Use NT_FILE note section for reading core target memory

In his reviews of my v1 and v2 corefile related patches, Pedro
identified two cases which weren't handled by those patches.

In https://sourceware.org/pipermail/gdb-patches/2020-May/168826.html,
Pedro showed that debugging a core file in which mmap() is used to
create a new mapping over an existing file-backed mapping will
produce incorrect results.  I.e, for his example, GDB would
show:

(gdb) disassemble main
Dump of assembler code for function main:
   0x00000000004004e6 <+0>:	push   %rbp
   0x00000000004004e7 <+1>:	mov    %rsp,%rbp
=> 0x00000000004004ea <+4>:	callq  0x4003f0 <abort@plt>
End of assembler dump.

This sort of looks like it might be correct, but is not due to the
fact that mmap(...MAP_FIXED...) was used to create a mapping (of all
zeros) on top of the .text section.  So, the correct result should be:

(gdb) disassemble main
Dump of assembler code for function main:
   0x00000000004004e6 <+0>:	add    %al,(%rax)
   0x00000000004004e8 <+2>:	add    %al,(%rax)
=> 0x00000000004004ea <+4>:	add    %al,(%rax)
   0x00000000004004ec <+6>:	add    %al,(%rax)
   0x00000000004004ee <+8>:	add    %al,(%rax)
End of assembler dump.

The other case that Pedro found involved an attempted examination of a
particular section in the test case from gdb.base/corefile.exp.  On
Fedora 27 or 28, the following behavior may be observed:

(gdb) info proc mappings
Mapped address spaces:

          Start Addr           End Addr       Size     Offset objfile
...
      0x7ffff7839000     0x7ffff7a38000   0x1ff000   0x1b5000 /usr/lib64/libc-2.27.so
...
(gdb) x/4x 0x7ffff7839000
0x7ffff7839000:	Cannot access memory at address 0x7ffff7839000

FYI, this section appears to be unrelocated vtable data.  See
https://sourceware.org/pipermail/gdb-patches/2020-May/168331.html for
a detailed analysis.

The important thing here is that GDB should be able to access this
address since it should be backed by the shared library.  I.e. it
should do this:

(gdb) x/4x 0x7ffff7839000
0x7ffff7839000:	0x0007ddf0	0x00000000	0x0007dba0	0x00000000

Both of these cases are fixed with this commit.

In a nutshell, this commit opens a "binary" target BFD for each of the
files that are mentioned in an NT_FILE / .note.linuxcore.file note
section.  It then uses these mappings instead of the file stratum
mappings that GDB has used in the past.

If this note section doesn't exist or is mangled for some reason, then
GDB will use the file stratum as before.  Should this happen, then
we can expect both of the above problems to again be present.

See the code comments in the commit for other details.

gdb/ChangeLog:

	* corelow.c (solist.h, unordered_map): Include.
	(class core_target): Add field m_core_file_mappings and
	method build_file_mappings.
	(core_target::core_target): Call build_file_mappings.
	(core_target::~core_target): Free memory associated with
	m_core_file_mappings.
	(core_target::build_file_mappings): New method.
	(core_target::xfer_partial): Use m_core_file_mappings
	for memory transfers.
	* linux-tdep.c (linux_read_core_file_mappings): New
	function.
	(linux_core_info_proc_mappings): Rewrite to use
	linux_read_core_file_mappings.
	(linux_init_abi): Register linux_read_core_file_mappings.
This commit is contained in:
Kevin Buettner 2020-06-11 19:20:03 -07:00
parent 7e183d2736
commit db082f5979
3 changed files with 312 additions and 97 deletions

View File

@ -1,3 +1,20 @@
2020-07-22 Kevin Buettner <kevinb@redhat.com>
* corelow.c (solist.h, unordered_map): Include.
(class core_target): Add field m_core_file_mappings and
method build_file_mappings.
(core_target::core_target): Call build_file_mappings.
(core_target::~core_target): Free memory associated with
m_core_file_mappings.
(core_target::build_file_mappings): New method.
(core_target::xfer_partial): Use m_core_file_mappings
for memory transfers.
* linux-tdep.c (linux_read_core_file_mappings): New
function.
(linux_core_info_proc_mappings): Rewrite to use
linux_read_core_file_mappings.
(linux_init_abi): Register linux_read_core_file_mappings.
2020-07-22 Kevin Buettner <kevinb@redhat.com>
* arch-utils.c (default_read_core_file_mappings): New function.

View File

@ -37,6 +37,7 @@
#include "exec.h"
#include "readline/tilde.h"
#include "solib.h"
#include "solist.h"
#include "filenames.h"
#include "progspace.h"
#include "objfiles.h"
@ -45,6 +46,7 @@
#include "gdbsupport/filestuff.h"
#include "build-id.h"
#include "gdbsupport/pathstuff.h"
#include <unordered_map>
#ifndef O_LARGEFILE
#define O_LARGEFILE 0
@ -121,6 +123,13 @@ private: /* per-core data */
targets. */
target_section_table m_core_section_table {};
/* File-backed address space mappings: some core files include
information about memory mapped files. */
target_section_table m_core_file_mappings {};
/* Build m_core_file_mappings. Called from the constructor. */
void build_file_mappings ();
/* FIXME: kettenis/20031023: Eventually this field should
disappear. */
struct gdbarch *m_core_gdbarch = NULL;
@ -141,11 +150,120 @@ core_target::core_target ()
&m_core_section_table.sections_end))
error (_("\"%s\": Can't find sections: %s"),
bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
build_file_mappings ();
}
core_target::~core_target ()
{
xfree (m_core_section_table.sections);
xfree (m_core_file_mappings.sections);
}
/* Construct the target_section_table for file-backed mappings if
they exist.
For each unique path in the note, we'll open a BFD with a bfd
target of "binary". This is an unstructured bfd target upon which
we'll impose a structure from the mappings in the architecture-specific
mappings note. A BFD section is allocated and initialized for each
file-backed mapping.
We take care to not share already open bfds with other parts of
GDB; in particular, we don't want to add new sections to existing
BFDs. We do, however, ensure that the BFDs that we allocate here
will go away (be deallocated) when the core target is detached. */
void
core_target::build_file_mappings ()
{
std::unordered_map<std::string, struct bfd *> bfd_map;
/* See linux_read_core_file_mappings() in linux-tdep.c for an example
read_core_file_mappings method. */
gdbarch_read_core_file_mappings (m_core_gdbarch, core_bfd,
/* After determining the number of mappings, read_core_file_mappings
will invoke this lambda which allocates target_section storage for
the mappings. */
[&] (ULONGEST count)
{
m_core_file_mappings.sections = XNEWVEC (struct target_section, count);
m_core_file_mappings.sections_end = m_core_file_mappings.sections;
},
/* read_core_file_mappings will invoke this lambda for each mapping
that it finds. */
[&] (int num, ULONGEST start, ULONGEST end, ULONGEST file_ofs,
const char *filename, const void *other)
{
/* Architecture-specific read_core_mapping methods are expected to
weed out non-file-backed mappings. */
gdb_assert (filename != nullptr);
struct bfd *bfd = bfd_map[filename];
if (bfd == nullptr)
{
/* Use exec_file_find() to do sysroot expansion. It'll
also strip the potential sysroot "target:" prefix. If
there is no sysroot, an equivalent (possibly more
canonical) pathname will be provided. */
gdb::unique_xmalloc_ptr<char> expanded_fname
= exec_file_find (filename, NULL);
if (expanded_fname == nullptr)
{
warning (_("Can't open file %s during file-backed mapping "
"note processing"),
expanded_fname.get ());
return;
}
bfd = bfd_map[filename] = bfd_openr (expanded_fname.get (),
"binary");
if (bfd == nullptr || !bfd_check_format (bfd, bfd_object))
{
/* If we get here, there's a good chance that it's due to
an internal error. We issue a warning instead of an
internal error because of the possibility that the
file was removed in between checking for its
existence during the expansion in exec_file_find()
and the calls to bfd_openr() / bfd_check_format().
Output both the path from the core file note along
with its expansion to make debugging this problem
easier. */
warning (_("Can't open file %s which was expanded to %s "
"during file-backed mapping note processing"),
filename, expanded_fname.get ());
if (bfd != nullptr)
bfd_close (bfd);
return;
}
/* Ensure that the bfd will be closed when core_bfd is closed.
This can be checked before/after a core file detach via
"maint info bfds". */
gdb_bfd_record_inclusion (core_bfd, bfd);
}
/* Make new BFD section. All sections have the same name,
which is permitted by bfd_make_section_anyway(). */
asection *sec = bfd_make_section_anyway (bfd, "load");
if (sec == nullptr)
error (_("Can't make section"));
sec->filepos = file_ofs;
bfd_set_section_flags (sec, SEC_READONLY | SEC_HAS_CONTENTS);
bfd_set_section_size (sec, end - start);
bfd_set_section_vma (sec, start);
bfd_set_section_lma (sec, start);
bfd_set_section_alignment (sec, 2);
/* Set target_section fields. */
struct target_section *ts = m_core_file_mappings.sections_end++;
ts->addr = start;
ts->endaddr = end;
ts->owner = nullptr;
ts->the_bfd_section = sec;
});
}
static void add_to_thread_list (bfd *, asection *, void *);
@ -633,10 +751,21 @@ core_target::xfer_partial (enum target_object object, const char *annex,
if (xfer_status == TARGET_XFER_OK)
return TARGET_XFER_OK;
/* Now check the stratum beneath us; this should be file_stratum. */
xfer_status = this->beneath ()->xfer_partial (object, annex, readbuf,
writebuf, offset, len,
xfered_len);
/* Check file backed mappings. If they're available, use
core file provided mappings (e.g. from .note.linuxcore.file
or the like) as this should provide a more accurate
result. If not, check the stratum beneath us, which should
be the file stratum. */
if (m_core_file_mappings.sections != nullptr)
xfer_status = section_table_xfer_memory_partial
(readbuf, writebuf,
offset, len, xfered_len,
m_core_file_mappings.sections,
m_core_file_mappings.sections_end);
else
xfer_status = this->beneath ()->xfer_partial (object, annex, readbuf,
writebuf, offset, len,
xfered_len);
if (xfer_status == TARGET_XFER_OK)
return TARGET_XFER_OK;

View File

@ -1018,104 +1018,172 @@ linux_info_proc (struct gdbarch *gdbarch, const char *args,
}
}
/* Implementation of `gdbarch_read_core_file_mappings', as defined in
gdbarch.h.
This function reads the NT_FILE note (which BFD turns into the
section ".note.linuxcore.file"). The format of this note / section
is described as follows in the Linux kernel sources in
fs/binfmt_elf.c:
long count -- how many files are mapped
long page_size -- units for file_ofs
array of [COUNT] elements of
long start
long end
long file_ofs
followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
CBFD is the BFD of the core file.
PRE_LOOP_CB is the callback function to invoke prior to starting
the loop which processes individual entries. This callback will
only be executed after the note has been examined in enough
detail to verify that it's not malformed in some way.
LOOP_CB is the callback function that will be executed once
for each mapping. */
static void
linux_read_core_file_mappings (struct gdbarch *gdbarch,
struct bfd *cbfd,
gdb::function_view<void (ULONGEST count)>
pre_loop_cb,
gdb::function_view<void (int num,
ULONGEST start,
ULONGEST end,
ULONGEST file_ofs,
const char *filename,
const void *other)>
loop_cb)
{
/* Ensure that ULONGEST is big enough for reading 64-bit core files. */
gdb_static_assert (sizeof (ULONGEST) >= 8);
/* It's not required that the NT_FILE note exists, so return silently
if it's not found. Beyond this point though, we'll complain
if problems are found. */
asection *section = bfd_get_section_by_name (cbfd, ".note.linuxcore.file");
if (section == nullptr)
return;
unsigned int addr_size_bits = gdbarch_addr_bit (gdbarch);
unsigned int addr_size = addr_size_bits / 8;
size_t note_size = bfd_section_size (section);
if (note_size < 2 * addr_size)
{
warning (_("malformed core note - too short for header"));
return;
}
gdb::def_vector<gdb_byte> contents (note_size);
if (!bfd_get_section_contents (core_bfd, section, contents.data (),
0, note_size))
{
warning (_("could not get core note contents"));
return;
}
gdb_byte *descdata = contents.data ();
char *descend = (char *) descdata + note_size;
if (descdata[note_size - 1] != '\0')
{
warning (_("malformed note - does not end with \\0"));
return;
}
ULONGEST count = bfd_get (addr_size_bits, core_bfd, descdata);
descdata += addr_size;
ULONGEST page_size = bfd_get (addr_size_bits, core_bfd, descdata);
descdata += addr_size;
if (note_size < 2 * addr_size + count * 3 * addr_size)
{
warning (_("malformed note - too short for supplied file count"));
return;
}
char *filenames = (char *) descdata + count * 3 * addr_size;
/* Make sure that the correct number of filenames exist. Complain
if there aren't enough or are too many. */
char *f = filenames;
for (int i = 0; i < count; i++)
{
if (f >= descend)
{
warning (_("malformed note - filename area is too small"));
return;
}
f += strnlen (f, descend - f) + 1;
}
/* Complain, but don't return early if the filename area is too big. */
if (f != descend)
warning (_("malformed note - filename area is too big"));
pre_loop_cb (count);
for (int i = 0; i < count; i++)
{
ULONGEST start = bfd_get (addr_size_bits, core_bfd, descdata);
descdata += addr_size;
ULONGEST end = bfd_get (addr_size_bits, core_bfd, descdata);
descdata += addr_size;
ULONGEST file_ofs
= bfd_get (addr_size_bits, core_bfd, descdata) * page_size;
descdata += addr_size;
char * filename = filenames;
filenames += strlen ((char *) filenames) + 1;
loop_cb (i, start, end, file_ofs, filename, nullptr);
}
}
/* Implement "info proc mappings" for a corefile. */
static void
linux_core_info_proc_mappings (struct gdbarch *gdbarch, const char *args)
{
asection *section;
ULONGEST count, page_size;
unsigned char *descdata, *filenames, *descend;
size_t note_size;
unsigned int addr_size_bits, addr_size;
struct gdbarch *core_gdbarch = gdbarch_from_bfd (core_bfd);
/* We assume this for reading 64-bit core files. */
gdb_static_assert (sizeof (ULONGEST) >= 8);
section = bfd_get_section_by_name (core_bfd, ".note.linuxcore.file");
if (section == NULL)
{
warning (_("unable to find mappings in core file"));
return;
}
addr_size_bits = gdbarch_addr_bit (core_gdbarch);
addr_size = addr_size_bits / 8;
note_size = bfd_section_size (section);
if (note_size < 2 * addr_size)
error (_("malformed core note - too short for header"));
gdb::def_vector<unsigned char> contents (note_size);
if (!bfd_get_section_contents (core_bfd, section, contents.data (),
0, note_size))
error (_("could not get core note contents"));
descdata = contents.data ();
descend = descdata + note_size;
if (descdata[note_size - 1] != '\0')
error (_("malformed note - does not end with \\0"));
count = bfd_get (addr_size_bits, core_bfd, descdata);
descdata += addr_size;
page_size = bfd_get (addr_size_bits, core_bfd, descdata);
descdata += addr_size;
if (note_size < 2 * addr_size + count * 3 * addr_size)
error (_("malformed note - too short for supplied file count"));
printf_filtered (_("Mapped address spaces:\n\n"));
if (gdbarch_addr_bit (gdbarch) == 32)
{
printf_filtered ("\t%10s %10s %10s %10s %s\n",
"Start Addr",
" End Addr",
" Size", " Offset", "objfile");
}
else
{
printf_filtered (" %18s %18s %10s %10s %s\n",
"Start Addr",
" End Addr",
" Size", " Offset", "objfile");
}
filenames = descdata + count * 3 * addr_size;
while (--count > 0)
{
ULONGEST start, end, file_ofs;
if (filenames == descend)
error (_("malformed note - filenames end too early"));
start = bfd_get (addr_size_bits, core_bfd, descdata);
descdata += addr_size;
end = bfd_get (addr_size_bits, core_bfd, descdata);
descdata += addr_size;
file_ofs = bfd_get (addr_size_bits, core_bfd, descdata);
descdata += addr_size;
file_ofs *= page_size;
if (gdbarch_addr_bit (gdbarch) == 32)
printf_filtered ("\t%10s %10s %10s %10s %s\n",
paddress (gdbarch, start),
paddress (gdbarch, end),
hex_string (end - start),
hex_string (file_ofs),
filenames);
else
printf_filtered (" %18s %18s %10s %10s %s\n",
paddress (gdbarch, start),
paddress (gdbarch, end),
hex_string (end - start),
hex_string (file_ofs),
filenames);
filenames += 1 + strlen ((char *) filenames);
}
linux_read_core_file_mappings (gdbarch, core_bfd,
[=] (ULONGEST count)
{
printf_filtered (_("Mapped address spaces:\n\n"));
if (gdbarch_addr_bit (gdbarch) == 32)
{
printf_filtered ("\t%10s %10s %10s %10s %s\n",
"Start Addr",
" End Addr",
" Size", " Offset", "objfile");
}
else
{
printf_filtered (" %18s %18s %10s %10s %s\n",
"Start Addr",
" End Addr",
" Size", " Offset", "objfile");
}
},
[=] (int num, ULONGEST start, ULONGEST end, ULONGEST file_ofs,
const char *filename, const void *other)
{
if (gdbarch_addr_bit (gdbarch) == 32)
printf_filtered ("\t%10s %10s %10s %10s %s\n",
paddress (gdbarch, start),
paddress (gdbarch, end),
hex_string (end - start),
hex_string (file_ofs),
filename);
else
printf_filtered (" %18s %18s %10s %10s %s\n",
paddress (gdbarch, start),
paddress (gdbarch, end),
hex_string (end - start),
hex_string (file_ofs),
filename);
});
}
/* Implement "info proc" for a corefile. */
@ -2472,6 +2540,7 @@ linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
set_gdbarch_info_proc (gdbarch, linux_info_proc);
set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc);
set_gdbarch_core_xfer_siginfo (gdbarch, linux_core_xfer_siginfo);
set_gdbarch_read_core_file_mappings (gdbarch, linux_read_core_file_mappings);
set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions);
set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes);
set_gdbarch_has_shared_address_space (gdbarch,