rand/src/seq/slice.rs
2024-10-16 14:45:36 +01:00

775 lines
26 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2018-2023 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! `IndexedRandom`, `IndexedMutRandom`, `SliceRandom`
use super::increasing_uniform::IncreasingUniform;
use super::index;
#[cfg(feature = "alloc")]
use crate::distr::uniform::{SampleBorrow, SampleUniform};
#[cfg(feature = "alloc")]
use crate::distr::{Weight, WeightError};
use crate::Rng;
use core::ops::{Index, IndexMut};
/// Extension trait on indexable lists, providing random sampling methods.
///
/// This trait is implemented on `[T]` slice types. Other types supporting
/// [`std::ops::Index<usize>`] may implement this (only [`Self::len`] must be
/// specified).
pub trait IndexedRandom: Index<usize> {
/// The length
fn len(&self) -> usize;
/// True when the length is zero
#[inline]
fn is_empty(&self) -> bool {
self.len() == 0
}
/// Uniformly sample one element
///
/// Returns a reference to one uniformly-sampled random element of
/// the slice, or `None` if the slice is empty.
///
/// For slices, complexity is `O(1)`.
///
/// # Example
///
/// ```
/// use rand::seq::IndexedRandom;
///
/// let choices = [1, 2, 4, 8, 16, 32];
/// let mut rng = rand::rng();
/// println!("{:?}", choices.choose(&mut rng));
/// assert_eq!(choices[..0].choose(&mut rng), None);
/// ```
fn choose<R>(&self, rng: &mut R) -> Option<&Self::Output>
where
R: Rng + ?Sized,
{
if self.is_empty() {
None
} else {
Some(&self[rng.random_range(..self.len())])
}
}
/// Uniformly sample `amount` distinct elements from self
///
/// Chooses `amount` elements from the slice at random, without repetition,
/// and in random order. The returned iterator is appropriate both for
/// collection into a `Vec` and filling an existing buffer (see example).
///
/// In case this API is not sufficiently flexible, use [`index::sample`].
///
/// For slices, complexity is the same as [`index::sample`].
///
/// # Example
/// ```
/// use rand::seq::IndexedRandom;
///
/// let mut rng = &mut rand::rng();
/// let sample = "Hello, audience!".as_bytes();
///
/// // collect the results into a vector:
/// let v: Vec<u8> = sample.choose_multiple(&mut rng, 3).cloned().collect();
///
/// // store in a buffer:
/// let mut buf = [0u8; 5];
/// for (b, slot) in sample.choose_multiple(&mut rng, buf.len()).zip(buf.iter_mut()) {
/// *slot = *b;
/// }
/// ```
#[cfg(feature = "alloc")]
fn choose_multiple<R>(&self, rng: &mut R, amount: usize) -> SliceChooseIter<Self, Self::Output>
where
Self::Output: Sized,
R: Rng + ?Sized,
{
let amount = core::cmp::min(amount, self.len());
SliceChooseIter {
slice: self,
_phantom: Default::default(),
indices: index::sample(rng, self.len(), amount).into_iter(),
}
}
/// Uniformly sample a fixed-size array of distinct elements from self
///
/// Chooses `N` elements from the slice at random, without repetition,
/// and in random order.
///
/// For slices, complexity is the same as [`index::sample_array`].
///
/// # Example
/// ```
/// use rand::seq::IndexedRandom;
///
/// let mut rng = &mut rand::rng();
/// let sample = "Hello, audience!".as_bytes();
///
/// let a: [u8; 3] = sample.choose_multiple_array(&mut rng).unwrap();
/// ```
fn choose_multiple_array<R, const N: usize>(&self, rng: &mut R) -> Option<[Self::Output; N]>
where
Self::Output: Clone + Sized,
R: Rng + ?Sized,
{
let indices = index::sample_array(rng, self.len())?;
Some(indices.map(|index| self[index].clone()))
}
/// Biased sampling for one element
///
/// Returns a reference to one element of the slice, sampled according
/// to the provided weights. Returns `None` only if the slice is empty.
///
/// The specified function `weight` maps each item `x` to a relative
/// likelihood `weight(x)`. The probability of each item being selected is
/// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
///
/// For slices of length `n`, complexity is `O(n)`.
/// For more information about the underlying algorithm,
/// see [`distr::WeightedIndex`].
///
/// See also [`choose_weighted_mut`].
///
/// # Example
///
/// ```
/// use rand::prelude::*;
///
/// let choices = [('a', 2), ('b', 1), ('c', 1), ('d', 0)];
/// let mut rng = rand::rng();
/// // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c',
/// // and 'd' will never be printed
/// println!("{:?}", choices.choose_weighted(&mut rng, |item| item.1).unwrap().0);
/// ```
/// [`choose`]: IndexedRandom::choose
/// [`choose_weighted_mut`]: IndexedMutRandom::choose_weighted_mut
/// [`distr::WeightedIndex`]: crate::distr::WeightedIndex
#[cfg(feature = "alloc")]
fn choose_weighted<R, F, B, X>(
&self,
rng: &mut R,
weight: F,
) -> Result<&Self::Output, WeightError>
where
R: Rng + ?Sized,
F: Fn(&Self::Output) -> B,
B: SampleBorrow<X>,
X: SampleUniform + Weight + PartialOrd<X>,
{
use crate::distr::{Distribution, WeightedIndex};
let distr = WeightedIndex::new((0..self.len()).map(|idx| weight(&self[idx])))?;
Ok(&self[distr.sample(rng)])
}
/// Biased sampling of `amount` distinct elements
///
/// Similar to [`choose_multiple`], but where the likelihood of each element's
/// inclusion in the output may be specified. The elements are returned in an
/// arbitrary, unspecified order.
///
/// The specified function `weight` maps each item `x` to a relative
/// likelihood `weight(x)`. The probability of each item being selected is
/// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
///
/// If all of the weights are equal, even if they are all zero, each element has
/// an equal likelihood of being selected.
///
/// This implementation uses `O(length + amount)` space and `O(length)` time
/// if the "nightly" feature is enabled, or `O(length)` space and
/// `O(length + amount * log length)` time otherwise.
///
/// # Known issues
///
/// The algorithm currently used to implement this method loses accuracy
/// when small values are used for weights.
/// See [#1476](https://github.com/rust-random/rand/issues/1476).
///
/// # Example
///
/// ```
/// use rand::prelude::*;
///
/// let choices = [('a', 2), ('b', 1), ('c', 1)];
/// let mut rng = rand::rng();
/// // First Draw * Second Draw = total odds
/// // -----------------------
/// // (50% * 50%) + (25% * 67%) = 41.7% chance that the output is `['a', 'b']` in some order.
/// // (50% * 50%) + (25% * 67%) = 41.7% chance that the output is `['a', 'c']` in some order.
/// // (25% * 33%) + (25% * 33%) = 16.6% chance that the output is `['b', 'c']` in some order.
/// println!("{:?}", choices.choose_multiple_weighted(&mut rng, 2, |item| item.1).unwrap().collect::<Vec<_>>());
/// ```
/// [`choose_multiple`]: IndexedRandom::choose_multiple
// Note: this is feature-gated on std due to usage of f64::powf.
// If necessary, we may use alloc+libm as an alternative (see PR #1089).
#[cfg(feature = "std")]
fn choose_multiple_weighted<R, F, X>(
&self,
rng: &mut R,
amount: usize,
weight: F,
) -> Result<SliceChooseIter<Self, Self::Output>, WeightError>
where
Self::Output: Sized,
R: Rng + ?Sized,
F: Fn(&Self::Output) -> X,
X: Into<f64>,
{
let amount = core::cmp::min(amount, self.len());
Ok(SliceChooseIter {
slice: self,
_phantom: Default::default(),
indices: index::sample_weighted(
rng,
self.len(),
|idx| weight(&self[idx]).into(),
amount,
)?
.into_iter(),
})
}
}
/// Extension trait on indexable lists, providing random sampling methods.
///
/// This trait is implemented automatically for every type implementing
/// [`IndexedRandom`] and [`std::ops::IndexMut<usize>`].
pub trait IndexedMutRandom: IndexedRandom + IndexMut<usize> {
/// Uniformly sample one element (mut)
///
/// Returns a mutable reference to one uniformly-sampled random element of
/// the slice, or `None` if the slice is empty.
///
/// For slices, complexity is `O(1)`.
fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Output>
where
R: Rng + ?Sized,
{
if self.is_empty() {
None
} else {
let len = self.len();
Some(&mut self[rng.random_range(..len)])
}
}
/// Biased sampling for one element (mut)
///
/// Returns a mutable reference to one element of the slice, sampled according
/// to the provided weights. Returns `None` only if the slice is empty.
///
/// The specified function `weight` maps each item `x` to a relative
/// likelihood `weight(x)`. The probability of each item being selected is
/// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
///
/// For slices of length `n`, complexity is `O(n)`.
/// For more information about the underlying algorithm,
/// see [`distr::WeightedIndex`].
///
/// See also [`choose_weighted`].
///
/// [`choose_mut`]: IndexedMutRandom::choose_mut
/// [`choose_weighted`]: IndexedRandom::choose_weighted
/// [`distr::WeightedIndex`]: crate::distr::WeightedIndex
#[cfg(feature = "alloc")]
fn choose_weighted_mut<R, F, B, X>(
&mut self,
rng: &mut R,
weight: F,
) -> Result<&mut Self::Output, WeightError>
where
R: Rng + ?Sized,
F: Fn(&Self::Output) -> B,
B: SampleBorrow<X>,
X: SampleUniform + Weight + PartialOrd<X>,
{
use crate::distr::{Distribution, WeightedIndex};
let distr = WeightedIndex::new((0..self.len()).map(|idx| weight(&self[idx])))?;
let index = distr.sample(rng);
Ok(&mut self[index])
}
}
/// Extension trait on slices, providing shuffling methods.
///
/// This trait is implemented on all `[T]` slice types, providing several
/// methods for choosing and shuffling elements. You must `use` this trait:
///
/// ```
/// use rand::seq::SliceRandom;
///
/// let mut rng = rand::rng();
/// let mut bytes = "Hello, random!".to_string().into_bytes();
/// bytes.shuffle(&mut rng);
/// let str = String::from_utf8(bytes).unwrap();
/// println!("{}", str);
/// ```
/// Example output (non-deterministic):
/// ```none
/// l,nmroHado !le
/// ```
pub trait SliceRandom: IndexedMutRandom {
/// Shuffle a mutable slice in place.
///
/// For slices of length `n`, complexity is `O(n)`.
/// The resulting permutation is picked uniformly from the set of all possible permutations.
///
/// # Example
///
/// ```
/// use rand::seq::SliceRandom;
///
/// let mut rng = rand::rng();
/// let mut y = [1, 2, 3, 4, 5];
/// println!("Unshuffled: {:?}", y);
/// y.shuffle(&mut rng);
/// println!("Shuffled: {:?}", y);
/// ```
fn shuffle<R>(&mut self, rng: &mut R)
where
R: Rng + ?Sized;
/// Shuffle a slice in place, but exit early.
///
/// Returns two mutable slices from the source slice. The first contains
/// `amount` elements randomly permuted. The second has the remaining
/// elements that are not fully shuffled.
///
/// This is an efficient method to select `amount` elements at random from
/// the slice, provided the slice may be mutated.
///
/// If you only need to choose elements randomly and `amount > self.len()/2`
/// then you may improve performance by taking
/// `amount = self.len() - amount` and using only the second slice.
///
/// If `amount` is greater than the number of elements in the slice, this
/// will perform a full shuffle.
///
/// For slices, complexity is `O(m)` where `m = amount`.
fn partial_shuffle<R>(
&mut self,
rng: &mut R,
amount: usize,
) -> (&mut [Self::Output], &mut [Self::Output])
where
Self::Output: Sized,
R: Rng + ?Sized;
}
impl<T> IndexedRandom for [T] {
fn len(&self) -> usize {
self.len()
}
}
impl<IR: IndexedRandom + IndexMut<usize> + ?Sized> IndexedMutRandom for IR {}
impl<T> SliceRandom for [T] {
fn shuffle<R>(&mut self, rng: &mut R)
where
R: Rng + ?Sized,
{
if self.len() <= 1 {
// There is no need to shuffle an empty or single element slice
return;
}
self.partial_shuffle(rng, self.len());
}
fn partial_shuffle<R>(&mut self, rng: &mut R, amount: usize) -> (&mut [T], &mut [T])
where
R: Rng + ?Sized,
{
let m = self.len().saturating_sub(amount);
// The algorithm below is based on Durstenfeld's algorithm for the
// [FisherYates shuffle](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm)
// for an unbiased permutation.
// It ensures that the last `amount` elements of the slice
// are randomly selected from the whole slice.
// `IncreasingUniform::next_index()` is faster than `Rng::random_range`
// but only works for 32 bit integers
// So we must use the slow method if the slice is longer than that.
if self.len() < (u32::MAX as usize) {
let mut chooser = IncreasingUniform::new(rng, m as u32);
for i in m..self.len() {
let index = chooser.next_index();
self.swap(i, index);
}
} else {
for i in m..self.len() {
let index = rng.random_range(..i + 1);
self.swap(i, index);
}
}
let r = self.split_at_mut(m);
(r.1, r.0)
}
}
/// An iterator over multiple slice elements.
///
/// This struct is created by
/// [`IndexedRandom::choose_multiple`](trait.IndexedRandom.html#tymethod.choose_multiple).
#[cfg(feature = "alloc")]
#[derive(Debug)]
pub struct SliceChooseIter<'a, S: ?Sized + 'a, T: 'a> {
slice: &'a S,
_phantom: core::marker::PhantomData<T>,
indices: index::IndexVecIntoIter,
}
#[cfg(feature = "alloc")]
impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> Iterator for SliceChooseIter<'a, S, T> {
type Item = &'a T;
fn next(&mut self) -> Option<Self::Item> {
// TODO: investigate using SliceIndex::get_unchecked when stable
self.indices.next().map(|i| &self.slice[i])
}
fn size_hint(&self) -> (usize, Option<usize>) {
(self.indices.len(), Some(self.indices.len()))
}
}
#[cfg(feature = "alloc")]
impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> ExactSizeIterator
for SliceChooseIter<'a, S, T>
{
fn len(&self) -> usize {
self.indices.len()
}
}
#[cfg(test)]
mod test {
use super::*;
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
#[test]
fn test_slice_choose() {
let mut r = crate::test::rng(107);
let chars = [
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
];
let mut chosen = [0i32; 14];
// The below all use a binomial distribution with n=1000, p=1/14.
// binocdf(40, 1000, 1/14) ~= 2e-5; 1-binocdf(106, ..) ~= 2e-5
for _ in 0..1000 {
let picked = *chars.choose(&mut r).unwrap();
chosen[(picked as usize) - ('a' as usize)] += 1;
}
for count in chosen.iter() {
assert!(40 < *count && *count < 106);
}
chosen.iter_mut().for_each(|x| *x = 0);
for _ in 0..1000 {
*chosen.choose_mut(&mut r).unwrap() += 1;
}
for count in chosen.iter() {
assert!(40 < *count && *count < 106);
}
let mut v: [isize; 0] = [];
assert_eq!(v.choose(&mut r), None);
assert_eq!(v.choose_mut(&mut r), None);
}
#[test]
fn value_stability_slice() {
let mut r = crate::test::rng(413);
let chars = [
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
];
let mut nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12];
assert_eq!(chars.choose(&mut r), Some(&'l'));
assert_eq!(nums.choose_mut(&mut r), Some(&mut 3));
assert_eq!(
&chars.choose_multiple_array(&mut r),
&Some(['f', 'i', 'd', 'b', 'c', 'm', 'j', 'k'])
);
#[cfg(feature = "alloc")]
assert_eq!(
&chars
.choose_multiple(&mut r, 8)
.cloned()
.collect::<Vec<char>>(),
&['h', 'm', 'd', 'b', 'c', 'e', 'n', 'f']
);
#[cfg(feature = "alloc")]
assert_eq!(chars.choose_weighted(&mut r, |_| 1), Ok(&'i'));
#[cfg(feature = "alloc")]
assert_eq!(nums.choose_weighted_mut(&mut r, |_| 1), Ok(&mut 2));
let mut r = crate::test::rng(414);
nums.shuffle(&mut r);
assert_eq!(nums, [5, 11, 0, 8, 7, 12, 6, 4, 9, 3, 1, 2, 10]);
nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12];
let res = nums.partial_shuffle(&mut r, 6);
assert_eq!(res.0, &mut [7, 12, 6, 8, 1, 9]);
assert_eq!(res.1, &mut [0, 11, 2, 3, 4, 5, 10]);
}
#[test]
#[cfg_attr(miri, ignore)] // Miri is too slow
fn test_shuffle() {
let mut r = crate::test::rng(108);
let empty: &mut [isize] = &mut [];
empty.shuffle(&mut r);
let mut one = [1];
one.shuffle(&mut r);
let b: &[_] = &[1];
assert_eq!(one, b);
let mut two = [1, 2];
two.shuffle(&mut r);
assert!(two == [1, 2] || two == [2, 1]);
fn move_last(slice: &mut [usize], pos: usize) {
// use slice[pos..].rotate_left(1); once we can use that
let last_val = slice[pos];
for i in pos..slice.len() - 1 {
slice[i] = slice[i + 1];
}
*slice.last_mut().unwrap() = last_val;
}
let mut counts = [0i32; 24];
for _ in 0..10000 {
let mut arr: [usize; 4] = [0, 1, 2, 3];
arr.shuffle(&mut r);
let mut permutation = 0usize;
let mut pos_value = counts.len();
for i in 0..4 {
pos_value /= 4 - i;
let pos = arr.iter().position(|&x| x == i).unwrap();
assert!(pos < (4 - i));
permutation += pos * pos_value;
move_last(&mut arr, pos);
assert_eq!(arr[3], i);
}
for (i, &a) in arr.iter().enumerate() {
assert_eq!(a, i);
}
counts[permutation] += 1;
}
for count in counts.iter() {
// Binomial(10000, 1/24) with average 416.667
// Octave: binocdf(n, 10000, 1/24)
// 99.9% chance samples lie within this range:
assert!(352 <= *count && *count <= 483, "count: {}", count);
}
}
#[test]
fn test_partial_shuffle() {
let mut r = crate::test::rng(118);
let mut empty: [u32; 0] = [];
let res = empty.partial_shuffle(&mut r, 10);
assert_eq!((res.0.len(), res.1.len()), (0, 0));
let mut v = [1, 2, 3, 4, 5];
let res = v.partial_shuffle(&mut r, 2);
assert_eq!((res.0.len(), res.1.len()), (2, 3));
assert!(res.0[0] != res.0[1]);
// First elements are only modified if selected, so at least one isn't modified:
assert!(res.1[0] == 1 || res.1[1] == 2 || res.1[2] == 3);
}
#[test]
#[cfg(feature = "alloc")]
#[cfg_attr(miri, ignore)] // Miri is too slow
fn test_weighted() {
let mut r = crate::test::rng(406);
const N_REPS: u32 = 3000;
let weights = [1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7];
let total_weight = weights.iter().sum::<u32>() as f32;
let verify = |result: [i32; 14]| {
for (i, count) in result.iter().enumerate() {
let exp = (weights[i] * N_REPS) as f32 / total_weight;
let mut err = (*count as f32 - exp).abs();
if err != 0.0 {
err /= exp;
}
assert!(err <= 0.25);
}
};
// choose_weighted
fn get_weight<T>(item: &(u32, T)) -> u32 {
item.0
}
let mut chosen = [0i32; 14];
let mut items = [(0u32, 0usize); 14]; // (weight, index)
for (i, item) in items.iter_mut().enumerate() {
*item = (weights[i], i);
}
for _ in 0..N_REPS {
let item = items.choose_weighted(&mut r, get_weight).unwrap();
chosen[item.1] += 1;
}
verify(chosen);
// choose_weighted_mut
let mut items = [(0u32, 0i32); 14]; // (weight, count)
for (i, item) in items.iter_mut().enumerate() {
*item = (weights[i], 0);
}
for _ in 0..N_REPS {
items.choose_weighted_mut(&mut r, get_weight).unwrap().1 += 1;
}
for (ch, item) in chosen.iter_mut().zip(items.iter()) {
*ch = item.1;
}
verify(chosen);
// Check error cases
let empty_slice = &mut [10][0..0];
assert_eq!(
empty_slice.choose_weighted(&mut r, |_| 1),
Err(WeightError::InvalidInput)
);
assert_eq!(
empty_slice.choose_weighted_mut(&mut r, |_| 1),
Err(WeightError::InvalidInput)
);
assert_eq!(
['x'].choose_weighted_mut(&mut r, |_| 0),
Err(WeightError::InsufficientNonZero)
);
assert_eq!(
[0, -1].choose_weighted_mut(&mut r, |x| *x),
Err(WeightError::InvalidWeight)
);
assert_eq!(
[-1, 0].choose_weighted_mut(&mut r, |x| *x),
Err(WeightError::InvalidWeight)
);
}
#[test]
#[cfg(feature = "std")]
fn test_multiple_weighted_edge_cases() {
use super::*;
let mut rng = crate::test::rng(413);
// Case 1: One of the weights is 0
let choices = [('a', 2), ('b', 1), ('c', 0)];
for _ in 0..100 {
let result = choices
.choose_multiple_weighted(&mut rng, 2, |item| item.1)
.unwrap()
.collect::<Vec<_>>();
assert_eq!(result.len(), 2);
assert!(!result.iter().any(|val| val.0 == 'c'));
}
// Case 2: All of the weights are 0
let choices = [('a', 0), ('b', 0), ('c', 0)];
let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1);
assert_eq!(r.unwrap_err(), WeightError::InsufficientNonZero);
// Case 3: Negative weights
let choices = [('a', -1), ('b', 1), ('c', 1)];
let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1);
assert_eq!(r.unwrap_err(), WeightError::InvalidWeight);
// Case 4: Empty list
let choices = [];
let r = choices.choose_multiple_weighted(&mut rng, 0, |_: &()| 0);
assert_eq!(r.unwrap().count(), 0);
// Case 5: NaN weights
let choices = [('a', f64::NAN), ('b', 1.0), ('c', 1.0)];
let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1);
assert_eq!(r.unwrap_err(), WeightError::InvalidWeight);
// Case 6: +infinity weights
let choices = [('a', f64::INFINITY), ('b', 1.0), ('c', 1.0)];
for _ in 0..100 {
let result = choices
.choose_multiple_weighted(&mut rng, 2, |item| item.1)
.unwrap()
.collect::<Vec<_>>();
assert_eq!(result.len(), 2);
assert!(result.iter().any(|val| val.0 == 'a'));
}
// Case 7: -infinity weights
let choices = [('a', f64::NEG_INFINITY), ('b', 1.0), ('c', 1.0)];
let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1);
assert_eq!(r.unwrap_err(), WeightError::InvalidWeight);
// Case 8: -0 weights
let choices = [('a', -0.0), ('b', 1.0), ('c', 1.0)];
let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1);
assert!(r.is_ok());
}
#[test]
#[cfg(feature = "std")]
fn test_multiple_weighted_distributions() {
use super::*;
// The theoretical probabilities of the different outcomes are:
// AB: 0.5 * 0.5 = 0.250
// AC: 0.5 * 0.5 = 0.250
// BA: 0.25 * 0.67 = 0.167
// BC: 0.25 * 0.33 = 0.082
// CA: 0.25 * 0.67 = 0.167
// CB: 0.25 * 0.33 = 0.082
let choices = [('a', 2), ('b', 1), ('c', 1)];
let mut rng = crate::test::rng(414);
let mut results = [0i32; 3];
let expected_results = [4167, 4167, 1666];
for _ in 0..10000 {
let result = choices
.choose_multiple_weighted(&mut rng, 2, |item| item.1)
.unwrap()
.collect::<Vec<_>>();
assert_eq!(result.len(), 2);
match (result[0].0, result[1].0) {
('a', 'b') | ('b', 'a') => {
results[0] += 1;
}
('a', 'c') | ('c', 'a') => {
results[1] += 1;
}
('b', 'c') | ('c', 'b') => {
results[2] += 1;
}
(_, _) => panic!("unexpected result"),
}
}
let mut diffs = results
.iter()
.zip(&expected_results)
.map(|(a, b)| (a - b).abs());
assert!(!diffs.any(|deviation| deviation > 100));
}
}