alnyan/yggdrasil: patch getrandom url

This commit is contained in:
Mark Poliakov 2023-12-22 15:26:55 +02:00
parent 4336232dda
commit b16da2bdc9
4 changed files with 296 additions and 134 deletions

View File

@ -26,3 +26,4 @@ serde1 = ["serde", "serde_derive"] # enables serde for BlockRng wrapper
[dependencies]
serde = { version = "1", optional = true }
serde_derive = { version = "^1.0.38", optional = true }
getrandom = { version = "0.2", git = "https://git.alnyan.me/yggdrasil/getrandom.git", branch = "alnyan/yggdrasil", optional = true }

View File

@ -14,23 +14,23 @@ use rand_core::{Error, ErrorKind};
use std::fs::File;
use std::io;
use std::io::Read;
use std::sync::{Once, Mutex, ONCE_INIT};
use std::sync::{Mutex, Once};
// TODO: remove outer Option when `Mutex::new(None)` is a constant expression
static mut READ_RNG_FILE: Option<Mutex<Option<File>>> = None;
static READ_RNG_ONCE: Once = ONCE_INIT;
static READ_RNG_ONCE: Once = Once::new();
#[allow(unused)]
pub fn open<F>(path: &'static str, open_fn: F) -> Result<(), Error>
where F: Fn(&'static str) -> Result<File, io::Error>
where
F: Fn(&'static str) -> Result<File, io::Error>,
{
READ_RNG_ONCE.call_once(|| {
unsafe { READ_RNG_FILE = Some(Mutex::new(None)) }
});
READ_RNG_ONCE.call_once(|| unsafe { READ_RNG_FILE = Some(Mutex::new(None)) });
// We try opening the file outside the `call_once` fn because we cannot
// clone the error, thus we must retry on failure.
#[allow(static_mut_refs)]
let mutex = unsafe { READ_RNG_FILE.as_ref().unwrap() };
let mut guard = mutex.lock().unwrap();
if (*guard).is_none() {
@ -45,26 +45,27 @@ pub fn read(dest: &mut [u8]) -> Result<(), Error> {
// We expect this function only to be used after `random_device::open`
// was succesful. Therefore we can assume that our memory was set with a
// valid object.
#[allow(static_mut_refs)]
let mutex = unsafe { READ_RNG_FILE.as_ref().unwrap() };
let mut guard = mutex.lock().unwrap();
let file = (*guard).as_mut().unwrap();
// Use `std::io::read_exact`, which retries on `ErrorKind::Interrupted`.
file.read_exact(dest).map_err(|err| {
Error::with_cause(ErrorKind::Unavailable,
"error reading random device", err)
Error::with_cause(ErrorKind::Unavailable, "error reading random device", err)
})
}
pub fn map_err(err: io::Error) -> Error {
match err.kind() {
io::ErrorKind::Interrupted =>
Error::new(ErrorKind::Transient, "interrupted"),
io::ErrorKind::WouldBlock =>
Error::with_cause(ErrorKind::NotReady,
"OS RNG not yet seeded", err),
_ => Error::with_cause(ErrorKind::Unavailable,
"error while opening random device", err)
io::ErrorKind::Interrupted => Error::new(ErrorKind::Transient, "interrupted"),
io::ErrorKind::WouldBlock => {
Error::with_cause(ErrorKind::NotReady, "OS RNG not yet seeded", err)
}
_ => Error::with_cause(
ErrorKind::Unavailable,
"error while opening random device",
err,
),
}
}

View File

@ -182,50 +182,77 @@
//! [`Weibull`]: struct.Weibull.html
//! [`WeightedIndex`]: struct.WeightedIndex.html
#[cfg(any(rustc_1_26, features="nightly"))]
#[cfg(any(rustc_1_26, features = "nightly"))]
use core::iter;
use Rng;
pub use self::other::Alphanumeric;
#[doc(inline)] pub use self::uniform::Uniform;
pub use self::float::{OpenClosed01, Open01};
pub use self::bernoulli::Bernoulli;
#[cfg(feature="alloc")] pub use self::weighted::{WeightedIndex, WeightedError};
#[cfg(feature="std")] pub use self::unit_sphere::UnitSphereSurface;
#[cfg(feature="std")] pub use self::unit_circle::UnitCircle;
#[cfg(feature="std")] pub use self::gamma::{Gamma, ChiSquared, FisherF,
StudentT, Beta};
#[cfg(feature="std")] pub use self::normal::{Normal, LogNormal, StandardNormal};
#[cfg(feature="std")] pub use self::exponential::{Exp, Exp1};
#[cfg(feature="std")] pub use self::pareto::Pareto;
#[cfg(feature="std")] pub use self::poisson::Poisson;
#[cfg(feature="std")] pub use self::binomial::Binomial;
#[cfg(feature="std")] pub use self::cauchy::Cauchy;
#[cfg(feature="std")] pub use self::dirichlet::Dirichlet;
#[cfg(feature="std")] pub use self::triangular::Triangular;
#[cfg(feature="std")] pub use self::weibull::Weibull;
#[cfg(feature = "std")]
pub use self::binomial::Binomial;
#[cfg(feature = "std")]
pub use self::cauchy::Cauchy;
#[cfg(feature = "std")]
pub use self::dirichlet::Dirichlet;
#[cfg(feature = "std")]
pub use self::exponential::{Exp, Exp1};
pub use self::float::{Open01, OpenClosed01};
#[cfg(feature = "std")]
pub use self::gamma::{Beta, ChiSquared, FisherF, Gamma, StudentT};
#[cfg(feature = "std")]
pub use self::normal::{LogNormal, Normal, StandardNormal};
pub use self::other::Alphanumeric;
#[cfg(feature = "std")]
pub use self::pareto::Pareto;
#[cfg(feature = "std")]
pub use self::poisson::Poisson;
#[cfg(feature = "std")]
pub use self::triangular::Triangular;
#[doc(inline)]
pub use self::uniform::Uniform;
#[cfg(feature = "std")]
pub use self::unit_circle::UnitCircle;
#[cfg(feature = "std")]
pub use self::unit_sphere::UnitSphereSurface;
#[cfg(feature = "std")]
pub use self::weibull::Weibull;
#[cfg(feature = "alloc")]
pub use self::weighted::{WeightedError, WeightedIndex};
pub mod uniform;
mod bernoulli;
#[cfg(feature="alloc")] mod weighted;
#[cfg(feature="std")] mod unit_sphere;
#[cfg(feature="std")] mod unit_circle;
#[cfg(feature="std")] mod gamma;
#[cfg(feature="std")] mod normal;
#[cfg(feature="std")] mod exponential;
#[cfg(feature="std")] mod pareto;
#[cfg(feature="std")] mod poisson;
#[cfg(feature="std")] mod binomial;
#[cfg(feature="std")] mod cauchy;
#[cfg(feature="std")] mod dirichlet;
#[cfg(feature="std")] mod triangular;
#[cfg(feature="std")] mod weibull;
#[cfg(feature = "std")]
mod binomial;
#[cfg(feature = "std")]
mod cauchy;
#[cfg(feature = "std")]
mod dirichlet;
#[cfg(feature = "std")]
mod exponential;
#[cfg(feature = "std")]
mod gamma;
#[cfg(feature = "std")]
mod normal;
#[cfg(feature = "std")]
mod pareto;
#[cfg(feature = "std")]
mod poisson;
#[cfg(feature = "std")]
mod triangular;
pub mod uniform;
#[cfg(feature = "std")]
mod unit_circle;
#[cfg(feature = "std")]
mod unit_sphere;
#[cfg(feature = "std")]
mod weibull;
#[cfg(feature = "alloc")]
mod weighted;
mod float;
mod integer;
mod other;
mod utils;
#[cfg(feature="std")] mod ziggurat_tables;
#[cfg(feature = "std")]
mod ziggurat_tables;
/// Types (distributions) that can be used to create a random instance of `T`.
///
@ -269,7 +296,9 @@ pub trait Distribution<T> {
/// }
/// ```
fn sample_iter<'a, R>(&'a self, rng: &'a mut R) -> DistIter<'a, Self, R, T>
where Self: Sized, R: Rng
where
Self: Sized,
R: Rng,
{
DistIter {
distr: self,
@ -285,7 +314,6 @@ impl<'a, T, D: Distribution<T>> Distribution<T> for &'a D {
}
}
/// An iterator that generates random values of `T` with distribution `D`,
/// using `R` as the source of randomness.
///
@ -302,7 +330,9 @@ pub struct DistIter<'a, D: 'a, R: 'a, T> {
}
impl<'a, D, R, T> Iterator for DistIter<'a, D, R, T>
where D: Distribution<T>, R: Rng + 'a
where
D: Distribution<T>,
R: Rng + 'a,
{
type Item = T;
@ -318,12 +348,19 @@ impl<'a, D, R, T> Iterator for DistIter<'a, D, R, T>
#[cfg(rustc_1_26)]
impl<'a, D, R, T> iter::FusedIterator for DistIter<'a, D, R, T>
where D: Distribution<T>, R: Rng + 'a {}
where
D: Distribution<T>,
R: Rng + 'a,
{
}
#[cfg(features = "nightly")]
impl<'a, D, R, T> iter::TrustedLen for DistIter<'a, D, R, T>
where D: Distribution<T>, R: Rng + 'a {}
where
D: Distribution<T>,
R: Rng + 'a,
{
}
/// A generic random value distribution, implemented for many primitive types.
/// Usually generates values with a numerically uniform distribution, and with a
@ -385,9 +422,8 @@ impl<'a, D, R, T> iter::TrustedLen for DistIter<'a, D, R, T>
#[derive(Clone, Copy, Debug)]
pub struct Standard;
/// A value with a particular weight for use with `WeightedChoice`.
#[deprecated(since="0.6.0", note="use WeightedIndex instead")]
#[deprecated(since = "0.6.0", note = "use WeightedIndex instead")]
#[allow(deprecated)]
#[derive(Copy, Clone, Debug)]
pub struct Weighted<T> {
@ -402,15 +438,15 @@ pub struct Weighted<T> {
/// Deprecated: use [`WeightedIndex`] instead.
///
/// [`WeightedIndex`]: struct.WeightedIndex.html
#[deprecated(since="0.6.0", note="use WeightedIndex instead")]
#[deprecated(since = "0.6.0", note = "use WeightedIndex instead")]
#[allow(deprecated)]
#[derive(Debug)]
pub struct WeightedChoice<'a, T:'a> {
pub struct WeightedChoice<'a, T: 'a> {
items: &'a mut [Weighted<T>],
weight_range: Uniform<u32>,
}
#[deprecated(since="0.6.0", note="use WeightedIndex instead")]
#[deprecated(since = "0.6.0", note = "use WeightedIndex instead")]
#[allow(deprecated)]
impl<'a, T: Clone> WeightedChoice<'a, T> {
/// Create a new `WeightedChoice`.
@ -422,7 +458,10 @@ impl<'a, T: Clone> WeightedChoice<'a, T> {
/// - the total weight is larger than a `u32` can contain.
pub fn new(items: &'a mut [Weighted<T>]) -> WeightedChoice<'a, T> {
// strictly speaking, this is subsumed by the total weight == 0 case
assert!(!items.is_empty(), "WeightedChoice::new called with no items");
assert!(
!items.is_empty(),
"WeightedChoice::new called with no items"
);
let mut running_total: u32 = 0;
@ -432,24 +471,29 @@ impl<'a, T: Clone> WeightedChoice<'a, T> {
for item in items.iter_mut() {
running_total = match running_total.checked_add(item.weight) {
Some(n) => n,
None => panic!("WeightedChoice::new called with a total weight \
larger than a u32 can contain")
None => panic!(
"WeightedChoice::new called with a total weight \
larger than a u32 can contain"
),
};
item.weight = running_total;
}
assert!(running_total != 0, "WeightedChoice::new called with a total weight of 0");
assert!(
running_total != 0,
"WeightedChoice::new called with a total weight of 0"
);
WeightedChoice {
items,
// we're likely to be generating numbers in this range
// relatively often, so might as well cache it
weight_range: Uniform::new(0, running_total)
weight_range: Uniform::new(0, running_total),
}
}
}
#[deprecated(since="0.6.0", note="use WeightedIndex instead")]
// #[deprecated(since="0.6.0", note="use WeightedIndex instead")]
#[allow(deprecated)]
impl<'a, T: Clone> Distribution<T> for WeightedChoice<'a, T> {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> T {
@ -496,9 +540,9 @@ impl<'a, T: Clone> Distribution<T> for WeightedChoice<'a, T> {
#[cfg(test)]
mod tests {
use rngs::mock::StepRng;
#[allow(deprecated)]
use super::{WeightedChoice, Weighted, Distribution};
use super::{Distribution, Weighted, WeightedChoice};
use rngs::mock::StepRng;
#[test]
#[allow(deprecated)]
@ -511,7 +555,9 @@ mod tests {
($items:expr, $expected:expr) => {{
let mut items = $items;
let mut total_weight = 0;
for item in &items { total_weight += item.weight; }
for item in &items {
total_weight += item.weight;
}
let wc = WeightedChoice::new(&mut items);
let expected = $expected;
@ -524,92 +570,176 @@ mod tests {
for &val in expected.iter() {
assert_eq!(wc.sample(&mut rng), val)
}
}}
}};
}
t!([Weighted { weight: 1, item: 10}], [10]);
t!(
[Weighted {
weight: 1,
item: 10
}],
[10]
);
// skip some
t!([Weighted { weight: 0, item: 20},
Weighted { weight: 2, item: 21},
Weighted { weight: 0, item: 22},
Weighted { weight: 1, item: 23}],
[21, 21, 23]);
t!(
[
Weighted {
weight: 0,
item: 20
},
Weighted {
weight: 2,
item: 21
},
Weighted {
weight: 0,
item: 22
},
Weighted {
weight: 1,
item: 23
}
],
[21, 21, 23]
);
// different weights
t!([Weighted { weight: 4, item: 30},
Weighted { weight: 3, item: 31}],
[30, 31, 30, 31, 30, 31, 30]);
t!(
[
Weighted {
weight: 4,
item: 30
},
Weighted {
weight: 3,
item: 31
}
],
[30, 31, 30, 31, 30, 31, 30]
);
// check that we're binary searching
// correctly with some vectors of odd
// length.
t!([Weighted { weight: 1, item: 40},
Weighted { weight: 1, item: 41},
Weighted { weight: 1, item: 42},
Weighted { weight: 1, item: 43},
Weighted { weight: 1, item: 44}],
[40, 41, 42, 43, 44]);
t!([Weighted { weight: 1, item: 50},
Weighted { weight: 1, item: 51},
Weighted { weight: 1, item: 52},
Weighted { weight: 1, item: 53},
Weighted { weight: 1, item: 54},
Weighted { weight: 1, item: 55},
Weighted { weight: 1, item: 56}],
[50, 54, 51, 55, 52, 56, 53]);
t!(
[
Weighted {
weight: 1,
item: 40
},
Weighted {
weight: 1,
item: 41
},
Weighted {
weight: 1,
item: 42
},
Weighted {
weight: 1,
item: 43
},
Weighted {
weight: 1,
item: 44
}
],
[40, 41, 42, 43, 44]
);
t!(
[
Weighted {
weight: 1,
item: 50
},
Weighted {
weight: 1,
item: 51
},
Weighted {
weight: 1,
item: 52
},
Weighted {
weight: 1,
item: 53
},
Weighted {
weight: 1,
item: 54
},
Weighted {
weight: 1,
item: 55
},
Weighted {
weight: 1,
item: 56
}
],
[50, 54, 51, 55, 52, 56, 53]
);
}
#[test]
#[allow(deprecated)]
fn test_weighted_clone_initialization() {
let initial : Weighted<u32> = Weighted {weight: 1, item: 1};
let initial: Weighted<u32> = Weighted { weight: 1, item: 1 };
let clone = initial.clone();
assert_eq!(initial.weight, clone.weight);
assert_eq!(initial.item, clone.item);
}
#[test] #[should_panic]
#[test]
#[should_panic]
#[allow(deprecated)]
fn test_weighted_clone_change_weight() {
let initial : Weighted<u32> = Weighted {weight: 1, item: 1};
let initial: Weighted<u32> = Weighted { weight: 1, item: 1 };
let mut clone = initial.clone();
clone.weight = 5;
assert_eq!(initial.weight, clone.weight);
}
#[test] #[should_panic]
#[test]
#[should_panic]
#[allow(deprecated)]
fn test_weighted_clone_change_item() {
let initial : Weighted<u32> = Weighted {weight: 1, item: 1};
let initial: Weighted<u32> = Weighted { weight: 1, item: 1 };
let mut clone = initial.clone();
clone.item = 5;
assert_eq!(initial.item, clone.item);
}
#[test] #[should_panic]
#[test]
#[should_panic]
#[allow(deprecated)]
fn test_weighted_choice_no_items() {
WeightedChoice::<isize>::new(&mut []);
}
#[test] #[should_panic]
#[test]
#[should_panic]
#[allow(deprecated)]
fn test_weighted_choice_zero_weight() {
WeightedChoice::new(&mut [Weighted { weight: 0, item: 0},
Weighted { weight: 0, item: 1}]);
WeightedChoice::new(&mut [
Weighted { weight: 0, item: 0 },
Weighted { weight: 0, item: 1 },
]);
}
#[test] #[should_panic]
#[test]
#[should_panic]
#[allow(deprecated)]
fn test_weighted_choice_weight_overflows() {
let x = ::core::u32::MAX / 2; // x + x + 2 is the overflow
WeightedChoice::new(&mut [Weighted { weight: x, item: 0 },
Weighted { weight: 1, item: 1 },
Weighted { weight: x, item: 2 },
Weighted { weight: 1, item: 3 }]);
WeightedChoice::new(&mut [
Weighted { weight: x, item: 0 },
Weighted { weight: 1, item: 1 },
Weighted { weight: x, item: 2 },
Weighted { weight: 1, item: 3 },
]);
}
#[cfg(feature="std")]
#[cfg(feature = "std")]
#[test]
fn test_distributions_iter() {
use distributions::Normal;

View File

@ -6,14 +6,15 @@
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use Rng;
use distributions::Distribution;
use distributions::uniform::{UniformSampler, SampleUniform, SampleBorrow};
use ::core::cmp::PartialOrd;
use core::fmt;
use distributions::uniform::{SampleBorrow, SampleUniform, UniformSampler};
use distributions::Distribution;
use Rng;
// Note that this whole module is only imported if feature="alloc" is enabled.
#[cfg(not(feature="std"))] use alloc::vec::Vec;
#[cfg(not(feature = "std"))]
use alloc::vec::Vec;
/// A distribution using weighted sampling to pick a discretely selected
/// item.
@ -87,16 +88,13 @@ impl<X: SampleUniform + PartialOrd> WeightedIndex<X> {
/// [`Distribution`]: trait.Distribution.html
/// [`Uniform<X>`]: struct.Uniform.html
pub fn new<I>(weights: I) -> Result<WeightedIndex<X>, WeightedError>
where I: IntoIterator,
I::Item: SampleBorrow<X>,
X: for<'a> ::core::ops::AddAssign<&'a X> +
Clone +
Default {
where
I: IntoIterator,
I::Item: SampleBorrow<X>,
X: for<'a> ::core::ops::AddAssign<&'a X> + Clone + Default,
{
let mut iter = weights.into_iter();
let mut total_weight: X = iter.next()
.ok_or(WeightedError::NoItem)?
.borrow()
.clone();
let mut total_weight: X = iter.next().ok_or(WeightedError::NoItem)?.borrow().clone();
let zero = <X as Default>::default();
if total_weight < zero {
@ -117,18 +115,30 @@ impl<X: SampleUniform + PartialOrd> WeightedIndex<X> {
}
let distr = X::Sampler::new(zero, total_weight);
Ok(WeightedIndex { cumulative_weights: weights, weight_distribution: distr })
Ok(WeightedIndex {
cumulative_weights: weights,
weight_distribution: distr,
})
}
}
impl<X> Distribution<usize> for WeightedIndex<X> where
X: SampleUniform + PartialOrd {
impl<X> Distribution<usize> for WeightedIndex<X>
where
X: SampleUniform + PartialOrd,
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> usize {
use ::core::cmp::Ordering;
let chosen_weight = self.weight_distribution.sample(rng);
// Find the first item which has a weight *higher* than the chosen weight.
self.cumulative_weights.binary_search_by(
|w| if *w <= chosen_weight { Ordering::Less } else { Ordering::Greater }).unwrap_err()
self.cumulative_weights
.binary_search_by(|w| {
if *w <= chosen_weight {
Ordering::Less
} else {
Ordering::Greater
}
})
.unwrap_err()
}
}
@ -181,14 +191,34 @@ mod test {
for _ in 0..5 {
assert_eq!(WeightedIndex::new(&[0, 1]).unwrap().sample(&mut r), 1);
assert_eq!(WeightedIndex::new(&[1, 0]).unwrap().sample(&mut r), 0);
assert_eq!(WeightedIndex::new(&[0, 0, 0, 0, 10, 0]).unwrap().sample(&mut r), 4);
assert_eq!(
WeightedIndex::new(&[0, 0, 0, 0, 10, 0])
.unwrap()
.sample(&mut r),
4
);
}
assert_eq!(WeightedIndex::new(&[10][0..0]).unwrap_err(), WeightedError::NoItem);
assert_eq!(WeightedIndex::new(&[0]).unwrap_err(), WeightedError::AllWeightsZero);
assert_eq!(WeightedIndex::new(&[10, 20, -1, 30]).unwrap_err(), WeightedError::NegativeWeight);
assert_eq!(WeightedIndex::new(&[-10, 20, 1, 30]).unwrap_err(), WeightedError::NegativeWeight);
assert_eq!(WeightedIndex::new(&[-10]).unwrap_err(), WeightedError::NegativeWeight);
assert_eq!(
WeightedIndex::new(&[10][0..0]).unwrap_err(),
WeightedError::NoItem
);
assert_eq!(
WeightedIndex::new(&[0]).unwrap_err(),
WeightedError::AllWeightsZero
);
assert_eq!(
WeightedIndex::new(&[10, 20, -1, 30]).unwrap_err(),
WeightedError::NegativeWeight
);
assert_eq!(
WeightedIndex::new(&[-10, 20, 1, 30]).unwrap_err(),
WeightedError::NegativeWeight
);
assert_eq!(
WeightedIndex::new(&[-10]).unwrap_err(),
WeightedError::NegativeWeight
);
}
}
@ -215,7 +245,7 @@ impl WeightedError {
}
}
#[cfg(feature="std")]
#[cfg(feature = "std")]
impl ::std::error::Error for WeightedError {
fn description(&self) -> &str {
self.msg()