Update ristretto.sage to match goldilocks b0af87
This commit is contained in:
parent
de377290ee
commit
59837c6ecf
390
vendor/ristretto.sage
vendored
390
vendor/ristretto.sage
vendored
@ -49,7 +49,11 @@ def isqrt(x,exn=InvalidEncodingException("Not on curve")):
|
||||
"""Return 1/sqrt(x)"""
|
||||
if x==0: return 0
|
||||
if not is_square(x): raise exn
|
||||
return 1/sqrt(x)
|
||||
s = sqrt(x)
|
||||
#if negative(s): s=-s
|
||||
return 1/s
|
||||
|
||||
def inv0(x): return 1/x if x != 0 else 0
|
||||
|
||||
def isqrt_i(x):
|
||||
"""Return 1/sqrt(x) or 1/sqrt(zeta * x)"""
|
||||
@ -117,16 +121,20 @@ class QuotientEdwardsPoint(object):
|
||||
else:
|
||||
return self.__class__(-self.x, -self.y)
|
||||
|
||||
def doubleAndEncodeSpec(self):
|
||||
return (self+self).encode()
|
||||
|
||||
# Utility functions
|
||||
@classmethod
|
||||
def bytesToGf(cls,bytes,mustBeProper=True,mustBePositive=False):
|
||||
def bytesToGf(cls,bytes,mustBeProper=True,mustBePositive=False,maskHiBits=False):
|
||||
"""Convert little-endian bytes to field element, sanity check length"""
|
||||
if len(bytes) != cls.encLen:
|
||||
raise InvalidEncodingException("wrong length %d" % len(bytes))
|
||||
s = dec_le(bytes)
|
||||
if mustBeProper and s >= cls.F.modulus():
|
||||
if mustBeProper and s >= cls.F.order():
|
||||
raise InvalidEncodingException("%d out of range!" % s)
|
||||
bitlen = int(ceil(log(cls.F.order())/log(2)))
|
||||
if maskHiBits: s &= 2^bitlen-1
|
||||
s = cls.F(s)
|
||||
if mustBePositive and negative(s):
|
||||
raise InvalidEncodingException("%d is negative!" % s)
|
||||
@ -197,7 +205,42 @@ class RistrettoPoint(QuotientEdwardsPoint):
|
||||
if negative(isr^2*num*y*t): y = -y
|
||||
s = isr*y*(z-y)
|
||||
|
||||
return self.gfToBytes(s,mustBePositive=True)
|
||||
|
||||
@optimized_version_of("doubleAndEncodeSpec")
|
||||
def doubleAndEncode(self):
|
||||
X,Y,Z,T = self.xyzt()
|
||||
a,d,mneg = self.a,self.d,self.mneg
|
||||
|
||||
if self.cofactor==8:
|
||||
e = 2*X*Y
|
||||
f = Z^2+d*T^2
|
||||
g = Y^2-a*X^2
|
||||
h = Z^2-d*T^2
|
||||
|
||||
inv1 = 1/(e*f*g*h)
|
||||
z_inv = inv1*e*g # 1 / (f*h)
|
||||
t_inv = inv1*f*h
|
||||
|
||||
if negative(e*g*z_inv):
|
||||
if a==-1: sqrta = self.i
|
||||
else: sqrta = -1
|
||||
e,f,g,h = g,h,-e,f*sqrta
|
||||
factor = self.i
|
||||
else:
|
||||
factor = self.magic
|
||||
|
||||
if negative(h*e*z_inv): g=-g
|
||||
s = (h-g)*factor*g*t_inv
|
||||
|
||||
else:
|
||||
foo = Y^2+a*X^2
|
||||
bar = X*Y
|
||||
den = 1/(foo*bar)
|
||||
if negative(2*bar^2*den): tmp = a*X^2
|
||||
else: tmp = Y^2
|
||||
s = self.magic*(Z^2-tmp)*foo*den
|
||||
|
||||
return self.gfToBytes(s,mustBePositive=True)
|
||||
|
||||
@classmethod
|
||||
@ -238,8 +281,9 @@ class RistrettoPoint(QuotientEdwardsPoint):
|
||||
@classmethod
|
||||
def elligatorSpec(cls,r0):
|
||||
a,d = cls.a,cls.d
|
||||
r = cls.qnr * cls.bytesToGf(r0)^2
|
||||
r = cls.qnr * cls.bytesToGf(r0,mustBeProper=False,maskHiBits=True)^2
|
||||
den = (d*r-a)*(a*r-d)
|
||||
if den == 0: return cls()
|
||||
n1 = cls.a*(r+1)*(a+d)*(d-a)/den
|
||||
n2 = r*n1
|
||||
if is_square(n1):
|
||||
@ -253,7 +297,7 @@ class RistrettoPoint(QuotientEdwardsPoint):
|
||||
@optimized_version_of("elligatorSpec")
|
||||
def elligator(cls,r0):
|
||||
a,d = cls.a,cls.d
|
||||
r0 = cls.bytesToGf(r0)
|
||||
r0 = cls.bytesToGf(r0,mustBeProper=False,maskHiBits=True)
|
||||
r = cls.qnr * r0^2
|
||||
den = (d*r-a)*(a*r-d)
|
||||
num = cls.a*(r+1)*(a+d)*(d-a)
|
||||
@ -278,15 +322,11 @@ class Decaf_1_1_Point(QuotientEdwardsPoint):
|
||||
|
||||
if self.cofactor==8 and negative(x*y*self.isoMagic):
|
||||
x,y = self.torque()
|
||||
|
||||
isr2 = isqrt(a*(y^2-1)) * sqrt(a*d-1)
|
||||
|
||||
|
||||
sr = xsqrt(1-a*x^2)
|
||||
assert sr in [isr2*x*y,-isr2*x*y]
|
||||
|
||||
altx = 1/isr2*self.isoMagic
|
||||
if negative(altx): s = (1+x*y*isr2)/(a*x)
|
||||
else: s = (1-x*y*isr2)/(a*x)
|
||||
altx = x*y*self.isoMagic / sr
|
||||
if negative(altx): s = (1+sr)/x
|
||||
else: s = (1-sr)/x
|
||||
|
||||
return self.gfToBytes(s,mustBePositive=True)
|
||||
|
||||
@ -297,52 +337,141 @@ class Decaf_1_1_Point(QuotientEdwardsPoint):
|
||||
s = cls.bytesToGf(s,mustBePositive=True)
|
||||
|
||||
if s==0: return cls()
|
||||
isr = isqrt(s^4 + 2*(a-2*d)*s^2 + 1)
|
||||
altx = 2*s*isr*cls.isoMagic
|
||||
if negative(altx): isr = -isr
|
||||
t = xsqrt(s^4 + 2*(a-2*d)*s^2 + 1)
|
||||
altx = 2*s*cls.isoMagic/t
|
||||
if negative(altx): t = -t
|
||||
x = 2*s / (1+a*s^2)
|
||||
y = (1-a*s^2) * isr
|
||||
y = (1-a*s^2) / t
|
||||
|
||||
if cls.cofactor==8 and (negative(x*y*cls.isoMagic) or y==0):
|
||||
raise InvalidEncodingException("x*y is invalid: %d, %d" % (x,y))
|
||||
|
||||
return cls(x,y)
|
||||
|
||||
@optimized_version_of("encodeSpec")
|
||||
def encode(self):
|
||||
"""Encode, optimized version"""
|
||||
def toJacobiQuartic(self,toggle_rotation=False,toggle_altx=False,toggle_s=False):
|
||||
"Return s,t on jacobi curve"
|
||||
a,d = self.a,self.d
|
||||
x,y,z,t = self.xyzt()
|
||||
|
||||
if self.cofactor == 8:
|
||||
# Cofactor 8 version
|
||||
# Simulate IMAGINE_TWIST because that's how libdecaf does it
|
||||
x = self.i*x
|
||||
t = self.i*t
|
||||
a = -a
|
||||
d = -d
|
||||
|
||||
# OK, the actual libdecaf code should be here
|
||||
num = (z+y)*(z-y)
|
||||
den = x*y
|
||||
tmp = isqrt(num*(a-d)*den^2)
|
||||
|
||||
if negative(tmp^2*den*num*(a-d)*t^2*self.isoMagic):
|
||||
den,num = num,den
|
||||
tmp *= sqrt(a-d) # witness that cofactor is 8
|
||||
yisr = x*sqrt(a)
|
||||
toggle = (a==1)
|
||||
else:
|
||||
yisr = y*(a*d-1)
|
||||
toggle = False
|
||||
isr = isqrt(num*(a-d)*den^2)
|
||||
|
||||
iden = isr * den * self.isoMagic # 1/sqrt((z+y)(z-y)) = 1/sqrt(1-Y^2) / z
|
||||
inum = isr * num # sqrt(1-Y^2) * z / xysqrt(a-d) ~ 1/sqrt(1-ax^2)/z
|
||||
|
||||
tiisr = tmp*num
|
||||
altx = tiisr*t*self.isoMagic
|
||||
if negative(altx) != toggle: tiisr =- tiisr
|
||||
s = tmp*den*yisr*(tiisr*z - 1)
|
||||
if negative(iden*inum*self.i*t^2*(d-a)) != toggle_rotation:
|
||||
iden,inum = inum,iden
|
||||
fac = x*sqrt(a)
|
||||
toggle=(a==-1)
|
||||
else:
|
||||
fac = y
|
||||
toggle=False
|
||||
|
||||
imi = self.isoMagic * self.i
|
||||
altx = inum*t*imi
|
||||
neg_altx = negative(altx) != toggle_altx
|
||||
if neg_altx != toggle: inum =- inum
|
||||
|
||||
tmp = fac*(inum*z + 1)
|
||||
s = iden*tmp*imi
|
||||
|
||||
negm1 = (negative(s) != toggle_s) != neg_altx
|
||||
if negm1: m1 = a*fac + z
|
||||
else: m1 = a*fac - z
|
||||
|
||||
swap = toggle_s
|
||||
|
||||
else:
|
||||
# Much simpler cofactor 4 version
|
||||
num = (x+t)*(x-t)
|
||||
isr = isqrt(num*(a-d)*x^2)
|
||||
ratio = isr*num
|
||||
if negative(ratio*self.isoMagic): ratio=-ratio
|
||||
s = (a-d)*isr*x*(ratio*z - t)
|
||||
ratio = isr*num
|
||||
altx = ratio*self.isoMagic
|
||||
|
||||
neg_altx = negative(altx) != toggle_altx
|
||||
if neg_altx: ratio =- ratio
|
||||
|
||||
tmp = ratio*z - t
|
||||
s = (a-d)*isr*x*tmp
|
||||
|
||||
negx = (negative(s) != toggle_s) != neg_altx
|
||||
if negx: m1 = -a*t + x
|
||||
else: m1 = -a*t - x
|
||||
|
||||
swap = toggle_s
|
||||
|
||||
if negative(s): s = -s
|
||||
|
||||
return self.gfToBytes(s,mustBePositive=True)
|
||||
return s,m1,a*tmp,swap
|
||||
|
||||
def invertElligator(self,toggle_r=False,*args,**kwargs):
|
||||
"Produce preimage of self under elligator, or None"
|
||||
a,d = self.a,self.d
|
||||
|
||||
rets = []
|
||||
|
||||
tr = [False,True] if self.cofactor == 8 else [False]
|
||||
for toggle_rotation in tr:
|
||||
for toggle_altx in [False,True]:
|
||||
for toggle_s in [False,True]:
|
||||
for toggle_r in [False,True]:
|
||||
s,m1,m12,swap = self.toJacobiQuartic(toggle_rotation,toggle_altx,toggle_s)
|
||||
|
||||
#print
|
||||
#print toggle_rotation,toggle_altx,toggle_s
|
||||
#print m1
|
||||
#print m12
|
||||
|
||||
|
||||
if self == self.__class__():
|
||||
if self.cofactor == 4:
|
||||
# Hacks for identity!
|
||||
if toggle_altx: m12 = 1
|
||||
elif toggle_s: m1 = 1
|
||||
elif toggle_r: continue
|
||||
## BOTH???
|
||||
|
||||
else:
|
||||
m12 = 1
|
||||
imi = self.isoMagic * self.i
|
||||
if toggle_rotation:
|
||||
if toggle_altx: m1 = -imi
|
||||
else: m1 = +imi
|
||||
else:
|
||||
if toggle_altx: m1 = 0
|
||||
else: m1 = a-d
|
||||
|
||||
rnum = (d*a*m12-m1)
|
||||
rden = ((d*a-1)*m12+m1)
|
||||
if swap: rnum,rden = rden,rnum
|
||||
|
||||
ok,sr = isqrt_i(rnum*rden*self.qnr)
|
||||
if not ok: continue
|
||||
sr *= rnum
|
||||
#print "Works! %d %x" % (swap,sr)
|
||||
|
||||
if negative(sr) != toggle_r: sr = -sr
|
||||
ret = self.gfToBytes(sr)
|
||||
if self.elligator(ret) != self and self.elligator(ret) != -self:
|
||||
print "WRONG!",[toggle_rotation,toggle_altx,toggle_s]
|
||||
if self.elligator(ret) == -self and self != -self: print "Negated!",[toggle_rotation,toggle_altx,toggle_s]
|
||||
rets.append(bytes(ret))
|
||||
return rets
|
||||
|
||||
@optimized_version_of("encodeSpec")
|
||||
def encode(self):
|
||||
"""Encode, optimized version"""
|
||||
return self.gfToBytes(self.toJacobiQuartic()[0])
|
||||
|
||||
@classmethod
|
||||
@optimized_version_of("decodeSpec")
|
||||
@ -351,7 +480,7 @@ class Decaf_1_1_Point(QuotientEdwardsPoint):
|
||||
a,d = cls.a,cls.d
|
||||
s = cls.bytesToGf(s,mustBePositive=True)
|
||||
|
||||
if s==0: return cls()
|
||||
#if s==0: return cls()
|
||||
s2 = s^2
|
||||
den = 1+a*s2
|
||||
num = den^2 - 4*d*s2
|
||||
@ -374,13 +503,63 @@ class Decaf_1_1_Point(QuotientEdwardsPoint):
|
||||
x = 2*s / (1+a*s^2)
|
||||
y = (1-a*s^2) / t
|
||||
return cls(x,sgn*y)
|
||||
|
||||
@optimized_version_of("doubleAndEncodeSpec")
|
||||
def doubleAndEncode(self):
|
||||
X,Y,Z,T = self.xyzt()
|
||||
a,d = self.a,self.d
|
||||
|
||||
if self.cofactor == 8:
|
||||
# Cofactor 8 version
|
||||
# Simulate IMAGINE_TWIST because that's how libdecaf does it
|
||||
X = self.i*X
|
||||
T = self.i*T
|
||||
a = -a
|
||||
d = -d
|
||||
# TODO: This is only being called for a=-1, so could
|
||||
# be wrong for a=1
|
||||
|
||||
e = 2*X*Y
|
||||
f = Y^2+a*X^2
|
||||
g = Y^2-a*X^2
|
||||
h = Z^2-d*T^2
|
||||
|
||||
eim = e*self.isoMagic
|
||||
inv = 1/(eim*g*f*h)
|
||||
fh_inv = eim*g*inv*self.i
|
||||
|
||||
if negative(eim*g*fh_inv):
|
||||
idf = g*self.isoMagic*self.i
|
||||
bar = f
|
||||
foo = g
|
||||
test = eim*f
|
||||
else:
|
||||
idf = eim
|
||||
bar = h
|
||||
foo = -eim
|
||||
test = g*h
|
||||
|
||||
if negative(test*fh_inv): bar =- bar
|
||||
s = idf*(foo+bar)*inv*f*h
|
||||
|
||||
else:
|
||||
xy = X*Y
|
||||
h = Z^2-d*T^2
|
||||
inv = 1/(xy*h)
|
||||
if negative(inv*2*xy^2*self.isoMagic): tmp = Y
|
||||
else: tmp = X
|
||||
s = tmp^2*h*inv # = X/Y or Y/X, interestingly
|
||||
|
||||
return self.gfToBytes(s,mustBePositive=True)
|
||||
|
||||
@classmethod
|
||||
def elligatorSpec(cls,r0):
|
||||
def elligatorSpec(cls,r0,fromR=False):
|
||||
a,d = cls.a,cls.d
|
||||
r = cls.qnr * cls.bytesToGf(r0)^2
|
||||
if fromR: r = r0
|
||||
else: r = cls.qnr * cls.bytesToGf(r0,mustBeProper=False,maskHiBits=True)^2
|
||||
|
||||
den = (d*r-(d-a))*((d-a)*r-d)
|
||||
if den == 0: return cls()
|
||||
n1 = (r+1)*(a-2*d)/den
|
||||
n2 = r*n1
|
||||
if is_square(n1):
|
||||
@ -394,7 +573,7 @@ class Decaf_1_1_Point(QuotientEdwardsPoint):
|
||||
@optimized_version_of("elligatorSpec")
|
||||
def elligator(cls,r0):
|
||||
a,d = cls.a,cls.d
|
||||
r0 = cls.bytesToGf(r0)
|
||||
r0 = cls.bytesToGf(r0,mustBeProper=False,maskHiBits=True)
|
||||
r = cls.qnr * r0^2
|
||||
den = (d*r-(d-a))*((d-a)*r-d)
|
||||
num = (r+1)*(a-2*d)
|
||||
@ -408,6 +587,40 @@ class Decaf_1_1_Point(QuotientEdwardsPoint):
|
||||
if negative(s) == iss: s = -s
|
||||
return cls.fromJacobiQuartic(s,t)
|
||||
|
||||
def elligatorInverseBruteForce(self):
|
||||
"""Invert Elligator using SAGE's polynomial solver"""
|
||||
a,d = self.a,self.d
|
||||
R.<r0> = self.F[]
|
||||
r = self.qnr * r0^2
|
||||
den = (d*r-(d-a))*((d-a)*r-d)
|
||||
n1 = (r+1)*(a-2*d)/den
|
||||
n2 = r*n1
|
||||
ret = set()
|
||||
for s2,t in [(n1, -(r-1)*(a-2*d)^2 / den - 1),
|
||||
(n2,r*(r-1)*(a-2*d)^2 / den - 1)]:
|
||||
x2 = 4*s2/(1+a*s2)^2
|
||||
y = (1-a*s2) / t
|
||||
|
||||
selfT = self
|
||||
for i in xrange(self.cofactor/2):
|
||||
xT,yT = selfT
|
||||
polyX = xT^2-x2
|
||||
polyY = yT-y
|
||||
sx = set(r for r,_ in polyX.numerator().roots())
|
||||
sy = set(r for r,_ in polyY.numerator().roots())
|
||||
ret = ret.union(sx.intersection(sy))
|
||||
|
||||
selfT = selfT.torque()
|
||||
|
||||
ret = [self.gfToBytes(r) for r in ret]
|
||||
|
||||
for r in ret:
|
||||
assert self.elligator(r) in [self,-self]
|
||||
|
||||
ret = [r for r in ret if self.elligator(r) == self]
|
||||
|
||||
return ret
|
||||
|
||||
class Ed25519Point(RistrettoPoint):
|
||||
F = GF(2^255-19)
|
||||
d = F(-121665/121666)
|
||||
@ -455,7 +668,7 @@ class IsoEd448Point(RistrettoPoint):
|
||||
@classmethod
|
||||
def base(cls):
|
||||
return cls( # RFC has it wrong
|
||||
-345397493039729516374008604150537410266655260075183290216406970281645695073672344430481787759340633221708391583424041788924124567700732,
|
||||
345397493039729516374008604150537410266655260075183290216406970281645695073672344430481787759340633221708391583424041788924124567700732,
|
||||
-363419362147803445274661903944002267176820680343659030140745099590306164083365386343198191849338272965044442230921818680526749009182718
|
||||
)
|
||||
|
||||
@ -464,7 +677,6 @@ class TwistedEd448GoldilocksPoint(Decaf_1_1_Point):
|
||||
d = F(-39082)
|
||||
a = F(-1)
|
||||
qnr = -1
|
||||
magic = isqrt(a*d-1)
|
||||
cofactor = 4
|
||||
encLen = 56
|
||||
isoMagic = IsoEd448Point.magic
|
||||
@ -478,14 +690,13 @@ class Ed448GoldilocksPoint(Decaf_1_1_Point):
|
||||
d = F(-39081)
|
||||
a = F(1)
|
||||
qnr = -1
|
||||
magic = isqrt(a*d-1)
|
||||
cofactor = 4
|
||||
encLen = 56
|
||||
isoMagic = IsoEd448Point.magic
|
||||
|
||||
@classmethod
|
||||
def base(cls):
|
||||
return -2*cls( # FIXME: make not negative
|
||||
return 2*cls(
|
||||
224580040295924300187604334099896036246789641632564134246125461686950415467406032909029192869357953282578032075146446173674602635247710, 298819210078481492676017930443930673437544040154080242095928241372331506189835876003536878655418784733982303233503462500531545062832660
|
||||
)
|
||||
|
||||
@ -532,19 +743,29 @@ def test(cls,n):
|
||||
|
||||
|
||||
P = cls.base()
|
||||
print "base", list(P.encode())
|
||||
for i in xrange(16):
|
||||
Q = P*i
|
||||
print i, list(Q.encode())
|
||||
|
||||
Q = cls()
|
||||
for i in xrange(n):
|
||||
#print i, binascii.hexlify(Q.encode())
|
||||
QQ = cls.decode(Q.encode())
|
||||
#print binascii.hexlify(Q.encode())
|
||||
QE = Q.encode()
|
||||
QQ = cls.decode(QE)
|
||||
if QQ != Q: raise TestFailedException("Round trip %s != %s" % (str(QQ),str(Q)))
|
||||
|
||||
# Testing s -> 1/s: encodes -point on cofactor
|
||||
s = cls.bytesToGf(QE)
|
||||
if s != 0:
|
||||
ss = cls.gfToBytes(1/s,mustBePositive=True)
|
||||
try:
|
||||
QN = cls.decode(ss)
|
||||
if cls.cofactor == 8:
|
||||
raise TestFailedException("1/s shouldnt work for cofactor 8")
|
||||
if QN != -Q:
|
||||
raise TestFailedException("s -> 1/s should negate point for cofactor 4")
|
||||
except InvalidEncodingException as e:
|
||||
# Should be raised iff cofactor==8
|
||||
if cls.cofactor == 4:
|
||||
raise TestFailedException("s -> 1/s should work for cofactor 4")
|
||||
|
||||
QT = Q
|
||||
QE = Q.encode()
|
||||
for h in xrange(cls.cofactor):
|
||||
QT = QT.torque()
|
||||
if QT.encode() != QE:
|
||||
@ -559,27 +780,26 @@ def test(cls,n):
|
||||
Q2 = Q0*(r+1)
|
||||
if Q1 + Q0 != Q2: raise TestFailedException("Scalarmul doesn't work")
|
||||
Q = Q1
|
||||
|
||||
test(Ed25519Point,100)
|
||||
#test(NegEd25519Point,100)
|
||||
#test(IsoEd25519Point,100)
|
||||
#test(IsoEd448Point,100)
|
||||
#test(TwistedEd448GoldilocksPoint,100)
|
||||
#test(Ed448GoldilocksPoint,100)
|
||||
|
||||
|
||||
def testElligator(cls,n):
|
||||
print "Testing elligator on %s" % cls.__name__
|
||||
for i in xrange(n):
|
||||
r = randombytes(cls.encLen)
|
||||
Q = cls.elligator(r)
|
||||
print list(r), list(Q.encode())
|
||||
|
||||
testElligator(Ed25519Point,100)
|
||||
#testElligator(NegEd25519Point,100)
|
||||
#testElligator(IsoEd448Point,100)
|
||||
#testElligator(Ed448GoldilocksPoint,100)
|
||||
#testElligator(TwistedEd448GoldilocksPoint,100)
|
||||
P = cls.elligator(r)
|
||||
if hasattr(P,"invertElligator"):
|
||||
iv = P.invertElligator()
|
||||
modr = bytes(cls.gfToBytes(cls.bytesToGf(r,mustBeProper=False,maskHiBits=True)))
|
||||
iv2 = P.torque().invertElligator()
|
||||
if modr not in iv: print "Failed to invert Elligator!"
|
||||
if len(iv) != len(set(iv)):
|
||||
print "Elligator inverses not unique!", len(set(iv)), len(iv)
|
||||
if iv != iv2:
|
||||
print "Elligator is untorqueable!"
|
||||
#print [binascii.hexlify(j) for j in iv]
|
||||
#print [binascii.hexlify(j) for j in iv2]
|
||||
#break
|
||||
else:
|
||||
pass # TODO
|
||||
|
||||
def gangtest(classes,n):
|
||||
print "Gang test",[cls.__name__ for cls in classes]
|
||||
@ -607,5 +827,31 @@ def gangtest(classes,n):
|
||||
for c,ret in zip(classes,rets):
|
||||
print c,binascii.hexlify(ret)
|
||||
print
|
||||
gangtest([IsoEd448Point,TwistedEd448GoldilocksPoint,Ed448GoldilocksPoint],100)
|
||||
gangtest([Ed25519Point,IsoEd25519Point],100)
|
||||
|
||||
def testDoubleAndEncode(cls,n):
|
||||
print "Testing doubleAndEncode on %s" % cls.__name__
|
||||
for i in xrange(n):
|
||||
r1 = randombytes(cls.encLen)
|
||||
r2 = randombytes(cls.encLen)
|
||||
u = cls.elligator(r1) + cls.elligator(r2)
|
||||
u.doubleAndEncode()
|
||||
|
||||
testDoubleAndEncode(Ed25519Point,100)
|
||||
testDoubleAndEncode(NegEd25519Point,100)
|
||||
testDoubleAndEncode(IsoEd25519Point,100)
|
||||
testDoubleAndEncode(IsoEd448Point,100)
|
||||
testDoubleAndEncode(TwistedEd448GoldilocksPoint,100)
|
||||
#test(Ed25519Point,100)
|
||||
#test(NegEd25519Point,100)
|
||||
#test(IsoEd25519Point,100)
|
||||
#test(IsoEd448Point,100)
|
||||
#test(TwistedEd448GoldilocksPoint,100)
|
||||
#test(Ed448GoldilocksPoint,100)
|
||||
#testElligator(Ed25519Point,100)
|
||||
#testElligator(NegEd25519Point,100)
|
||||
#testElligator(IsoEd25519Point,100)
|
||||
#testElligator(IsoEd448Point,100)
|
||||
#testElligator(Ed448GoldilocksPoint,100)
|
||||
#testElligator(TwistedEd448GoldilocksPoint,100)
|
||||
#gangtest([IsoEd448Point,TwistedEd448GoldilocksPoint,Ed448GoldilocksPoint],100)
|
||||
#gangtest([Ed25519Point,IsoEd25519Point],100)
|
||||
|
Loading…
x
Reference in New Issue
Block a user