Remove u64 support for Poisson (#1517)
This commit is contained in:
parent
1aa9a69c20
commit
0c36c6ca59
@ -21,14 +21,11 @@ You may also find the [Upgrade Guide](https://rust-random.github.io/book/update.
|
||||
- Rename `rand::distributions` to `rand::distr` (#1470)
|
||||
- The `serde1` feature has been renamed `serde` (#1477)
|
||||
- The implicit feature `rand_chacha` has been removed. This is enabled by `std_rng`. (#1473)
|
||||
- Mark `WeightError`, `PoissonError`, `BinomialError` as `#[non_exhaustive]` (#1480).
|
||||
- Mark `WeightError` as `#[non_exhaustive]` (#1480).
|
||||
- Add `p()` for `Bernoulli` to access probability (#1481)
|
||||
- Add `UniformUsize` and use to make `Uniform` for `usize` portable (#1487)
|
||||
- Remove support for generating `isize` and `usize` values with `Standard`, `Uniform` and `Fill` and usage as a `WeightedAliasIndex` weight (#1487)
|
||||
- Require `Clone` and `AsRef` bound for `SeedableRng::Seed`. (#1491)
|
||||
- Improve SmallRng initialization performance (#1482)
|
||||
- Implement `Distribution<u64>` for `Poisson<f64>` (#1498)
|
||||
- Limit the maximal acceptable lambda for `Poisson` to solve (#1312) (#1498)
|
||||
- Rename `Rng::gen_iter` to `random_iter` (#1500)
|
||||
- Rename `rand::thread_rng()` to `rand::rng()`, and remove from the prelude (#1506)
|
||||
- Remove `rand::random()` from the prelude (#1506)
|
||||
|
@ -10,6 +10,9 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
|
||||
- Move some of the computations in Binomial from `sample` to `new` (#1484)
|
||||
- Add Kolmogorov Smirnov test for sampling of `Normal` and `Binomial` (#1494)
|
||||
- Add Kolmogorov Smirnov test for more distributions (#1504)
|
||||
- Mark `WeightError`, `PoissonError`, `BinomialError` as `#[non_exhaustive]` (#1480).
|
||||
- Remove support for generating `isize` and `usize` values with `Standard`, `Uniform` and `Fill` and usage as a `WeightedAliasIndex` weight (#1487)
|
||||
- Limit the maximal acceptable lambda for `Poisson` to solve (#1312) (#1498)
|
||||
|
||||
### Added
|
||||
- Add plots for `rand_distr` distributions to documentation (#1434)
|
||||
|
@ -39,6 +39,17 @@ use rand::Rng;
|
||||
/// let v: f64 = poi.sample(&mut rand::rng());
|
||||
/// println!("{} is from a Poisson(2) distribution", v);
|
||||
/// ```
|
||||
///
|
||||
/// # Integer vs FP return type
|
||||
///
|
||||
/// This implementation uses floating-point (FP) logic internally.
|
||||
///
|
||||
/// Due to the parameter limit <code>λ < [Self::MAX_LAMBDA]</code>, it
|
||||
/// statistically impossible to sample a value larger [`u64::MAX`]. As such, it
|
||||
/// is reasonable to cast generated samples to `u64` using `as`:
|
||||
/// `distr.sample(&mut rng) as u64` (and memory safe since Rust 1.45).
|
||||
/// Similarly, when `λ < 4.2e9` it can be safely assumed that samples are less
|
||||
/// than `u32::MAX`.
|
||||
#[derive(Clone, Copy, Debug, PartialEq)]
|
||||
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
|
||||
pub struct Poisson<F>(Method<F>)
|
||||
@ -238,14 +249,6 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
impl Distribution<u64> for Poisson<f64> {
|
||||
#[inline]
|
||||
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u64 {
|
||||
// `as` from float to int saturates
|
||||
<Poisson<f64> as Distribution<f64>>::sample(self, rng) as u64
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use super::*;
|
||||
|
@ -40,6 +40,17 @@ use rand::{distr::OpenClosed01, Rng};
|
||||
/// println!("{}", val);
|
||||
/// ```
|
||||
///
|
||||
/// # Integer vs FP return type
|
||||
///
|
||||
/// This implementation uses floating-point (FP) logic internally, which can
|
||||
/// potentially generate very large samples (exceeding e.g. `u64::MAX`).
|
||||
///
|
||||
/// It is *safe* to cast such results to an integer type using `as`
|
||||
/// (e.g. `distr.sample(&mut rng) as u64`), since such casts are saturating
|
||||
/// (e.g. `2f64.powi(64) as u64 == u64::MAX`). It is up to the user to
|
||||
/// determine whether this potential loss of accuracy is acceptable
|
||||
/// (this determination may depend on the distribution's parameters).
|
||||
///
|
||||
/// # Notes
|
||||
///
|
||||
/// The zeta distribution has no upper limit. Sampled values may be infinite.
|
||||
|
@ -39,6 +39,13 @@ use rand::Rng;
|
||||
/// println!("{}", val);
|
||||
/// ```
|
||||
///
|
||||
/// # Integer vs FP return type
|
||||
///
|
||||
/// This implementation uses floating-point (FP) logic internally. It may be
|
||||
/// expected that the samples are no greater than `n`, thus it is reasonable to
|
||||
/// cast generated samples to any integer type which can also represent `n`
|
||||
/// (e.g. `distr.sample(&mut rng) as u64`).
|
||||
///
|
||||
/// # Implementation details
|
||||
///
|
||||
/// Implemented via [rejection sampling](https://en.wikipedia.org/wiki/Rejection_sampling),
|
||||
|
Loading…
x
Reference in New Issue
Block a user