rand/src/seq/slice.rs

771 lines
26 KiB
Rust
Raw Normal View History

// Copyright 2018-2023 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! `IndexedRandom`, `IndexedMutRandom`, `SliceRandom`
use super::increasing_uniform::IncreasingUniform;
use super::{gen_index, index};
#[cfg(feature = "alloc")]
use crate::distr::uniform::{SampleBorrow, SampleUniform};
#[cfg(feature = "alloc")]
use crate::distr::{Weight, WeightError};
use crate::Rng;
use core::ops::{Index, IndexMut};
/// Extension trait on indexable lists, providing random sampling methods.
///
/// This trait is implemented on `[T]` slice types. Other types supporting
/// [`std::ops::Index<usize>`] may implement this (only [`Self::len`] must be
/// specified).
pub trait IndexedRandom: Index<usize> {
/// The length
fn len(&self) -> usize;
/// True when the length is zero
#[inline]
fn is_empty(&self) -> bool {
self.len() == 0
}
/// Uniformly sample one element
///
/// Returns a reference to one uniformly-sampled random element of
/// the slice, or `None` if the slice is empty.
///
/// For slices, complexity is `O(1)`.
///
/// # Example
///
/// ```
/// use rand::thread_rng;
/// use rand::seq::IndexedRandom;
///
/// let choices = [1, 2, 4, 8, 16, 32];
/// let mut rng = thread_rng();
/// println!("{:?}", choices.choose(&mut rng));
/// assert_eq!(choices[..0].choose(&mut rng), None);
/// ```
fn choose<R>(&self, rng: &mut R) -> Option<&Self::Output>
where
R: Rng + ?Sized,
{
if self.is_empty() {
None
} else {
Some(&self[gen_index(rng, self.len())])
}
}
/// Uniformly sample `amount` distinct elements from self
///
/// Chooses `amount` elements from the slice at random, without repetition,
/// and in random order. The returned iterator is appropriate both for
/// collection into a `Vec` and filling an existing buffer (see example).
///
/// In case this API is not sufficiently flexible, use [`index::sample`].
///
/// For slices, complexity is the same as [`index::sample`].
///
/// # Example
/// ```
/// use rand::seq::IndexedRandom;
///
/// let mut rng = &mut rand::thread_rng();
/// let sample = "Hello, audience!".as_bytes();
///
/// // collect the results into a vector:
/// let v: Vec<u8> = sample.choose_multiple(&mut rng, 3).cloned().collect();
///
/// // store in a buffer:
/// let mut buf = [0u8; 5];
/// for (b, slot) in sample.choose_multiple(&mut rng, buf.len()).zip(buf.iter_mut()) {
/// *slot = *b;
/// }
/// ```
#[cfg(feature = "alloc")]
fn choose_multiple<R>(&self, rng: &mut R, amount: usize) -> SliceChooseIter<Self, Self::Output>
where
Self::Output: Sized,
R: Rng + ?Sized,
{
let amount = core::cmp::min(amount, self.len());
SliceChooseIter {
slice: self,
_phantom: Default::default(),
indices: index::sample(rng, self.len(), amount).into_iter(),
}
}
/// Uniformly sample a fixed-size array of distinct elements from self
///
/// Chooses `N` elements from the slice at random, without repetition,
/// and in random order.
///
/// For slices, complexity is the same as [`index::sample_array`].
///
/// # Example
/// ```
/// use rand::seq::IndexedRandom;
///
/// let mut rng = &mut rand::thread_rng();
/// let sample = "Hello, audience!".as_bytes();
///
/// let a: [u8; 3] = sample.choose_multiple_array(&mut rng).unwrap();
/// ```
fn choose_multiple_array<R, const N: usize>(&self, rng: &mut R) -> Option<[Self::Output; N]>
where
Self::Output: Clone + Sized,
R: Rng + ?Sized,
{
let indices = index::sample_array(rng, self.len())?;
Some(indices.map(|index| self[index].clone()))
}
/// Biased sampling for one element
///
/// Returns a reference to one element of the slice, sampled according
/// to the provided weights. Returns `None` only if the slice is empty.
///
/// The specified function `weight` maps each item `x` to a relative
/// likelihood `weight(x)`. The probability of each item being selected is
/// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
///
/// For slices of length `n`, complexity is `O(n)`.
/// For more information about the underlying algorithm,
/// see [`distr::WeightedIndex`].
///
/// See also [`choose_weighted_mut`].
///
/// # Example
///
/// ```
/// use rand::prelude::*;
///
/// let choices = [('a', 2), ('b', 1), ('c', 1), ('d', 0)];
/// let mut rng = thread_rng();
/// // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c',
/// // and 'd' will never be printed
/// println!("{:?}", choices.choose_weighted(&mut rng, |item| item.1).unwrap().0);
/// ```
/// [`choose`]: IndexedRandom::choose
/// [`choose_weighted_mut`]: IndexedMutRandom::choose_weighted_mut
/// [`distr::WeightedIndex`]: crate::distr::WeightedIndex
#[cfg(feature = "alloc")]
fn choose_weighted<R, F, B, X>(
&self,
rng: &mut R,
weight: F,
) -> Result<&Self::Output, WeightError>
where
R: Rng + ?Sized,
F: Fn(&Self::Output) -> B,
B: SampleBorrow<X>,
X: SampleUniform + Weight + PartialOrd<X>,
{
use crate::distr::{Distribution, WeightedIndex};
let distr = WeightedIndex::new((0..self.len()).map(|idx| weight(&self[idx])))?;
Ok(&self[distr.sample(rng)])
}
/// Biased sampling of `amount` distinct elements
///
/// Similar to [`choose_multiple`], but where the likelihood of each element's
/// inclusion in the output may be specified. The elements are returned in an
/// arbitrary, unspecified order.
///
/// The specified function `weight` maps each item `x` to a relative
/// likelihood `weight(x)`. The probability of each item being selected is
/// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
///
/// If all of the weights are equal, even if they are all zero, each element has
/// an equal likelihood of being selected.
///
/// This implementation uses `O(length + amount)` space and `O(length)` time
/// if the "nightly" feature is enabled, or `O(length)` space and
/// `O(length + amount * log length)` time otherwise.
///
/// # Example
///
/// ```
/// use rand::prelude::*;
///
/// let choices = [('a', 2), ('b', 1), ('c', 1)];
/// let mut rng = thread_rng();
/// // First Draw * Second Draw = total odds
/// // -----------------------
/// // (50% * 50%) + (25% * 67%) = 41.7% chance that the output is `['a', 'b']` in some order.
/// // (50% * 50%) + (25% * 67%) = 41.7% chance that the output is `['a', 'c']` in some order.
/// // (25% * 33%) + (25% * 33%) = 16.6% chance that the output is `['b', 'c']` in some order.
/// println!("{:?}", choices.choose_multiple_weighted(&mut rng, 2, |item| item.1).unwrap().collect::<Vec<_>>());
/// ```
/// [`choose_multiple`]: IndexedRandom::choose_multiple
// Note: this is feature-gated on std due to usage of f64::powf.
// If necessary, we may use alloc+libm as an alternative (see PR #1089).
#[cfg(feature = "std")]
fn choose_multiple_weighted<R, F, X>(
&self,
rng: &mut R,
amount: usize,
weight: F,
) -> Result<SliceChooseIter<Self, Self::Output>, WeightError>
where
Self::Output: Sized,
R: Rng + ?Sized,
F: Fn(&Self::Output) -> X,
X: Into<f64>,
{
let amount = core::cmp::min(amount, self.len());
Ok(SliceChooseIter {
slice: self,
_phantom: Default::default(),
indices: index::sample_weighted(
rng,
self.len(),
|idx| weight(&self[idx]).into(),
amount,
)?
.into_iter(),
})
}
}
/// Extension trait on indexable lists, providing random sampling methods.
///
/// This trait is implemented automatically for every type implementing
/// [`IndexedRandom`] and [`std::ops::IndexMut<usize>`].
pub trait IndexedMutRandom: IndexedRandom + IndexMut<usize> {
/// Uniformly sample one element (mut)
///
/// Returns a mutable reference to one uniformly-sampled random element of
/// the slice, or `None` if the slice is empty.
///
/// For slices, complexity is `O(1)`.
fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Output>
where
R: Rng + ?Sized,
{
if self.is_empty() {
None
} else {
let len = self.len();
Some(&mut self[gen_index(rng, len)])
}
}
/// Biased sampling for one element (mut)
///
/// Returns a mutable reference to one element of the slice, sampled according
/// to the provided weights. Returns `None` only if the slice is empty.
///
/// The specified function `weight` maps each item `x` to a relative
/// likelihood `weight(x)`. The probability of each item being selected is
/// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
///
/// For slices of length `n`, complexity is `O(n)`.
/// For more information about the underlying algorithm,
/// see [`distr::WeightedIndex`].
///
/// See also [`choose_weighted`].
///
/// [`choose_mut`]: IndexedMutRandom::choose_mut
/// [`choose_weighted`]: IndexedRandom::choose_weighted
/// [`distr::WeightedIndex`]: crate::distr::WeightedIndex
#[cfg(feature = "alloc")]
fn choose_weighted_mut<R, F, B, X>(
&mut self,
rng: &mut R,
weight: F,
) -> Result<&mut Self::Output, WeightError>
where
R: Rng + ?Sized,
F: Fn(&Self::Output) -> B,
B: SampleBorrow<X>,
X: SampleUniform + Weight + PartialOrd<X>,
{
use crate::distr::{Distribution, WeightedIndex};
let distr = WeightedIndex::new((0..self.len()).map(|idx| weight(&self[idx])))?;
let index = distr.sample(rng);
Ok(&mut self[index])
}
}
/// Extension trait on slices, providing shuffling methods.
///
/// This trait is implemented on all `[T]` slice types, providing several
/// methods for choosing and shuffling elements. You must `use` this trait:
///
/// ```
/// use rand::seq::SliceRandom;
///
/// let mut rng = rand::thread_rng();
/// let mut bytes = "Hello, random!".to_string().into_bytes();
/// bytes.shuffle(&mut rng);
/// let str = String::from_utf8(bytes).unwrap();
/// println!("{}", str);
/// ```
/// Example output (non-deterministic):
/// ```none
/// l,nmroHado !le
/// ```
pub trait SliceRandom: IndexedMutRandom {
/// Shuffle a mutable slice in place.
///
/// For slices of length `n`, complexity is `O(n)`.
/// The resulting permutation is picked uniformly from the set of all possible permutations.
///
/// # Example
///
/// ```
/// use rand::seq::SliceRandom;
/// use rand::thread_rng;
///
/// let mut rng = thread_rng();
/// let mut y = [1, 2, 3, 4, 5];
/// println!("Unshuffled: {:?}", y);
/// y.shuffle(&mut rng);
/// println!("Shuffled: {:?}", y);
/// ```
fn shuffle<R>(&mut self, rng: &mut R)
where
R: Rng + ?Sized;
/// Shuffle a slice in place, but exit early.
///
/// Returns two mutable slices from the source slice. The first contains
/// `amount` elements randomly permuted. The second has the remaining
/// elements that are not fully shuffled.
///
/// This is an efficient method to select `amount` elements at random from
/// the slice, provided the slice may be mutated.
///
/// If you only need to choose elements randomly and `amount > self.len()/2`
/// then you may improve performance by taking
/// `amount = self.len() - amount` and using only the second slice.
///
/// If `amount` is greater than the number of elements in the slice, this
/// will perform a full shuffle.
///
/// For slices, complexity is `O(m)` where `m = amount`.
fn partial_shuffle<R>(
&mut self,
rng: &mut R,
amount: usize,
) -> (&mut [Self::Output], &mut [Self::Output])
where
Self::Output: Sized,
R: Rng + ?Sized;
}
impl<T> IndexedRandom for [T] {
fn len(&self) -> usize {
self.len()
}
}
impl<IR: IndexedRandom + IndexMut<usize> + ?Sized> IndexedMutRandom for IR {}
impl<T> SliceRandom for [T] {
fn shuffle<R>(&mut self, rng: &mut R)
where
R: Rng + ?Sized,
{
if self.len() <= 1 {
// There is no need to shuffle an empty or single element slice
return;
}
self.partial_shuffle(rng, self.len());
}
fn partial_shuffle<R>(&mut self, rng: &mut R, amount: usize) -> (&mut [T], &mut [T])
where
R: Rng + ?Sized,
{
let m = self.len().saturating_sub(amount);
// The algorithm below is based on Durstenfeld's algorithm for the
// [FisherYates shuffle](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm)
// for an unbiased permutation.
// It ensures that the last `amount` elements of the slice
// are randomly selected from the whole slice.
// `IncreasingUniform::next_index()` is faster than `gen_index`
// but only works for 32 bit integers
// So we must use the slow method if the slice is longer than that.
if self.len() < (u32::MAX as usize) {
let mut chooser = IncreasingUniform::new(rng, m as u32);
for i in m..self.len() {
let index = chooser.next_index();
self.swap(i, index);
}
} else {
for i in m..self.len() {
let index = gen_index(rng, i + 1);
self.swap(i, index);
}
}
let r = self.split_at_mut(m);
(r.1, r.0)
}
}
/// An iterator over multiple slice elements.
///
/// This struct is created by
/// [`IndexedRandom::choose_multiple`](trait.IndexedRandom.html#tymethod.choose_multiple).
#[cfg(feature = "alloc")]
#[derive(Debug)]
pub struct SliceChooseIter<'a, S: ?Sized + 'a, T: 'a> {
slice: &'a S,
_phantom: core::marker::PhantomData<T>,
indices: index::IndexVecIntoIter,
}
#[cfg(feature = "alloc")]
impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> Iterator for SliceChooseIter<'a, S, T> {
type Item = &'a T;
fn next(&mut self) -> Option<Self::Item> {
// TODO: investigate using SliceIndex::get_unchecked when stable
self.indices.next().map(|i| &self.slice[i])
}
fn size_hint(&self) -> (usize, Option<usize>) {
(self.indices.len(), Some(self.indices.len()))
}
}
#[cfg(feature = "alloc")]
impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> ExactSizeIterator
for SliceChooseIter<'a, S, T>
{
fn len(&self) -> usize {
self.indices.len()
}
}
#[cfg(test)]
mod test {
use super::*;
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
#[test]
fn test_slice_choose() {
let mut r = crate::test::rng(107);
let chars = [
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
];
let mut chosen = [0i32; 14];
// The below all use a binomial distribution with n=1000, p=1/14.
// binocdf(40, 1000, 1/14) ~= 2e-5; 1-binocdf(106, ..) ~= 2e-5
for _ in 0..1000 {
let picked = *chars.choose(&mut r).unwrap();
chosen[(picked as usize) - ('a' as usize)] += 1;
}
for count in chosen.iter() {
assert!(40 < *count && *count < 106);
}
chosen.iter_mut().for_each(|x| *x = 0);
for _ in 0..1000 {
*chosen.choose_mut(&mut r).unwrap() += 1;
}
for count in chosen.iter() {
assert!(40 < *count && *count < 106);
}
let mut v: [isize; 0] = [];
assert_eq!(v.choose(&mut r), None);
assert_eq!(v.choose_mut(&mut r), None);
}
#[test]
fn value_stability_slice() {
let mut r = crate::test::rng(413);
let chars = [
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
];
let mut nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12];
assert_eq!(chars.choose(&mut r), Some(&'l'));
assert_eq!(nums.choose_mut(&mut r), Some(&mut 3));
assert_eq!(
&chars.choose_multiple_array(&mut r),
&Some(['f', 'i', 'd', 'b', 'c', 'm', 'j', 'k'])
);
#[cfg(feature = "alloc")]
assert_eq!(
&chars
.choose_multiple(&mut r, 8)
.cloned()
.collect::<Vec<char>>(),
&['h', 'm', 'd', 'b', 'c', 'e', 'n', 'f']
);
#[cfg(feature = "alloc")]
assert_eq!(chars.choose_weighted(&mut r, |_| 1), Ok(&'i'));
#[cfg(feature = "alloc")]
assert_eq!(nums.choose_weighted_mut(&mut r, |_| 1), Ok(&mut 2));
let mut r = crate::test::rng(414);
nums.shuffle(&mut r);
assert_eq!(nums, [5, 11, 0, 8, 7, 12, 6, 4, 9, 3, 1, 2, 10]);
nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12];
let res = nums.partial_shuffle(&mut r, 6);
assert_eq!(res.0, &mut [7, 12, 6, 8, 1, 9]);
assert_eq!(res.1, &mut [0, 11, 2, 3, 4, 5, 10]);
}
#[test]
#[cfg_attr(miri, ignore)] // Miri is too slow
fn test_shuffle() {
let mut r = crate::test::rng(108);
let empty: &mut [isize] = &mut [];
empty.shuffle(&mut r);
let mut one = [1];
one.shuffle(&mut r);
let b: &[_] = &[1];
assert_eq!(one, b);
let mut two = [1, 2];
two.shuffle(&mut r);
assert!(two == [1, 2] || two == [2, 1]);
fn move_last(slice: &mut [usize], pos: usize) {
// use slice[pos..].rotate_left(1); once we can use that
let last_val = slice[pos];
for i in pos..slice.len() - 1 {
slice[i] = slice[i + 1];
}
*slice.last_mut().unwrap() = last_val;
}
let mut counts = [0i32; 24];
for _ in 0..10000 {
let mut arr: [usize; 4] = [0, 1, 2, 3];
arr.shuffle(&mut r);
let mut permutation = 0usize;
let mut pos_value = counts.len();
for i in 0..4 {
pos_value /= 4 - i;
let pos = arr.iter().position(|&x| x == i).unwrap();
assert!(pos < (4 - i));
permutation += pos * pos_value;
move_last(&mut arr, pos);
assert_eq!(arr[3], i);
}
for (i, &a) in arr.iter().enumerate() {
assert_eq!(a, i);
}
counts[permutation] += 1;
}
for count in counts.iter() {
// Binomial(10000, 1/24) with average 416.667
// Octave: binocdf(n, 10000, 1/24)
// 99.9% chance samples lie within this range:
assert!(352 <= *count && *count <= 483, "count: {}", count);
}
}
#[test]
fn test_partial_shuffle() {
let mut r = crate::test::rng(118);
let mut empty: [u32; 0] = [];
let res = empty.partial_shuffle(&mut r, 10);
assert_eq!((res.0.len(), res.1.len()), (0, 0));
let mut v = [1, 2, 3, 4, 5];
let res = v.partial_shuffle(&mut r, 2);
assert_eq!((res.0.len(), res.1.len()), (2, 3));
assert!(res.0[0] != res.0[1]);
// First elements are only modified if selected, so at least one isn't modified:
assert!(res.1[0] == 1 || res.1[1] == 2 || res.1[2] == 3);
}
#[test]
#[cfg(feature = "alloc")]
#[cfg_attr(miri, ignore)] // Miri is too slow
fn test_weighted() {
let mut r = crate::test::rng(406);
const N_REPS: u32 = 3000;
let weights = [1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7];
let total_weight = weights.iter().sum::<u32>() as f32;
let verify = |result: [i32; 14]| {
for (i, count) in result.iter().enumerate() {
let exp = (weights[i] * N_REPS) as f32 / total_weight;
let mut err = (*count as f32 - exp).abs();
if err != 0.0 {
err /= exp;
}
assert!(err <= 0.25);
}
};
// choose_weighted
fn get_weight<T>(item: &(u32, T)) -> u32 {
item.0
}
let mut chosen = [0i32; 14];
let mut items = [(0u32, 0usize); 14]; // (weight, index)
for (i, item) in items.iter_mut().enumerate() {
*item = (weights[i], i);
}
for _ in 0..N_REPS {
let item = items.choose_weighted(&mut r, get_weight).unwrap();
chosen[item.1] += 1;
}
verify(chosen);
// choose_weighted_mut
let mut items = [(0u32, 0i32); 14]; // (weight, count)
for (i, item) in items.iter_mut().enumerate() {
*item = (weights[i], 0);
}
for _ in 0..N_REPS {
items.choose_weighted_mut(&mut r, get_weight).unwrap().1 += 1;
}
for (ch, item) in chosen.iter_mut().zip(items.iter()) {
*ch = item.1;
}
verify(chosen);
// Check error cases
let empty_slice = &mut [10][0..0];
assert_eq!(
empty_slice.choose_weighted(&mut r, |_| 1),
Err(WeightError::InvalidInput)
);
assert_eq!(
empty_slice.choose_weighted_mut(&mut r, |_| 1),
Err(WeightError::InvalidInput)
);
assert_eq!(
['x'].choose_weighted_mut(&mut r, |_| 0),
Err(WeightError::InsufficientNonZero)
);
assert_eq!(
[0, -1].choose_weighted_mut(&mut r, |x| *x),
Err(WeightError::InvalidWeight)
);
assert_eq!(
[-1, 0].choose_weighted_mut(&mut r, |x| *x),
Err(WeightError::InvalidWeight)
);
}
#[test]
#[cfg(feature = "std")]
fn test_multiple_weighted_edge_cases() {
use super::*;
let mut rng = crate::test::rng(413);
// Case 1: One of the weights is 0
let choices = [('a', 2), ('b', 1), ('c', 0)];
for _ in 0..100 {
let result = choices
.choose_multiple_weighted(&mut rng, 2, |item| item.1)
.unwrap()
.collect::<Vec<_>>();
assert_eq!(result.len(), 2);
assert!(!result.iter().any(|val| val.0 == 'c'));
}
// Case 2: All of the weights are 0
let choices = [('a', 0), ('b', 0), ('c', 0)];
let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1);
assert_eq!(r.unwrap_err(), WeightError::InsufficientNonZero);
// Case 3: Negative weights
let choices = [('a', -1), ('b', 1), ('c', 1)];
let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1);
assert_eq!(r.unwrap_err(), WeightError::InvalidWeight);
// Case 4: Empty list
let choices = [];
let r = choices.choose_multiple_weighted(&mut rng, 0, |_: &()| 0);
assert_eq!(r.unwrap().count(), 0);
// Case 5: NaN weights
let choices = [('a', f64::NAN), ('b', 1.0), ('c', 1.0)];
let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1);
assert_eq!(r.unwrap_err(), WeightError::InvalidWeight);
// Case 6: +infinity weights
let choices = [('a', f64::INFINITY), ('b', 1.0), ('c', 1.0)];
for _ in 0..100 {
let result = choices
.choose_multiple_weighted(&mut rng, 2, |item| item.1)
.unwrap()
.collect::<Vec<_>>();
assert_eq!(result.len(), 2);
assert!(result.iter().any(|val| val.0 == 'a'));
}
// Case 7: -infinity weights
let choices = [('a', f64::NEG_INFINITY), ('b', 1.0), ('c', 1.0)];
let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1);
assert_eq!(r.unwrap_err(), WeightError::InvalidWeight);
// Case 8: -0 weights
let choices = [('a', -0.0), ('b', 1.0), ('c', 1.0)];
let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1);
assert!(r.is_ok());
}
#[test]
#[cfg(feature = "std")]
fn test_multiple_weighted_distributions() {
use super::*;
// The theoretical probabilities of the different outcomes are:
// AB: 0.5 * 0.5 = 0.250
// AC: 0.5 * 0.5 = 0.250
// BA: 0.25 * 0.67 = 0.167
// BC: 0.25 * 0.33 = 0.082
// CA: 0.25 * 0.67 = 0.167
// CB: 0.25 * 0.33 = 0.082
let choices = [('a', 2), ('b', 1), ('c', 1)];
let mut rng = crate::test::rng(414);
let mut results = [0i32; 3];
let expected_results = [4167, 4167, 1666];
for _ in 0..10000 {
let result = choices
.choose_multiple_weighted(&mut rng, 2, |item| item.1)
.unwrap()
.collect::<Vec<_>>();
assert_eq!(result.len(), 2);
match (result[0].0, result[1].0) {
('a', 'b') | ('b', 'a') => {
results[0] += 1;
}
('a', 'c') | ('c', 'a') => {
results[1] += 1;
}
('b', 'c') | ('c', 'b') => {
results[2] += 1;
}
(_, _) => panic!("unexpected result"),
}
}
let mut diffs = results
.iter()
.zip(&expected_results)
.map(|(a, b)| (a - b).abs());
assert!(!diffs.any(|deviation| deviation > 100));
}
}