Rework benchmarks to make it easier to get assembly. (#297)

* Rename benches/mod.rs to benches/buffer.rs

This naming makes more sense, especially if we add more benchmark
files.

Signed-off-by: Joe Richey <joerichey@google.com>

* Rework benchmarks to make it easier to get assembly.

This change:
  - Move the benchmarks from mod.rs to buffer.rs
  - Move the inner loop we benchmark into an `#[inline(never)]` function
  - Includes instructions for getting the ASM for a specific benchmark

This should hopefully reduce the variance of these benchmarks and make
it easier to figure out if we are emitting the assembly or IR we expect
for a particular implementation.

Signed-off-by: Joe Richey <joerichey@google.com>

Signed-off-by: Joe Richey <joerichey@google.com>
This commit is contained in:
Joseph Richey 2022-10-21 07:10:44 -07:00 committed by GitHub
parent 55ad4c41ba
commit bd0654fe70
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 71 additions and 64 deletions

71
benches/buffer.rs Normal file
View File

@ -0,0 +1,71 @@
#![feature(test, maybe_uninit_uninit_array_transpose)]
extern crate test;
use std::mem::MaybeUninit;
// Call getrandom on a zero-initialized stack buffer
#[inline(always)]
fn bench_getrandom<const N: usize>() {
let mut buf = [0u8; N];
getrandom::getrandom(&mut buf).unwrap();
test::black_box(&buf as &[u8]);
}
// Call getrandom_uninit on an uninitialized stack buffer
#[inline(always)]
fn bench_getrandom_uninit<const N: usize>() {
let mut uninit = [MaybeUninit::uninit(); N];
let buf: &[u8] = getrandom::getrandom_uninit(&mut uninit).unwrap();
test::black_box(buf);
}
// We benchmark using #[inline(never)] "inner" functions for two reasons:
// - Avoiding inlining reduces a source of variance when running benchmarks.
// - It is _much_ easier to get the assembly or IR for the inner loop.
//
// For example, using cargo-show-asm (https://github.com/pacak/cargo-show-asm),
// we can get the assembly for a particular benchmark's inner loop by running:
// cargo asm --bench buffer --release buffer::p384::bench_getrandom::inner
macro_rules! bench {
( $name:ident, $size:expr ) => {
pub mod $name {
#[bench]
pub fn bench_getrandom(b: &mut test::Bencher) {
#[inline(never)]
fn inner() {
super::bench_getrandom::<{ $size }>()
}
b.bytes = $size as u64;
b.iter(inner);
}
#[bench]
pub fn bench_getrandom_uninit(b: &mut test::Bencher) {
#[inline(never)]
fn inner() {
super::bench_getrandom_uninit::<{ $size }>()
}
b.bytes = $size as u64;
b.iter(inner);
}
}
};
}
// 16 bytes (128 bits) is the size of an 128-bit AES key/nonce.
bench!(aes128, 128 / 8);
// 32 bytes (256 bits) is the seed sized used for rand::thread_rng
// and the `random` value in a ClientHello/ServerHello for TLS.
// This is also the size of a 256-bit AES/HMAC/P-256/Curve25519 key
// and/or nonce.
bench!(p256, 256 / 8);
// A P-384/HMAC-384 key and/or nonce.
bench!(p384, 384 / 8);
// Initializing larger buffers is not the primary use case of this library, as
// this should normally be done by a userspace CSPRNG. However, we have a test
// here to see the effects of a lower (amortized) syscall overhead.
bench!(page, 4096);

View File

@ -1,64 +0,0 @@
#![feature(test)]
#![feature(maybe_uninit_as_bytes)]
extern crate test;
use std::mem::MaybeUninit;
// Used to benchmark the throughput of getrandom in an optimal scenario.
// The buffer is hot, and does not require initialization.
#[inline(always)]
fn bench_getrandom<const N: usize>(b: &mut test::Bencher) {
b.bytes = N as u64;
b.iter(|| {
let mut buf = [0u8; N];
getrandom::getrandom(&mut buf[..]).unwrap();
test::black_box(buf);
});
}
// Used to benchmark the throughput of getrandom is a slightly less optimal
// scenario. The buffer is still hot, but requires initialization.
#[inline(always)]
fn bench_getrandom_uninit<const N: usize>(b: &mut test::Bencher) {
b.bytes = N as u64;
b.iter(|| {
let mut buf: MaybeUninit<[u8; N]> = MaybeUninit::uninit();
let _ = getrandom::getrandom_uninit(buf.as_bytes_mut()).unwrap();
let buf: [u8; N] = unsafe { buf.assume_init() };
test::black_box(buf)
});
}
macro_rules! bench {
( $name:ident, $size:expr ) => {
pub mod $name {
#[bench]
pub fn bench_getrandom(b: &mut test::Bencher) {
super::bench_getrandom::<{ $size }>(b);
}
#[bench]
pub fn bench_getrandom_uninit(b: &mut test::Bencher) {
super::bench_getrandom_uninit::<{ $size }>(b);
}
}
};
}
// 16 bytes (128 bits) is the size of an 128-bit AES key/nonce.
bench!(aes128, 128 / 8);
// 32 bytes (256 bits) is the seed sized used for rand::thread_rng
// and the `random` value in a ClientHello/ServerHello for TLS.
// This is also the size of a 256-bit AES/HMAC/P-256/Curve25519 key
// and/or nonce.
bench!(p256, 256 / 8);
// A P-384/HMAC-384 key and/or nonce.
bench!(p384, 384 / 8);
// Initializing larger buffers is not the primary use case of this library, as
// this should normally be done by a userspace CSPRNG. However, we have a test
// here to see the effects of a lower (amortized) syscall overhead.
bench!(page, 4096);