ring/src/rsa/padding.rs

484 lines
17 KiB
Rust
Raw Normal View History

// Copyright 2015-2016 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
use {bits, der, digest, error, polyfill};
use super::PUBLIC_KEY_PUBLIC_MODULUS_MAX_LEN;
use untrusted;
#[cfg(feature = "rsa_signing")]
use rand;
/// The term "Encoding" comes from RFC 3447.
#[cfg(feature = "rsa_signing")]
pub trait Encoding: Sync {
fn encode(&self, msg: &[u8], m_out: &mut [u8], mod_bits: bits::BitLength,
rng: &rand::SecureRandom) -> Result<(), error::Unspecified>;
}
/// The term "Verification" comes from RFC 3447.
pub trait Verification: Sync {
fn verify(&self, msg: untrusted::Input, m: &mut untrusted::Reader,
mod_bits: bits::BitLength) -> Result<(), error::Unspecified>;
}
pub struct PKCS1 {
digest_alg: &'static digest::Algorithm,
digestinfo_prefix: &'static [u8],
}
#[cfg(feature ="rsa_signing")]
impl Encoding for PKCS1 {
// Implement padding procedure per EMSA-PKCS1-v1_5,
// https://tools.ietf.org/html/rfc3447#section-9.2.
fn encode(&self, msg: &[u8], m_out: &mut [u8], _mod_bits: bits::BitLength,
_rng: &rand::SecureRandom) -> Result<(), error::Unspecified> {
let em = m_out;
let digest_len = self.digestinfo_prefix.len() +
self.digest_alg.output_len;
// Require at least 8 bytes of padding. Since we disallow keys smaller
// than 2048 bits, this should never happen anyway.
debug_assert!(em.len() >= digest_len + 11);
let pad_len = em.len() - digest_len - 3;
em[0] = 0;
em[1] = 1;
for i in 0..pad_len {
em[2 + i] = 0xff;
}
em[2 + pad_len] = 0;
let (digest_prefix, digest_dst) = em[3 + pad_len..]
.split_at_mut(self.digestinfo_prefix.len());
digest_prefix.copy_from_slice(self.digestinfo_prefix);
digest_dst.copy_from_slice(
digest::digest(self.digest_alg, msg).as_ref());
Ok(())
}
}
impl Verification for PKCS1 {
fn verify(&self, msg: untrusted::Input, m: &mut untrusted::Reader,
_mod_bits: bits::BitLength) -> Result<(), error::Unspecified> {
let em = m;
if try!(em.read_byte()) != 0 ||
try!(em.read_byte()) != 1 {
return Err(error::Unspecified);
}
let mut ps_len = 0;
loop {
match try!(em.read_byte()) {
0xff => {
ps_len += 1;
},
0x00 => {
break;
},
_ => {
return Err(error::Unspecified);
},
}
}
if ps_len < 8 {
return Err(error::Unspecified);
}
let em_digestinfo_prefix = try!(em.skip_and_get_input(
self.digestinfo_prefix.len()));
if em_digestinfo_prefix != self.digestinfo_prefix {
return Err(error::Unspecified);
}
let digest_alg = self.digest_alg;
let decoded_digest =
try!(em.skip_and_get_input(digest_alg.output_len));
let digest = digest::digest(digest_alg, msg.as_slice_less_safe());
if decoded_digest != digest.as_ref() {
return Err(error::Unspecified);
}
Ok(())
}
}
macro_rules! rsa_pkcs1_padding {
( $PADDING_ALGORITHM:ident, $digest_alg:expr, $digestinfo_prefix:expr,
$doc_str:expr ) => {
#[doc=$doc_str]
/// Feature: `rsa_signing`.
pub static $PADDING_ALGORITHM: PKCS1 = PKCS1 {
digest_alg: $digest_alg,
digestinfo_prefix: $digestinfo_prefix,
};
}
}
rsa_pkcs1_padding!(RSA_PKCS1_SHA1, &digest::SHA1,
&SHA1_PKCS1_DIGESTINFO_PREFIX,
"PKCS#1 1.5 padding using SHA-1 for RSA signatures.");
rsa_pkcs1_padding!(RSA_PKCS1_SHA256, &digest::SHA256,
&SHA256_PKCS1_DIGESTINFO_PREFIX,
"PKCS#1 1.5 padding using SHA-256 for RSA signatures.");
rsa_pkcs1_padding!(RSA_PKCS1_SHA384, &digest::SHA384,
&SHA384_PKCS1_DIGESTINFO_PREFIX,
"PKCS#1 1.5 padding using SHA-384 for RSA signatures.");
rsa_pkcs1_padding!(RSA_PKCS1_SHA512, &digest::SHA512,
&SHA512_PKCS1_DIGESTINFO_PREFIX,
"PKCS#1 1.5 padding using SHA-512 for RSA signatures.");
macro_rules! pkcs1_digestinfo_prefix {
( $name:ident, $digest_len:expr, $digest_oid_len:expr,
[ $( $digest_oid:expr ),* ] ) => {
static $name: [u8; 2 + 8 + $digest_oid_len] = [
der::Tag::Sequence as u8, 8 + $digest_oid_len + $digest_len,
der::Tag::Sequence as u8, 2 + $digest_oid_len + 2,
der::Tag::OID as u8, $digest_oid_len, $( $digest_oid ),*,
der::Tag::Null as u8, 0,
der::Tag::OctetString as u8, $digest_len,
];
}
}
pkcs1_digestinfo_prefix!(
SHA1_PKCS1_DIGESTINFO_PREFIX, 20, 5, [ 0x2b, 0x0e, 0x03, 0x02, 0x1a ]);
pkcs1_digestinfo_prefix!(
SHA256_PKCS1_DIGESTINFO_PREFIX, 32, 9,
[ 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01 ]);
pkcs1_digestinfo_prefix!(
SHA384_PKCS1_DIGESTINFO_PREFIX, 48, 9,
[ 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02 ]);
pkcs1_digestinfo_prefix!(
SHA512_PKCS1_DIGESTINFO_PREFIX, 64, 9,
[ 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03 ]);
/// PSS padding as described in [RFC 3447 Section 8.1]. The mask generation
/// function is MGF1 using the signature's digest's algorithm.
///
/// [RFC 3447 Section 8.1]: https://tools.ietf.org/html/rfc3447#section-8.1
pub struct PSS {
digest_alg: &'static digest::Algorithm,
}
#[cfg(feature = "rsa_signing")]
// Maximum supported length of the salt in bytes.
// In practice, this is constrained by the maximum digest length.
const MAX_SALT_LEN: usize = digest::MAX_OUTPUT_LEN;
#[cfg(feature = "rsa_signing")]
impl Encoding for PSS {
// Implement padding procedure per EMSA-PSS,
// https://tools.ietf.org/html/rfc3447#section-9.1.
fn encode(&self, msg: &[u8], m_out: &mut [u8], mod_bits: bits::BitLength,
rng: &rand::SecureRandom) -> Result<(), error::Unspecified> {
let metrics = try!(PSSMetrics::new(self.digest_alg, mod_bits));
// The `m_out` this function fills is the big-endian-encoded value of `m`
// from the specification, padded to `k` bytes, where `k` is the length
// in bytes of the public modulus. The spec says "Note that emLen will
// be one less than k if modBits - 1 is divisible by 8 and equal to k
// otherwise." In other words we might need to prefix `em` with a
// leading zero byte to form a correct value of `m`.
let em = if metrics.top_byte_mask == 0xff {
m_out[0] = 0;
&mut m_out[1..]
} else {
m_out
};
assert_eq!(em.len(), metrics.em_len);
// Steps 1 and 2 are done later, out of order.
// Step 3 is done by `PSSMetrics::new()` above.
// Step 4.
let mut salt = [0u8; MAX_SALT_LEN];
let salt = &mut salt[..metrics.s_len];
try!(rng.fill(salt));
// Step 5 and 6.
let h_hash = pss_digest(self.digest_alg, msg, salt);
// Re-order steps 7, 8, 9 and 10 so that we first output the db mask
// into `em`, and then XOR the value of db.
// Step 9. First output the mask into the out buffer.
2016-11-11 21:21:32 -10:00
let (mut masked_db, mut digest_terminator) =
em.split_at_mut(metrics.db_len);
try!(mgf1(self.digest_alg, h_hash.as_ref(), &mut masked_db));
{
// Steps 7.
let masked_db = masked_db.into_iter();
// `PS` is all zero bytes, so skipping `ps_len` bytes is equivalent
// to XORing `PS` onto `db`.
let mut masked_db = masked_db.skip(metrics.ps_len);
// Step 8.
*try!(masked_db.next().ok_or(error::Unspecified)) ^= 0x01;
// Step 10.
for (masked_db_b, salt_b) in masked_db.zip(salt) {
*masked_db_b ^= *salt_b;
}
}
// Step 11.
2016-11-11 21:21:32 -10:00
masked_db[0] &= metrics.top_byte_mask;
2016-11-11 21:21:32 -10:00
// Step 12.
digest_terminator[..metrics.h_len].copy_from_slice(h_hash.as_ref());
digest_terminator[metrics.h_len] = 0xbc;
Ok(())
}
}
impl Verification for PSS {
// RSASSA-PSS-VERIFY from https://tools.ietf.org/html/rfc3447#section-8.1.2
// where steps 1, 2(a), and 2(b) have been done for us.
fn verify(&self, msg: untrusted::Input, m: &mut untrusted::Reader,
mod_bits: bits::BitLength) -> Result<(), error::Unspecified> {
let metrics = try!(PSSMetrics::new(self.digest_alg, mod_bits));
// RSASSA-PSS-VERIFY Step 2(c). The `m` this function is given is the
// big-endian-encoded value of `m` from the specification, padded to
// `k` bytes, where `k` is the length in bytes of the public modulus.
// The spec. says "Note that emLen will be one less than k if
// modBits - 1 is divisible by 8 and equal to k otherwise," where `k`
// is the length in octets of the RSA public modulus `n`. In other
// words, `em` might have an extra leading zero byte that we need to
// strip before we start the PSS decoding steps which is an artifact of
// the `Verification` interface.
if metrics.top_byte_mask == 0xff {
if try!(m.read_byte()) != 0 {
return Err(error::Unspecified);
}
};
let em = m;
// The rest of this function is EMSA-PSS-VERIFY from
// https://tools.ietf.org/html/rfc3447#section-9.1.2.
// Steps 1 and 2 are done later, out of order.
// Step 3 is done by `PSSMetrics::new()` above.
// Step 5, out of order.
let masked_db = try!(em.skip_and_get_input(metrics.db_len));
let h_hash = try!(em.skip_and_get_input(metrics.h_len));
// Step 4.
if try!(em.read_byte()) != 0xbc {
return Err(error::Unspecified);
}
// Step 7.
let mut db = [0u8; PUBLIC_KEY_PUBLIC_MODULUS_MAX_LEN];
let db = &mut db[..metrics.db_len];
try!(mgf1(self.digest_alg, h_hash.as_slice_less_safe(), db));
try!(masked_db.read_all(error::Unspecified, |masked_bytes| {
// Step 6. Check the top bits of first byte are zero.
let b = try!(masked_bytes.read_byte());
if b & !metrics.top_byte_mask != 0 {
return Err(error::Unspecified);
}
db[0] ^= b;
// Step 8.
for i in 1..db.len() {
db[i] ^= try!(masked_bytes.read_byte());
}
Ok(())
}));
// Step 9.
db[0] &= metrics.top_byte_mask;
// Step 10.
let ps_len = metrics.ps_len;
for i in 0..ps_len {
if db[i] != 0 {
return Err(error::Unspecified);
}
}
if db[metrics.ps_len] != 1 {
return Err(error::Unspecified);
}
// Step 11.
let salt = &db[(db.len() - metrics.s_len)..];
// Step 12 and 13.
let h_prime =
pss_digest(self.digest_alg, msg.as_slice_less_safe(), salt);
// Step 14.
if h_hash != h_prime.as_ref() {
return Err(error::Unspecified);
}
Ok(())
}
}
struct PSSMetrics {
#[cfg_attr(not(feature = "rsa_signing"), allow(dead_code))] em_len: usize,
db_len: usize,
ps_len: usize,
s_len: usize,
h_len: usize,
top_byte_mask: u8,
}
impl PSSMetrics {
fn new(digest_alg: &'static digest::Algorithm, mod_bits: bits::BitLength)
-> Result<PSSMetrics, error::Unspecified> {
let em_bits = try!(mod_bits.try_sub(bits::ONE));
let em_len = em_bits.as_usize_bytes_rounded_up();
let leading_zero_bits = (8 * em_len) - em_bits.as_usize_bits();
debug_assert!(leading_zero_bits < 8);
let top_byte_mask = 0xffu8 >> leading_zero_bits;
let h_len = digest_alg.output_len;
// We require the salt length to be equal to the digest length.
let s_len = h_len;
// Step 3 of both `EMSA-PSS-ENCODE` is `EMSA-PSS-VERIFY` requires that
// we reject inputs where "emLen < hLen + sLen + 2". The definition of
// `emBits` in RFC 3447 Sections 9.1.1 and 9.1.2 says `emBits` must be
// "at least 8hLen + 8sLen + 9". Since 9 bits requires two bytes, these
// two conditions are equivalent. 9 bits are required as the 0x01
// before the salt requires 1 bit and the 0xbc after the digest
// requires 8 bits.
let db_len = try!(em_len.checked_sub(1 + s_len)
.ok_or(error::Unspecified));
let ps_len = try!(db_len.checked_sub(h_len + 1)
.ok_or(error::Unspecified));
debug_assert!(em_bits.as_usize_bits() >= (8 * h_len) + (8 * s_len) + 9);
Ok(PSSMetrics {
em_len: em_len,
db_len: db_len,
ps_len: ps_len,
s_len: s_len,
h_len: h_len,
top_byte_mask: top_byte_mask,
})
}
}
// Mask-generating function MGF1 as described in
// https://tools.ietf.org/html/rfc3447#appendix-B.2.1.
fn mgf1(digest_alg: &'static digest::Algorithm, seed: &[u8], mask: &mut [u8])
-> Result<(), error::Unspecified> {
let digest_len = digest_alg.output_len;
// Maximum counter value is the value of (mask_len / digest_len) rounded up.
let ctr_max = (mask.len() - 1) / digest_len;
assert!(ctr_max <= u32::max_value() as usize);
for (i, mask_chunk) in mask.chunks_mut(digest_len).enumerate() {
let mut ctx = digest::Context::new(digest_alg);
ctx.update(seed);
ctx.update(&polyfill::slice::be_u8_from_u32(i as u32));
let digest = ctx.finish();
let mask_chunk_len = mask_chunk.len();
mask_chunk.copy_from_slice(&digest.as_ref()[..mask_chunk_len]);
}
Ok(())
}
fn pss_digest(digest_alg: &'static digest::Algorithm, msg: &[u8], salt: &[u8])
-> digest::Digest {
// Fixed prefix.
const PREFIX_ZEROS: [u8; 8] = [0u8; 8];
// Steps 1 & 2 for both encoding and verification. Step 1 is delegated to
// the digest implementation.
let m_hash = digest::digest(digest_alg, msg);
// Encoding step 5 and 6, Verification step 12 and 13.
let mut ctx = digest::Context::new(digest_alg);
ctx.update(&PREFIX_ZEROS);
ctx.update(m_hash.as_ref());
ctx.update(salt);
ctx.finish()
}
macro_rules! rsa_pss_padding {
( $PADDING_ALGORITHM:ident, $digest_alg:expr, $doc_str:expr ) => {
#[doc=$doc_str]
/// Feature: `rsa_signing`.
pub static $PADDING_ALGORITHM: PSS = PSS {
digest_alg: $digest_alg,
};
}
}
rsa_pss_padding!(RSA_PSS_SHA256, &digest::SHA256,
"PSS padding using SHA-256 for RSA signatures.");
rsa_pss_padding!(RSA_PSS_SHA384, &digest::SHA384,
"PSS padding using SHA-384 for RSA signatures.");
rsa_pss_padding!(RSA_PSS_SHA512, &digest::SHA512,
"PSS padding using SHA-512 for RSA signatures.");
#[cfg(test)]
mod test {
use {error, test};
use super::*;
use untrusted;
// Tests PSS verification for various public modulus lengths, particularly
// ones that aren't multiples of 8.
#[test]
fn test_pss_padding_verify() {
test::from_file("src/rsa/rsa_pss_padding_tests.txt",
|section, test_case| {
assert_eq!(section, "");
let digest_name = test_case.consume_string("Digest");
let alg = match digest_name.as_ref() {
"SHA256" => &RSA_PSS_SHA256,
_ => { panic!("Unsupported digest: {}", digest_name) }
};
let msg = test_case.consume_bytes("Msg");
let msg = untrusted::Input::from(&msg);
let encoded = test_case.consume_bytes("Encoded");
let encoded = untrusted::Input::from(&encoded);
let bit_len = test_case.consume_usize_bits("Len");
let expected_result = test_case.consume_string("Result");
let actual_result =
encoded.read_all(error::Unspecified,
|m| alg.verify(msg, m, bit_len));
assert_eq!(actual_result.is_ok(), expected_result == "P");
Ok(())
});
}
}