ADDR memaddr,
if (get_traceframe_number () != -1)
{
VEC(mem_range_s) *available;
std::vector<mem_range> available;
/* If we fail to get the set of available memory, then the
target does not support querying traceframe info, and so we
@ -8473,27 +8473,20 @@ remote_read_bytes (struct target_ops *ops, CORE_ADDR memaddr,
target implements the old QTro packet then). */
if (traceframe_available_memory (&available, memaddr, len))
{
struct cleanup *old_chain;
old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
if (VEC_empty (mem_range_s, available)
|| VEC_index (mem_range_s, available, 0)->start != memaddr)
if (available.empty () || available[0].start != memaddr)
{
enum target_xfer_status res;
/* Don't read into the traceframe's available
memory. */
if (!VEC_empty (mem_range_s, available))
if (!available.empty ())
{
LONGEST oldlen = len;
len = VEC_index (mem_range_s, available, 0)->start - memaddr;
len = available[0].start - memaddr;
gdb_assert (len <= oldlen);
}
do_cleanups (old_chain);
/* This goes through the topmost target again. */
res = remote_xfer_live_readonly_partial (ops, myaddr, memaddr,
len, unit_size, xfered_len);
@ -8512,9 +8505,7 @@ remote_read_bytes (struct target_ops *ops, CORE_ADDR memaddr,
case the target implements the deprecated QTro packet to
cater for older GDBs (the target's knowledge of read-only
sections may be outdated by now). */
len = VEC_index (mem_range_s, available, 0)->length;
do_cleanups (old_chain);
len = available[0].length;
}
}

View File

@ -4077,20 +4077,19 @@ get_traceframe_info (void)
undefined. */
int
traceframe_available_memory (VEC(mem_range_s) **result,
traceframe_available_memory (std::vector<mem_range> *result,
CORE_ADDR memaddr, ULONGEST len)
{
struct traceframe_info *info = get_traceframe_info ();
if (info != NULL)
{
*result = NULL;
result->clear ();
for (mem_range &r : info->memory)
if (mem_ranges_overlap (r.start, r.length, memaddr, len))
{
ULONGEST lo1, hi1, lo2, hi2;
struct mem_range *nr;
lo1 = memaddr;
hi1 = memaddr + len;
@ -4098,13 +4097,13 @@ traceframe_available_memory (VEC(mem_range_s) **result,
lo2 = r.start;
hi2 = r.start + r.length;
nr = VEC_safe_push (mem_range_s, *result, NULL);
CORE_ADDR start = std::max (lo1, lo2);
int length = std::min (hi1, hi2) - start;
nr->start = std::max (lo1, lo2);
nr->length = std::min (hi1, hi2) - nr->start;
result->emplace_back (start, length);
}
normalize_mem_ranges (*result);
normalize_mem_ranges (result);
return 1;
}

View File

@ -400,7 +400,7 @@ extern void trace_save_ctf (const char *dirname,
extern traceframe_info_up parse_traceframe_info (const char *tframe_info);
extern int traceframe_available_memory (VEC(mem_range_s) **result,
extern int traceframe_available_memory (std::vector<mem_range> *result,
CORE_ADDR memaddr, ULONGEST len);
extern struct traceframe_info *get_traceframe_info (void);

View File

@ -0,0 +1,115 @@
/* Self tests for mem ranges for GDB, the GNU debugger.
Copyright (C) 2017 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "selftest.h"
#include "memrange.h"
namespace selftests {
namespace memrange_tests {
static void
normalize_mem_ranges_tests ()
{
/* Empty vector. */
{
std::vector<mem_range> ranges;
normalize_mem_ranges (&ranges);
SELF_CHECK (ranges.size () == 0);
}
/* With one range. */
{
std::vector<mem_range> ranges;
ranges.emplace_back (10, 20);
normalize_mem_ranges (&ranges);
SELF_CHECK (ranges.size () == 1);
SELF_CHECK (ranges[0] == mem_range (10, 20));
}
/* Completely disjoint ranges. */
{
std::vector<mem_range> ranges;
ranges.emplace_back (20, 1);
ranges.emplace_back (10, 1);
normalize_mem_ranges (&ranges);
SELF_CHECK (ranges.size () == 2);
SELF_CHECK (ranges[0] == mem_range (10, 1));
SELF_CHECK (ranges[1] == mem_range (20, 1));
}
/* Overlapping and contiguous ranges. */
{
std::vector<mem_range> ranges;
ranges.emplace_back (5, 10);
ranges.emplace_back (10, 10);
ranges.emplace_back (15, 10);
normalize_mem_ranges (&ranges);
SELF_CHECK (ranges.size () == 1);
SELF_CHECK (ranges[0] == mem_range (5, 20));
}
/* Duplicate ranges. */
{
std::vector<mem_range> ranges;
ranges.emplace_back (10, 10);
ranges.emplace_back (10, 10);
normalize_mem_ranges (&ranges);
SELF_CHECK (ranges.size () == 1);
SELF_CHECK (ranges[0] == mem_range (10, 10));
}
/* Range completely inside another. */
{
std::vector<mem_range> ranges;
ranges.emplace_back (14, 2);
ranges.emplace_back (10, 10);
normalize_mem_ranges (&ranges);
SELF_CHECK (ranges.size () == 1);
SELF_CHECK (ranges[0] == mem_range (10, 10));
}
}
} /* namespace memrange_tests */
} /* namespace selftests */
void
_initialize_memrange_selftests ()
{
selftests::register_test
("normalize_mem_ranges",
selftests::memrange_tests::normalize_mem_ranges_tests);
}