// Copyright 2018-2023 Developers of the Rand project. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! `IndexedRandom`, `IndexedMutRandom`, `SliceRandom` use super::increasing_uniform::IncreasingUniform; use super::index; #[cfg(feature = "alloc")] use crate::distr::uniform::{SampleBorrow, SampleUniform}; #[cfg(feature = "alloc")] use crate::distr::{Weight, WeightError}; use crate::Rng; use core::ops::{Index, IndexMut}; /// Extension trait on indexable lists, providing random sampling methods. /// /// This trait is implemented on `[T]` slice types. Other types supporting /// [`std::ops::Index`] may implement this (only [`Self::len`] must be /// specified). pub trait IndexedRandom: Index { /// The length fn len(&self) -> usize; /// True when the length is zero #[inline] fn is_empty(&self) -> bool { self.len() == 0 } /// Uniformly sample one element /// /// Returns a reference to one uniformly-sampled random element of /// the slice, or `None` if the slice is empty. /// /// For slices, complexity is `O(1)`. /// /// # Example /// /// ``` /// use rand::seq::IndexedRandom; /// /// let choices = [1, 2, 4, 8, 16, 32]; /// let mut rng = rand::rng(); /// println!("{:?}", choices.choose(&mut rng)); /// assert_eq!(choices[..0].choose(&mut rng), None); /// ``` fn choose(&self, rng: &mut R) -> Option<&Self::Output> where R: Rng + ?Sized, { if self.is_empty() { None } else { Some(&self[rng.gen_range(..self.len())]) } } /// Uniformly sample `amount` distinct elements from self /// /// Chooses `amount` elements from the slice at random, without repetition, /// and in random order. The returned iterator is appropriate both for /// collection into a `Vec` and filling an existing buffer (see example). /// /// In case this API is not sufficiently flexible, use [`index::sample`]. /// /// For slices, complexity is the same as [`index::sample`]. /// /// # Example /// ``` /// use rand::seq::IndexedRandom; /// /// let mut rng = &mut rand::rng(); /// let sample = "Hello, audience!".as_bytes(); /// /// // collect the results into a vector: /// let v: Vec = sample.choose_multiple(&mut rng, 3).cloned().collect(); /// /// // store in a buffer: /// let mut buf = [0u8; 5]; /// for (b, slot) in sample.choose_multiple(&mut rng, buf.len()).zip(buf.iter_mut()) { /// *slot = *b; /// } /// ``` #[cfg(feature = "alloc")] fn choose_multiple(&self, rng: &mut R, amount: usize) -> SliceChooseIter where Self::Output: Sized, R: Rng + ?Sized, { let amount = core::cmp::min(amount, self.len()); SliceChooseIter { slice: self, _phantom: Default::default(), indices: index::sample(rng, self.len(), amount).into_iter(), } } /// Uniformly sample a fixed-size array of distinct elements from self /// /// Chooses `N` elements from the slice at random, without repetition, /// and in random order. /// /// For slices, complexity is the same as [`index::sample_array`]. /// /// # Example /// ``` /// use rand::seq::IndexedRandom; /// /// let mut rng = &mut rand::rng(); /// let sample = "Hello, audience!".as_bytes(); /// /// let a: [u8; 3] = sample.choose_multiple_array(&mut rng).unwrap(); /// ``` fn choose_multiple_array(&self, rng: &mut R) -> Option<[Self::Output; N]> where Self::Output: Clone + Sized, R: Rng + ?Sized, { let indices = index::sample_array(rng, self.len())?; Some(indices.map(|index| self[index].clone())) } /// Biased sampling for one element /// /// Returns a reference to one element of the slice, sampled according /// to the provided weights. Returns `None` only if the slice is empty. /// /// The specified function `weight` maps each item `x` to a relative /// likelihood `weight(x)`. The probability of each item being selected is /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`. /// /// For slices of length `n`, complexity is `O(n)`. /// For more information about the underlying algorithm, /// see [`distr::WeightedIndex`]. /// /// See also [`choose_weighted_mut`]. /// /// # Example /// /// ``` /// use rand::prelude::*; /// /// let choices = [('a', 2), ('b', 1), ('c', 1), ('d', 0)]; /// let mut rng = rand::rng(); /// // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c', /// // and 'd' will never be printed /// println!("{:?}", choices.choose_weighted(&mut rng, |item| item.1).unwrap().0); /// ``` /// [`choose`]: IndexedRandom::choose /// [`choose_weighted_mut`]: IndexedMutRandom::choose_weighted_mut /// [`distr::WeightedIndex`]: crate::distr::WeightedIndex #[cfg(feature = "alloc")] fn choose_weighted( &self, rng: &mut R, weight: F, ) -> Result<&Self::Output, WeightError> where R: Rng + ?Sized, F: Fn(&Self::Output) -> B, B: SampleBorrow, X: SampleUniform + Weight + PartialOrd, { use crate::distr::{Distribution, WeightedIndex}; let distr = WeightedIndex::new((0..self.len()).map(|idx| weight(&self[idx])))?; Ok(&self[distr.sample(rng)]) } /// Biased sampling of `amount` distinct elements /// /// Similar to [`choose_multiple`], but where the likelihood of each element's /// inclusion in the output may be specified. The elements are returned in an /// arbitrary, unspecified order. /// /// The specified function `weight` maps each item `x` to a relative /// likelihood `weight(x)`. The probability of each item being selected is /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`. /// /// If all of the weights are equal, even if they are all zero, each element has /// an equal likelihood of being selected. /// /// This implementation uses `O(length + amount)` space and `O(length)` time /// if the "nightly" feature is enabled, or `O(length)` space and /// `O(length + amount * log length)` time otherwise. /// /// # Known issues /// /// The algorithm currently used to implement this method loses accuracy /// when small values are used for weights. /// See [#1476](https://github.com/rust-random/rand/issues/1476). /// /// # Example /// /// ``` /// use rand::prelude::*; /// /// let choices = [('a', 2), ('b', 1), ('c', 1)]; /// let mut rng = rand::rng(); /// // First Draw * Second Draw = total odds /// // ----------------------- /// // (50% * 50%) + (25% * 67%) = 41.7% chance that the output is `['a', 'b']` in some order. /// // (50% * 50%) + (25% * 67%) = 41.7% chance that the output is `['a', 'c']` in some order. /// // (25% * 33%) + (25% * 33%) = 16.6% chance that the output is `['b', 'c']` in some order. /// println!("{:?}", choices.choose_multiple_weighted(&mut rng, 2, |item| item.1).unwrap().collect::>()); /// ``` /// [`choose_multiple`]: IndexedRandom::choose_multiple // Note: this is feature-gated on std due to usage of f64::powf. // If necessary, we may use alloc+libm as an alternative (see PR #1089). #[cfg(feature = "std")] fn choose_multiple_weighted( &self, rng: &mut R, amount: usize, weight: F, ) -> Result, WeightError> where Self::Output: Sized, R: Rng + ?Sized, F: Fn(&Self::Output) -> X, X: Into, { let amount = core::cmp::min(amount, self.len()); Ok(SliceChooseIter { slice: self, _phantom: Default::default(), indices: index::sample_weighted( rng, self.len(), |idx| weight(&self[idx]).into(), amount, )? .into_iter(), }) } } /// Extension trait on indexable lists, providing random sampling methods. /// /// This trait is implemented automatically for every type implementing /// [`IndexedRandom`] and [`std::ops::IndexMut`]. pub trait IndexedMutRandom: IndexedRandom + IndexMut { /// Uniformly sample one element (mut) /// /// Returns a mutable reference to one uniformly-sampled random element of /// the slice, or `None` if the slice is empty. /// /// For slices, complexity is `O(1)`. fn choose_mut(&mut self, rng: &mut R) -> Option<&mut Self::Output> where R: Rng + ?Sized, { if self.is_empty() { None } else { let len = self.len(); Some(&mut self[rng.gen_range(..len)]) } } /// Biased sampling for one element (mut) /// /// Returns a mutable reference to one element of the slice, sampled according /// to the provided weights. Returns `None` only if the slice is empty. /// /// The specified function `weight` maps each item `x` to a relative /// likelihood `weight(x)`. The probability of each item being selected is /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`. /// /// For slices of length `n`, complexity is `O(n)`. /// For more information about the underlying algorithm, /// see [`distr::WeightedIndex`]. /// /// See also [`choose_weighted`]. /// /// [`choose_mut`]: IndexedMutRandom::choose_mut /// [`choose_weighted`]: IndexedRandom::choose_weighted /// [`distr::WeightedIndex`]: crate::distr::WeightedIndex #[cfg(feature = "alloc")] fn choose_weighted_mut( &mut self, rng: &mut R, weight: F, ) -> Result<&mut Self::Output, WeightError> where R: Rng + ?Sized, F: Fn(&Self::Output) -> B, B: SampleBorrow, X: SampleUniform + Weight + PartialOrd, { use crate::distr::{Distribution, WeightedIndex}; let distr = WeightedIndex::new((0..self.len()).map(|idx| weight(&self[idx])))?; let index = distr.sample(rng); Ok(&mut self[index]) } } /// Extension trait on slices, providing shuffling methods. /// /// This trait is implemented on all `[T]` slice types, providing several /// methods for choosing and shuffling elements. You must `use` this trait: /// /// ``` /// use rand::seq::SliceRandom; /// /// let mut rng = rand::rng(); /// let mut bytes = "Hello, random!".to_string().into_bytes(); /// bytes.shuffle(&mut rng); /// let str = String::from_utf8(bytes).unwrap(); /// println!("{}", str); /// ``` /// Example output (non-deterministic): /// ```none /// l,nmroHado !le /// ``` pub trait SliceRandom: IndexedMutRandom { /// Shuffle a mutable slice in place. /// /// For slices of length `n`, complexity is `O(n)`. /// The resulting permutation is picked uniformly from the set of all possible permutations. /// /// # Example /// /// ``` /// use rand::seq::SliceRandom; /// /// let mut rng = rand::rng(); /// let mut y = [1, 2, 3, 4, 5]; /// println!("Unshuffled: {:?}", y); /// y.shuffle(&mut rng); /// println!("Shuffled: {:?}", y); /// ``` fn shuffle(&mut self, rng: &mut R) where R: Rng + ?Sized; /// Shuffle a slice in place, but exit early. /// /// Returns two mutable slices from the source slice. The first contains /// `amount` elements randomly permuted. The second has the remaining /// elements that are not fully shuffled. /// /// This is an efficient method to select `amount` elements at random from /// the slice, provided the slice may be mutated. /// /// If you only need to choose elements randomly and `amount > self.len()/2` /// then you may improve performance by taking /// `amount = self.len() - amount` and using only the second slice. /// /// If `amount` is greater than the number of elements in the slice, this /// will perform a full shuffle. /// /// For slices, complexity is `O(m)` where `m = amount`. fn partial_shuffle( &mut self, rng: &mut R, amount: usize, ) -> (&mut [Self::Output], &mut [Self::Output]) where Self::Output: Sized, R: Rng + ?Sized; } impl IndexedRandom for [T] { fn len(&self) -> usize { self.len() } } impl + ?Sized> IndexedMutRandom for IR {} impl SliceRandom for [T] { fn shuffle(&mut self, rng: &mut R) where R: Rng + ?Sized, { if self.len() <= 1 { // There is no need to shuffle an empty or single element slice return; } self.partial_shuffle(rng, self.len()); } fn partial_shuffle(&mut self, rng: &mut R, amount: usize) -> (&mut [T], &mut [T]) where R: Rng + ?Sized, { let m = self.len().saturating_sub(amount); // The algorithm below is based on Durstenfeld's algorithm for the // [Fisher–Yates shuffle](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm) // for an unbiased permutation. // It ensures that the last `amount` elements of the slice // are randomly selected from the whole slice. // `IncreasingUniform::next_index()` is faster than `Rng::gen_range` // but only works for 32 bit integers // So we must use the slow method if the slice is longer than that. if self.len() < (u32::MAX as usize) { let mut chooser = IncreasingUniform::new(rng, m as u32); for i in m..self.len() { let index = chooser.next_index(); self.swap(i, index); } } else { for i in m..self.len() { let index = rng.gen_range(..i + 1); self.swap(i, index); } } let r = self.split_at_mut(m); (r.1, r.0) } } /// An iterator over multiple slice elements. /// /// This struct is created by /// [`IndexedRandom::choose_multiple`](trait.IndexedRandom.html#tymethod.choose_multiple). #[cfg(feature = "alloc")] #[derive(Debug)] pub struct SliceChooseIter<'a, S: ?Sized + 'a, T: 'a> { slice: &'a S, _phantom: core::marker::PhantomData, indices: index::IndexVecIntoIter, } #[cfg(feature = "alloc")] impl<'a, S: Index + ?Sized + 'a, T: 'a> Iterator for SliceChooseIter<'a, S, T> { type Item = &'a T; fn next(&mut self) -> Option { // TODO: investigate using SliceIndex::get_unchecked when stable self.indices.next().map(|i| &self.slice[i]) } fn size_hint(&self) -> (usize, Option) { (self.indices.len(), Some(self.indices.len())) } } #[cfg(feature = "alloc")] impl<'a, S: Index + ?Sized + 'a, T: 'a> ExactSizeIterator for SliceChooseIter<'a, S, T> { fn len(&self) -> usize { self.indices.len() } } #[cfg(test)] mod test { use super::*; #[cfg(feature = "alloc")] use alloc::vec::Vec; #[test] fn test_slice_choose() { let mut r = crate::test::rng(107); let chars = [ 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', ]; let mut chosen = [0i32; 14]; // The below all use a binomial distribution with n=1000, p=1/14. // binocdf(40, 1000, 1/14) ~= 2e-5; 1-binocdf(106, ..) ~= 2e-5 for _ in 0..1000 { let picked = *chars.choose(&mut r).unwrap(); chosen[(picked as usize) - ('a' as usize)] += 1; } for count in chosen.iter() { assert!(40 < *count && *count < 106); } chosen.iter_mut().for_each(|x| *x = 0); for _ in 0..1000 { *chosen.choose_mut(&mut r).unwrap() += 1; } for count in chosen.iter() { assert!(40 < *count && *count < 106); } let mut v: [isize; 0] = []; assert_eq!(v.choose(&mut r), None); assert_eq!(v.choose_mut(&mut r), None); } #[test] fn value_stability_slice() { let mut r = crate::test::rng(413); let chars = [ 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', ]; let mut nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]; assert_eq!(chars.choose(&mut r), Some(&'l')); assert_eq!(nums.choose_mut(&mut r), Some(&mut 3)); assert_eq!( &chars.choose_multiple_array(&mut r), &Some(['f', 'i', 'd', 'b', 'c', 'm', 'j', 'k']) ); #[cfg(feature = "alloc")] assert_eq!( &chars .choose_multiple(&mut r, 8) .cloned() .collect::>(), &['h', 'm', 'd', 'b', 'c', 'e', 'n', 'f'] ); #[cfg(feature = "alloc")] assert_eq!(chars.choose_weighted(&mut r, |_| 1), Ok(&'i')); #[cfg(feature = "alloc")] assert_eq!(nums.choose_weighted_mut(&mut r, |_| 1), Ok(&mut 2)); let mut r = crate::test::rng(414); nums.shuffle(&mut r); assert_eq!(nums, [5, 11, 0, 8, 7, 12, 6, 4, 9, 3, 1, 2, 10]); nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]; let res = nums.partial_shuffle(&mut r, 6); assert_eq!(res.0, &mut [7, 12, 6, 8, 1, 9]); assert_eq!(res.1, &mut [0, 11, 2, 3, 4, 5, 10]); } #[test] #[cfg_attr(miri, ignore)] // Miri is too slow fn test_shuffle() { let mut r = crate::test::rng(108); let empty: &mut [isize] = &mut []; empty.shuffle(&mut r); let mut one = [1]; one.shuffle(&mut r); let b: &[_] = &[1]; assert_eq!(one, b); let mut two = [1, 2]; two.shuffle(&mut r); assert!(two == [1, 2] || two == [2, 1]); fn move_last(slice: &mut [usize], pos: usize) { // use slice[pos..].rotate_left(1); once we can use that let last_val = slice[pos]; for i in pos..slice.len() - 1 { slice[i] = slice[i + 1]; } *slice.last_mut().unwrap() = last_val; } let mut counts = [0i32; 24]; for _ in 0..10000 { let mut arr: [usize; 4] = [0, 1, 2, 3]; arr.shuffle(&mut r); let mut permutation = 0usize; let mut pos_value = counts.len(); for i in 0..4 { pos_value /= 4 - i; let pos = arr.iter().position(|&x| x == i).unwrap(); assert!(pos < (4 - i)); permutation += pos * pos_value; move_last(&mut arr, pos); assert_eq!(arr[3], i); } for (i, &a) in arr.iter().enumerate() { assert_eq!(a, i); } counts[permutation] += 1; } for count in counts.iter() { // Binomial(10000, 1/24) with average 416.667 // Octave: binocdf(n, 10000, 1/24) // 99.9% chance samples lie within this range: assert!(352 <= *count && *count <= 483, "count: {}", count); } } #[test] fn test_partial_shuffle() { let mut r = crate::test::rng(118); let mut empty: [u32; 0] = []; let res = empty.partial_shuffle(&mut r, 10); assert_eq!((res.0.len(), res.1.len()), (0, 0)); let mut v = [1, 2, 3, 4, 5]; let res = v.partial_shuffle(&mut r, 2); assert_eq!((res.0.len(), res.1.len()), (2, 3)); assert!(res.0[0] != res.0[1]); // First elements are only modified if selected, so at least one isn't modified: assert!(res.1[0] == 1 || res.1[1] == 2 || res.1[2] == 3); } #[test] #[cfg(feature = "alloc")] #[cfg_attr(miri, ignore)] // Miri is too slow fn test_weighted() { let mut r = crate::test::rng(406); const N_REPS: u32 = 3000; let weights = [1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7]; let total_weight = weights.iter().sum::() as f32; let verify = |result: [i32; 14]| { for (i, count) in result.iter().enumerate() { let exp = (weights[i] * N_REPS) as f32 / total_weight; let mut err = (*count as f32 - exp).abs(); if err != 0.0 { err /= exp; } assert!(err <= 0.25); } }; // choose_weighted fn get_weight(item: &(u32, T)) -> u32 { item.0 } let mut chosen = [0i32; 14]; let mut items = [(0u32, 0usize); 14]; // (weight, index) for (i, item) in items.iter_mut().enumerate() { *item = (weights[i], i); } for _ in 0..N_REPS { let item = items.choose_weighted(&mut r, get_weight).unwrap(); chosen[item.1] += 1; } verify(chosen); // choose_weighted_mut let mut items = [(0u32, 0i32); 14]; // (weight, count) for (i, item) in items.iter_mut().enumerate() { *item = (weights[i], 0); } for _ in 0..N_REPS { items.choose_weighted_mut(&mut r, get_weight).unwrap().1 += 1; } for (ch, item) in chosen.iter_mut().zip(items.iter()) { *ch = item.1; } verify(chosen); // Check error cases let empty_slice = &mut [10][0..0]; assert_eq!( empty_slice.choose_weighted(&mut r, |_| 1), Err(WeightError::InvalidInput) ); assert_eq!( empty_slice.choose_weighted_mut(&mut r, |_| 1), Err(WeightError::InvalidInput) ); assert_eq!( ['x'].choose_weighted_mut(&mut r, |_| 0), Err(WeightError::InsufficientNonZero) ); assert_eq!( [0, -1].choose_weighted_mut(&mut r, |x| *x), Err(WeightError::InvalidWeight) ); assert_eq!( [-1, 0].choose_weighted_mut(&mut r, |x| *x), Err(WeightError::InvalidWeight) ); } #[test] #[cfg(feature = "std")] fn test_multiple_weighted_edge_cases() { use super::*; let mut rng = crate::test::rng(413); // Case 1: One of the weights is 0 let choices = [('a', 2), ('b', 1), ('c', 0)]; for _ in 0..100 { let result = choices .choose_multiple_weighted(&mut rng, 2, |item| item.1) .unwrap() .collect::>(); assert_eq!(result.len(), 2); assert!(!result.iter().any(|val| val.0 == 'c')); } // Case 2: All of the weights are 0 let choices = [('a', 0), ('b', 0), ('c', 0)]; let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1); assert_eq!(r.unwrap_err(), WeightError::InsufficientNonZero); // Case 3: Negative weights let choices = [('a', -1), ('b', 1), ('c', 1)]; let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1); assert_eq!(r.unwrap_err(), WeightError::InvalidWeight); // Case 4: Empty list let choices = []; let r = choices.choose_multiple_weighted(&mut rng, 0, |_: &()| 0); assert_eq!(r.unwrap().count(), 0); // Case 5: NaN weights let choices = [('a', f64::NAN), ('b', 1.0), ('c', 1.0)]; let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1); assert_eq!(r.unwrap_err(), WeightError::InvalidWeight); // Case 6: +infinity weights let choices = [('a', f64::INFINITY), ('b', 1.0), ('c', 1.0)]; for _ in 0..100 { let result = choices .choose_multiple_weighted(&mut rng, 2, |item| item.1) .unwrap() .collect::>(); assert_eq!(result.len(), 2); assert!(result.iter().any(|val| val.0 == 'a')); } // Case 7: -infinity weights let choices = [('a', f64::NEG_INFINITY), ('b', 1.0), ('c', 1.0)]; let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1); assert_eq!(r.unwrap_err(), WeightError::InvalidWeight); // Case 8: -0 weights let choices = [('a', -0.0), ('b', 1.0), ('c', 1.0)]; let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1); assert!(r.is_ok()); } #[test] #[cfg(feature = "std")] fn test_multiple_weighted_distributions() { use super::*; // The theoretical probabilities of the different outcomes are: // AB: 0.5 * 0.5 = 0.250 // AC: 0.5 * 0.5 = 0.250 // BA: 0.25 * 0.67 = 0.167 // BC: 0.25 * 0.33 = 0.082 // CA: 0.25 * 0.67 = 0.167 // CB: 0.25 * 0.33 = 0.082 let choices = [('a', 2), ('b', 1), ('c', 1)]; let mut rng = crate::test::rng(414); let mut results = [0i32; 3]; let expected_results = [4167, 4167, 1666]; for _ in 0..10000 { let result = choices .choose_multiple_weighted(&mut rng, 2, |item| item.1) .unwrap() .collect::>(); assert_eq!(result.len(), 2); match (result[0].0, result[1].0) { ('a', 'b') | ('b', 'a') => { results[0] += 1; } ('a', 'c') | ('c', 'a') => { results[1] += 1; } ('b', 'c') | ('c', 'b') => { results[2] += 1; } (_, _) => panic!("unexpected result"), } } let mut diffs = results .iter() .zip(&expected_results) .map(|(a, b)| (a - b).abs()); assert!(!diffs.any(|deviation| deviation > 100)); } }