This commit builds on the previous commit, and implements the extension_language_ops::handle_missing_debuginfo function for Python. This hook will give user supplied Python code a chance to help find missing debug information. The implementation of the new hook is pretty minimal within GDB's C++ code; most of the work is out-sourced to a Python implementation which is modelled heavily on how GDB's Python frame unwinders are implemented. The following new commands are added as commands implemented in Python, this is similar to how the Python unwinder commands are implemented: info missing-debug-handlers enable missing-debug-handler LOCUS HANDLER disable missing-debug-handler LOCUS HANDLER To make use of this extension hook a user will create missing debug information handler objects, and registers these handlers with GDB. When GDB encounters an objfile that is missing debug information, each handler is called in turn until one is able to help. Here is a minimal handler that does nothing useful: import gdb import gdb.missing_debug class MyFirstHandler(gdb.missing_debug.MissingDebugHandler): def __init__(self): super().__init__("my_first_handler") def __call__(self, objfile): # This handler does nothing useful. return None gdb.missing_debug.register_handler(None, MyFirstHandler()) Returning None from the __call__ method tells GDB that this handler was unable to find the missing debug information, and GDB should ask any other registered handlers. By extending the __call__ method it is possible for the Python extension to locate the debug information for objfile and return a value that tells GDB how to use the information that has been located. Possible return values from a handler: - None: This means the handler couldn't help. GDB will call other registered handlers to see if they can help instead. - False: The handler has done all it can, but the debug information for the objfile still couldn't be found. GDB will not call any other handlers, and will continue without the debug information for objfile. - True: The handler has installed the debug information into a location where GDB would normally expect to find it. GDB should look again for the debug information. - A string: The handler can return a filename, which is the file containing the missing debug information. GDB will load this file. When a handler returns True, GDB will look again for the debug information, but only using the standard built-in build-id and .gnu_debuglink based lookup strategies. It is not possible for an extension to trigger another debuginfod lookup; the assumption is that the debuginfod server is remote, and out of the control of extensions running within GDB. Handlers can be registered globally, or per program space. GDB checks the handlers for the current program space first, and then all of the global handles. The first handler that returns a value that is not None, has "handled" the objfile, at which point GDB continues. Reviewed-By: Eli Zaretskii <eliz@gnu.org> Approved-By: Tom Tromey <tom@tromey.com>
…
…
…
…
…
…
…
…
…
…
…
…
README for GNU development tools This directory contains various GNU compilers, assemblers, linkers, debuggers, etc., plus their support routines, definitions, and documentation. If you are receiving this as part of a GDB release, see the file gdb/README. If with a binutils release, see binutils/README; if with a libg++ release, see libg++/README, etc. That'll give you info about this package -- supported targets, how to use it, how to report bugs, etc. It is now possible to automatically configure and build a variety of tools with one command. To build all of the tools contained herein, run the ``configure'' script here, e.g.: ./configure make To install them (by default in /usr/local/bin, /usr/local/lib, etc), then do: make install (If the configure script can't determine your type of computer, give it the name as an argument, for instance ``./configure sun4''. You can use the script ``config.sub'' to test whether a name is recognized; if it is, config.sub translates it to a triplet specifying CPU, vendor, and OS.) If you have more than one compiler on your system, it is often best to explicitly set CC in the environment before running configure, and to also set CC when running make. For example (assuming sh/bash/ksh): CC=gcc ./configure make A similar example using csh: setenv CC gcc ./configure make Much of the code and documentation enclosed is copyright by the Free Software Foundation, Inc. See the file COPYING or COPYING.LIB in the various directories, for a description of the GNU General Public License terms under which you can copy the files. REPORTING BUGS: Again, see gdb/README, binutils/README, etc., for info on where and how to report problems.
Description