llvm-project/clang/lib/AST/Randstruct.cpp
Bill Wendling 463790bfc7 [randstruct] Randomize all elements of a record
A record may have more than just FieldDecls in it. If so, then we're
likely to drop them if we only randomize the FieldDecls.

We need to be careful about anonymous structs/unions. Their fields are
made available in the RecordDecl as IndirectFieldDecls, which are listed
after the anonymous struct/union. The ordering doesn't appear to be
super important, however we place them unrandomized at the end of the
RecordDecl just in case. There's also the possiblity of
StaticAssertDecls. We also want those at the end.

All other non-FieldDecls we place at the top, just in case we get
something like:

    struct foo {
      enum e { BORK };
      enum e a;
    };

Link: https://github.com/KSPP/linux/issues/185

Reviewed By: aaron.ballman

Differential Revision: https://reviews.llvm.org/D123958
2022-04-28 12:01:11 -07:00

232 lines
7.4 KiB
C++

//===--- Randstruct.cpp ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the implementation for Clang's structure field layout
// randomization.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/Randstruct.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTDiagnostic.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h" // For StaticAssertDecl
#include "clang/Basic/Diagnostic.h"
#include "llvm/ADT/SmallVector.h"
#include <algorithm>
#include <random>
#include <set>
#include <sstream>
#include <string>
using clang::ASTContext;
using clang::FieldDecl;
using llvm::SmallVector;
namespace {
// FIXME: Replace this with some discovery once that mechanism exists.
enum { CACHE_LINE = 64 };
// The Bucket class holds the struct fields we're trying to fill to a
// cache-line.
class Bucket {
SmallVector<FieldDecl *, 64> Fields;
int Size = 0;
public:
virtual ~Bucket() = default;
SmallVector<FieldDecl *, 64> &fields() { return Fields; }
void addField(FieldDecl *Field, int FieldSize);
virtual bool canFit(int FieldSize) const {
return Size + FieldSize <= CACHE_LINE;
}
virtual bool isBitfieldRun() const { return false; }
bool full() const { return Size >= CACHE_LINE; }
};
void Bucket::addField(FieldDecl *Field, int FieldSize) {
Size += FieldSize;
Fields.push_back(Field);
}
struct BitfieldRunBucket : public Bucket {
bool canFit(int FieldSize) const override { return true; }
bool isBitfieldRun() const override { return true; }
};
void randomizeStructureLayoutImpl(const ASTContext &Context,
llvm::SmallVectorImpl<FieldDecl *> &FieldsOut,
std::mt19937 &RNG) {
// All of the Buckets produced by best-effort cache-line algorithm.
SmallVector<std::unique_ptr<Bucket>, 16> Buckets;
// The current bucket of fields that we are trying to fill to a cache-line.
std::unique_ptr<Bucket> CurrentBucket;
// The current bucket containing the run of adjacent bitfields to ensure they
// remain adjacent.
std::unique_ptr<BitfieldRunBucket> CurrentBitfieldRun;
// Tracks the number of fields that we failed to fit to the current bucket,
// and thus still need to be added later.
size_t Skipped = 0;
while (!FieldsOut.empty()) {
// If we've Skipped more fields than we have remaining to place, that means
// that they can't fit in our current bucket, and we need to start a new
// one.
if (Skipped >= FieldsOut.size()) {
Skipped = 0;
Buckets.push_back(std::move(CurrentBucket));
}
// Take the first field that needs to be put in a bucket.
auto FieldIter = FieldsOut.begin();
FieldDecl *FD = *FieldIter;
if (FD->isBitField() && !FD->isZeroLengthBitField(Context)) {
// Start a bitfield run if this is the first bitfield we have found.
if (!CurrentBitfieldRun)
CurrentBitfieldRun = std::make_unique<BitfieldRunBucket>();
// We've placed the field, and can remove it from the "awaiting Buckets"
// vector called "Fields."
CurrentBitfieldRun->addField(FD, /*FieldSize is irrelevant here*/ 1);
FieldsOut.erase(FieldIter);
continue;
}
// Else, current field is not a bitfield. If we were previously in a
// bitfield run, end it.
if (CurrentBitfieldRun)
Buckets.push_back(std::move(CurrentBitfieldRun));
// If we don't have a bucket, make one.
if (!CurrentBucket)
CurrentBucket = std::make_unique<Bucket>();
uint64_t Width = Context.getTypeInfo(FD->getType()).Width;
if (Width >= CACHE_LINE) {
std::unique_ptr<Bucket> OverSized = std::make_unique<Bucket>();
OverSized->addField(FD, Width);
FieldsOut.erase(FieldIter);
Buckets.push_back(std::move(OverSized));
continue;
}
// If it fits, add it.
if (CurrentBucket->canFit(Width)) {
CurrentBucket->addField(FD, Width);
FieldsOut.erase(FieldIter);
// If it's now full, tie off the bucket.
if (CurrentBucket->full()) {
Skipped = 0;
Buckets.push_back(std::move(CurrentBucket));
}
} else {
// We can't fit it in our current bucket. Move to the end for processing
// later.
++Skipped; // Mark it skipped.
FieldsOut.push_back(FD);
FieldsOut.erase(FieldIter);
}
}
// Done processing the fields awaiting a bucket.
// If we were filling a bucket, tie it off.
if (CurrentBucket)
Buckets.push_back(std::move(CurrentBucket));
// If we were processing a bitfield run bucket, tie it off.
if (CurrentBitfieldRun)
Buckets.push_back(std::move(CurrentBitfieldRun));
std::shuffle(std::begin(Buckets), std::end(Buckets), RNG);
// Produce the new ordering of the elements from the Buckets.
SmallVector<FieldDecl *, 16> FinalOrder;
for (const std::unique_ptr<Bucket> &B : Buckets) {
llvm::SmallVectorImpl<FieldDecl *> &RandFields = B->fields();
if (!B->isBitfieldRun())
std::shuffle(std::begin(RandFields), std::end(RandFields), RNG);
FinalOrder.insert(FinalOrder.end(), RandFields.begin(), RandFields.end());
}
FieldsOut = FinalOrder;
}
} // anonymous namespace
namespace clang {
namespace randstruct {
bool randomizeStructureLayout(const ASTContext &Context, RecordDecl *RD,
SmallVectorImpl<Decl *> &FinalOrdering) {
SmallVector<FieldDecl *, 64> RandomizedFields;
SmallVector<Decl *, 8> PostRandomizedFields;
unsigned TotalNumFields = 0;
for (Decl *D : RD->decls()) {
++TotalNumFields;
if (auto *FD = dyn_cast<FieldDecl>(D))
RandomizedFields.push_back(FD);
else if (isa<StaticAssertDecl>(D) || isa<IndirectFieldDecl>(D))
PostRandomizedFields.push_back(D);
else
FinalOrdering.push_back(D);
}
if (RandomizedFields.empty())
return false;
// Struct might end with a flexible array or an array of size 0 or 1,
// in which case we don't want to randomize it.
FieldDecl *FlexibleArray =
RD->hasFlexibleArrayMember() ? RandomizedFields.pop_back_val() : nullptr;
if (!FlexibleArray) {
if (const auto *CA =
dyn_cast<ConstantArrayType>(RandomizedFields.back()->getType()))
if (CA->getSize().sle(2))
FlexibleArray = RandomizedFields.pop_back_val();
}
std::string Seed =
Context.getLangOpts().RandstructSeed + RD->getNameAsString();
std::seed_seq SeedSeq(Seed.begin(), Seed.end());
std::mt19937 RNG(SeedSeq);
randomizeStructureLayoutImpl(Context, RandomizedFields, RNG);
// Plorp the randomized decls into the final ordering.
FinalOrdering.insert(FinalOrdering.end(), RandomizedFields.begin(),
RandomizedFields.end());
// Add fields that belong towards the end of the RecordDecl.
FinalOrdering.insert(FinalOrdering.end(), PostRandomizedFields.begin(),
PostRandomizedFields.end());
// Add back the flexible array.
if (FlexibleArray)
FinalOrdering.push_back(FlexibleArray);
assert(TotalNumFields == FinalOrdering.size() &&
"Decl count has been altered after Randstruct randomization!");
(void)TotalNumFields;
return true;
}
} // end namespace randstruct
} // end namespace clang