Two of the instructions added by the `+d128' architectural extension add the flexibility to have two optional operands. Prior to the addition of the `tlbip' and `sysp' instructions, no mnemonic allowed more than one such optional operand. With `tlbip' as an example, some TLBIP instruction names do not allow for any optional operands, while others allow for both to be optional. In the latter case, it is possible that either the second operand alone is omitted or both operands are omitted. Therefore, a considerable degree of flexibility needed to be added to the way operands were parsed. It was, however, possible to achieve this with relatively few changes to existing code. it is noteworthy that opcode flags specifying the optional operand number are non-orthogonal. For example, we have: #define F_OPD1_OPT (2 << 12) : 0b10 << 12 #define F_OPD2_OPT (3 << 12) : 0b11 << 12 such that by virtue of the observation that (F_OPD1_OPT | F_OPD2_OPT) == F_OPD2_OPT it is impossible to mark both operands 1 and 2 as optional for an instruction and it is assumed that a maximum of 1 operand can ever be optional. This is not overly-problematic given that, for optional pairs, the second optional operand is always found immediately after the first. Thus, it suffices for us to flag that there is a second optional operand. With this fact, we can infer its position in the mnemonic from the position of the first (e.g. if the second operand in the mnemonic is optional, we know the third is too). We therefore define the `F_OPD_PAIR_OPT' flag and calculate its position in the mnemonic from the value encoded by the `F_OPD<n>_OPT' flag. Another observation is that there is a tight coupling between default values assigned to the two registers when one (or both) are omitted from the mnemonic. Namely, if Xt1 has a value of 0x1f (the zero register is specified), Xt2 defaults to the same value, otherwise Xt2 will be assigned Xt + 1. This meant that where you have default value validation, in checking the second optional operand's value, it is also necessary to look at the value assigned to the previously-processed operand value before deciding its validity. Thus `process_omitted_operand' needs not only access to its `operand' argument, but also to the global `inst' struct.
…
…
…
…
…
…
…
…
…
…
…
…
README for GNU development tools This directory contains various GNU compilers, assemblers, linkers, debuggers, etc., plus their support routines, definitions, and documentation. If you are receiving this as part of a GDB release, see the file gdb/README. If with a binutils release, see binutils/README; if with a libg++ release, see libg++/README, etc. That'll give you info about this package -- supported targets, how to use it, how to report bugs, etc. It is now possible to automatically configure and build a variety of tools with one command. To build all of the tools contained herein, run the ``configure'' script here, e.g.: ./configure make To install them (by default in /usr/local/bin, /usr/local/lib, etc), then do: make install (If the configure script can't determine your type of computer, give it the name as an argument, for instance ``./configure sun4''. You can use the script ``config.sub'' to test whether a name is recognized; if it is, config.sub translates it to a triplet specifying CPU, vendor, and OS.) If you have more than one compiler on your system, it is often best to explicitly set CC in the environment before running configure, and to also set CC when running make. For example (assuming sh/bash/ksh): CC=gcc ./configure make A similar example using csh: setenv CC gcc ./configure make Much of the code and documentation enclosed is copyright by the Free Software Foundation, Inc. See the file COPYING or COPYING.LIB in the various directories, for a description of the GNU General Public License terms under which you can copy the files. REPORTING BUGS: Again, see gdb/README, binutils/README, etc., for info on where and how to report problems.
Description