This patch fixes a segmentation fault in native GDB when handling an exec event with follow-exec-mode set to "new". The stack trace from the segfault was this: 0 0x0000000000669594 in gdbarch_data (gdbarch=0x0, data=0x20da7a0) at /scratch/dbreazea/sandbox/exec-nat/binutils-gdb/gdb/gdbarch.c:4847 1 0x00000000004d430e in get_remote_arch_state () at /scratch/dbreazea/sandbox/exec-nat/binutils-gdb/gdb/remote.c:603 2 0x00000000004d431e in get_remote_state () at /scratch/dbreazea/sandbox/exec-nat/binutils-gdb/gdb/remote.c:616 3 0x00000000004dda8b in discard_pending_stop_replies (inf=0x217c710) at /scratch/dbreazea/sandbox/exec-nat/binutils-gdb/gdb/remote.c:5775 4 0x00000000006a5928 in observer_inferior_exit_notification_stub ( data=0x4dda7a <discard_pending_stop_replies>, args_data=0x7fff12c258f0) at ./observer.inc:1137 5 0x00000000006a419a in generic_observer_notify (subject=0x21dfbe0, args=0x7fff12c258f0) at /scratch/dbreazea/sandbox/exec-nat/binutils-gdb/gdb/observer.c:167 6 0x00000000006a59ba in observer_notify_inferior_exit (inf=0x217c710) at ./observer.inc:1162 7 0x00000000007981d5 in exit_inferior_1 (inftoex=0x217c710, silent=1) at /scratch/dbreazea/sandbox/exec-nat/binutils-gdb/gdb/inferior.c:244 8 0x00000000007982f2 in exit_inferior_num_silent (num=1) at /scratch/dbreazea/sandbox/exec-nat/binutils-gdb/gdb/inferior.c:286 9 0x000000000062f93d in follow_exec (ptid=..., execd_pathname=0x7fff12c259a0 "/scratch/dbreazea/sandbox/exec-nat/build/gdb/testsuite/gdb.base/execd-prog") at /scratch/dbreazea/sandbox/exec-nat/binutils-gdb/gdb/infrun.c:1195 In follow_exec we were creating a new inferior for the execd program, as required by the exec mode, but we were doing it before calling exit_inferior_num_silent on the original inferior. So on entry to exit_inferior_num_silent we had two inferiors with the same ptid. In the calls made by exit_inferior_num_silent, the current inferior is temporarily saved and replaced in order to make use of functions that only operate on the current inferior (for example, in do_all_continuations, called while deleting the threads of the original inferior). When we restored the original inferior, we just took the first inferior that matched the ptid of the original and got the new (wrong) one. It hadn't been initialized yet and had no gdbarch pointer, and GDB segfaulted. The fix for that is to call exit_inferior_num_silent before adding the new inferior, so that we never have two inferiors with the same ptid. Then exit_inferior_num_silent uses the original inferior as the current inferior throughout, and can find a valid gdbarch pointer. Once we have finished with the exit of the old inferior and added the new one, we need to create a new thread for the new inferior. In the function that called follow_exec, handle_inferior_event_1, ecs->event_thread now points to the thread that was deleted with the exit of the original inferior. To remedy this we create the new thread, and once we return from follow_exec we reset ecs->event_thread. Note that we are guaranteed that we can reset ecs->event_thread safely using inferior_thread because we have set the current inferior in follow_exec, and inferior_ptid was set by the call to context_switch at the beginning of exec event handling. gdb/ChangeLog: * infrun.c (follow_exec): Re-order operations for handling follow-exec-mode "new". (handle_inferior_event_1): Assign ecs->event_thread to the current thread. * remote.c (get_remote_arch_state): Add an assertion.
…
…
…
…
…
…
…
…
…
…
…
…
README for GNU development tools This directory contains various GNU compilers, assemblers, linkers, debuggers, etc., plus their support routines, definitions, and documentation. If you are receiving this as part of a GDB release, see the file gdb/README. If with a binutils release, see binutils/README; if with a libg++ release, see libg++/README, etc. That'll give you info about this package -- supported targets, how to use it, how to report bugs, etc. It is now possible to automatically configure and build a variety of tools with one command. To build all of the tools contained herein, run the ``configure'' script here, e.g.: ./configure make To install them (by default in /usr/local/bin, /usr/local/lib, etc), then do: make install (If the configure script can't determine your type of computer, give it the name as an argument, for instance ``./configure sun4''. You can use the script ``config.sub'' to test whether a name is recognized; if it is, config.sub translates it to a triplet specifying CPU, vendor, and OS.) If you have more than one compiler on your system, it is often best to explicitly set CC in the environment before running configure, and to also set CC when running make. For example (assuming sh/bash/ksh): CC=gcc ./configure make A similar example using csh: setenv CC gcc ./configure make Much of the code and documentation enclosed is copyright by the Free Software Foundation, Inc. See the file COPYING or COPYING.LIB in the various directories, for a description of the GNU General Public License terms under which you can copy the files. REPORTING BUGS: Again, see gdb/README, binutils/README, etc., for info on where and how to report problems.
Description