2020-06-10 15:50:32 -05:00
|
|
|
/*
|
|
|
|
* Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
|
|
|
|
* Copyright (c) 2014, Intel Corporation. All Rights Reserved.
|
|
|
|
*
|
|
|
|
* Licensed under the OpenSSL license (the "License"). You may not use
|
|
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
|
|
* in the file LICENSE in the source distribution or at
|
|
|
|
* https://www.openssl.org/source/license.html
|
|
|
|
*
|
|
|
|
* Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1)
|
|
|
|
* (1) Intel Corporation, Israel Development Center, Haifa, Israel
|
|
|
|
* (2) University of Haifa, Israel
|
|
|
|
*
|
|
|
|
* Reference:
|
|
|
|
* S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
|
|
|
|
* 256 Bit Primes"
|
|
|
|
*/
|
|
|
|
|
2021-05-02 14:42:05 -07:00
|
|
|
#include <ring-core/base.h>
|
2020-06-10 15:50:32 -05:00
|
|
|
|
|
|
|
#include "../../limbs/limbs.inl"
|
|
|
|
|
|
|
|
#include <stdint.h>
|
|
|
|
|
|
|
|
#include "p256-x86_64.h"
|
|
|
|
|
|
|
|
#if defined(OPENSSL_USE_NISTZ256)
|
|
|
|
|
|
|
|
typedef P256_POINT_AFFINE PRECOMP256_ROW[64];
|
|
|
|
|
|
|
|
// One converted into the Montgomery domain
|
|
|
|
static const BN_ULONG ONE[P256_LIMBS] = {
|
|
|
|
TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
|
|
|
|
TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe),
|
|
|
|
};
|
|
|
|
|
|
|
|
// Precomputed tables for the default generator
|
|
|
|
#include "p256-x86_64-table.h"
|
|
|
|
|
2021-03-29 15:44:52 -07:00
|
|
|
// Recode window to a signed digit, see |nistp_recode_scalar_bits| in
|
2020-06-10 15:50:32 -05:00
|
|
|
// util.c for details
|
|
|
|
static crypto_word booth_recode_w5(crypto_word in) {
|
|
|
|
crypto_word s, d;
|
|
|
|
|
|
|
|
s = ~((in >> 5) - 1);
|
|
|
|
d = (1 << 6) - in - 1;
|
|
|
|
d = (d & s) | (in & ~s);
|
|
|
|
d = (d >> 1) + (d & 1);
|
|
|
|
|
|
|
|
return (d << 1) + (s & 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static crypto_word booth_recode_w7(crypto_word in) {
|
|
|
|
crypto_word s, d;
|
|
|
|
|
|
|
|
s = ~((in >> 7) - 1);
|
|
|
|
d = (1 << 8) - in - 1;
|
|
|
|
d = (d & s) | (in & ~s);
|
|
|
|
d = (d >> 1) + (d & 1);
|
|
|
|
|
|
|
|
return (d << 1) + (s & 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
// copy_conditional copies |src| to |dst| if |move| is one and leaves it as-is
|
|
|
|
// if |move| is zero.
|
|
|
|
//
|
|
|
|
// WARNING: this breaks the usual convention of constant-time functions
|
|
|
|
// returning masks.
|
|
|
|
static void copy_conditional(BN_ULONG dst[P256_LIMBS],
|
|
|
|
const BN_ULONG src[P256_LIMBS], BN_ULONG move) {
|
|
|
|
BN_ULONG mask1 = ((BN_ULONG)0) - move;
|
|
|
|
BN_ULONG mask2 = ~mask1;
|
|
|
|
|
|
|
|
dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
|
|
|
|
dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
|
|
|
|
dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
|
|
|
|
dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
|
|
|
|
if (P256_LIMBS == 8) {
|
|
|
|
dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
|
|
|
|
dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
|
|
|
|
dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
|
|
|
|
dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// is_not_zero returns one iff in != 0 and zero otherwise.
|
|
|
|
//
|
|
|
|
// WARNING: this breaks the usual convention of constant-time functions
|
|
|
|
// returning masks.
|
|
|
|
//
|
|
|
|
// (define-fun is_not_zero ((in (_ BitVec 64))) (_ BitVec 64)
|
|
|
|
// (bvlshr (bvor in (bvsub #x0000000000000000 in)) #x000000000000003f)
|
|
|
|
// )
|
|
|
|
//
|
|
|
|
// (declare-fun x () (_ BitVec 64))
|
|
|
|
//
|
|
|
|
// (assert (and (= x #x0000000000000000) (= (is_not_zero x) #x0000000000000001)))
|
|
|
|
// (check-sat)
|
|
|
|
//
|
|
|
|
// (assert (and (not (= x #x0000000000000000)) (= (is_not_zero x) #x0000000000000000)))
|
|
|
|
// (check-sat)
|
|
|
|
//
|
|
|
|
static BN_ULONG is_not_zero(BN_ULONG in) {
|
|
|
|
in |= (0 - in);
|
|
|
|
in >>= BN_BITS2 - 1;
|
|
|
|
return in;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// r = p * p_scalar
|
|
|
|
static void ecp_nistz256_windowed_mul(P256_POINT *r,
|
|
|
|
const BN_ULONG p_scalar[P256_LIMBS],
|
|
|
|
const BN_ULONG p_x[P256_LIMBS],
|
|
|
|
const BN_ULONG p_y[P256_LIMBS]) {
|
|
|
|
debug_assert_nonsecret(r != NULL);
|
|
|
|
debug_assert_nonsecret(p_scalar != NULL);
|
|
|
|
debug_assert_nonsecret(p_x != NULL);
|
|
|
|
debug_assert_nonsecret(p_y != NULL);
|
|
|
|
|
|
|
|
static const size_t kWindowSize = 5;
|
|
|
|
static const crypto_word kMask = (1 << (5 /* kWindowSize */ + 1)) - 1;
|
|
|
|
|
|
|
|
// A |P256_POINT| is (3 * 32) = 96 bytes, and the 64-byte alignment should
|
|
|
|
// add no more than 63 bytes of overhead. Thus, |table| should require
|
|
|
|
// ~1599 ((96 * 16) + 63) bytes of stack space.
|
|
|
|
alignas(64) P256_POINT table[16];
|
|
|
|
P256_SCALAR_BYTES p_str;
|
|
|
|
p256_scalar_bytes_from_limbs(p_str, p_scalar);
|
|
|
|
|
|
|
|
// table[0] is implicitly (0,0,0) (the point at infinity), therefore it is
|
|
|
|
// not stored. All other values are actually stored with an offset of -1 in
|
|
|
|
// table.
|
|
|
|
P256_POINT *row = table;
|
|
|
|
|
|
|
|
limbs_copy(row[1 - 1].X, p_x, P256_LIMBS);
|
|
|
|
limbs_copy(row[1 - 1].Y, p_y, P256_LIMBS);
|
|
|
|
limbs_copy(row[1 - 1].Z, ONE, P256_LIMBS);
|
|
|
|
|
|
|
|
ecp_nistz256_point_double(&row[2 - 1], &row[1 - 1]);
|
|
|
|
ecp_nistz256_point_add(&row[3 - 1], &row[2 - 1], &row[1 - 1]);
|
|
|
|
ecp_nistz256_point_double(&row[4 - 1], &row[2 - 1]);
|
|
|
|
ecp_nistz256_point_double(&row[6 - 1], &row[3 - 1]);
|
|
|
|
ecp_nistz256_point_double(&row[8 - 1], &row[4 - 1]);
|
|
|
|
ecp_nistz256_point_double(&row[12 - 1], &row[6 - 1]);
|
|
|
|
ecp_nistz256_point_add(&row[5 - 1], &row[4 - 1], &row[1 - 1]);
|
|
|
|
ecp_nistz256_point_add(&row[7 - 1], &row[6 - 1], &row[1 - 1]);
|
|
|
|
ecp_nistz256_point_add(&row[9 - 1], &row[8 - 1], &row[1 - 1]);
|
|
|
|
ecp_nistz256_point_add(&row[13 - 1], &row[12 - 1], &row[1 - 1]);
|
|
|
|
ecp_nistz256_point_double(&row[14 - 1], &row[7 - 1]);
|
|
|
|
ecp_nistz256_point_double(&row[10 - 1], &row[5 - 1]);
|
|
|
|
ecp_nistz256_point_add(&row[15 - 1], &row[14 - 1], &row[1 - 1]);
|
|
|
|
ecp_nistz256_point_add(&row[11 - 1], &row[10 - 1], &row[1 - 1]);
|
|
|
|
ecp_nistz256_point_double(&row[16 - 1], &row[8 - 1]);
|
|
|
|
|
|
|
|
BN_ULONG tmp[P256_LIMBS];
|
|
|
|
alignas(32) P256_POINT h;
|
|
|
|
size_t index = 255;
|
|
|
|
crypto_word wvalue = p_str[(index - 1) / 8];
|
|
|
|
wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
|
|
|
|
|
|
|
|
ecp_nistz256_select_w5(r, table, booth_recode_w5(wvalue) >> 1);
|
|
|
|
|
|
|
|
while (index >= 5) {
|
|
|
|
if (index != 255) {
|
|
|
|
size_t off = (index - 1) / 8;
|
|
|
|
|
|
|
|
wvalue = (crypto_word)p_str[off] | (crypto_word)p_str[off + 1] << 8;
|
|
|
|
wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
|
|
|
|
|
|
|
|
wvalue = booth_recode_w5(wvalue);
|
|
|
|
|
|
|
|
ecp_nistz256_select_w5(&h, table, wvalue >> 1);
|
|
|
|
|
|
|
|
ecp_nistz256_neg(tmp, h.Y);
|
|
|
|
copy_conditional(h.Y, tmp, (wvalue & 1));
|
|
|
|
|
|
|
|
ecp_nistz256_point_add(r, r, &h);
|
|
|
|
}
|
|
|
|
|
|
|
|
index -= kWindowSize;
|
|
|
|
|
|
|
|
ecp_nistz256_point_double(r, r);
|
|
|
|
ecp_nistz256_point_double(r, r);
|
|
|
|
ecp_nistz256_point_double(r, r);
|
|
|
|
ecp_nistz256_point_double(r, r);
|
|
|
|
ecp_nistz256_point_double(r, r);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Final window
|
|
|
|
wvalue = p_str[0];
|
|
|
|
wvalue = (wvalue << 1) & kMask;
|
|
|
|
|
|
|
|
wvalue = booth_recode_w5(wvalue);
|
|
|
|
|
|
|
|
ecp_nistz256_select_w5(&h, table, wvalue >> 1);
|
|
|
|
|
|
|
|
ecp_nistz256_neg(tmp, h.Y);
|
|
|
|
copy_conditional(h.Y, tmp, wvalue & 1);
|
|
|
|
|
|
|
|
ecp_nistz256_point_add(r, r, &h);
|
|
|
|
}
|
|
|
|
|
|
|
|
typedef union {
|
|
|
|
P256_POINT p;
|
|
|
|
P256_POINT_AFFINE a;
|
|
|
|
} p256_point_union_t;
|
|
|
|
|
|
|
|
static crypto_word calc_first_wvalue(size_t *index, const uint8_t p_str[33]) {
|
|
|
|
static const size_t kWindowSize = 7;
|
|
|
|
static const crypto_word kMask = (1 << (7 /* kWindowSize */ + 1)) - 1;
|
|
|
|
*index = kWindowSize;
|
|
|
|
|
|
|
|
crypto_word wvalue = ((crypto_word)p_str[0] << 1) & kMask;
|
|
|
|
return booth_recode_w7(wvalue);
|
|
|
|
}
|
|
|
|
|
|
|
|
static crypto_word calc_wvalue(size_t *index, const uint8_t p_str[33]) {
|
|
|
|
static const size_t kWindowSize = 7;
|
|
|
|
static const crypto_word kMask = (1 << (7 /* kWindowSize */ + 1)) - 1;
|
|
|
|
|
|
|
|
const size_t off = (*index - 1) / 8;
|
|
|
|
crypto_word wvalue =
|
|
|
|
(crypto_word)p_str[off] | (crypto_word)p_str[off + 1] << 8;
|
|
|
|
wvalue = (wvalue >> ((*index - 1) % 8)) & kMask;
|
|
|
|
*index += kWindowSize;
|
|
|
|
|
|
|
|
return booth_recode_w7(wvalue);
|
|
|
|
}
|
|
|
|
|
2021-03-29 15:44:52 -07:00
|
|
|
void p256_point_mul(P256_POINT *r, const Limb p_scalar[P256_LIMBS],
|
2020-06-10 15:50:32 -05:00
|
|
|
const Limb p_x[P256_LIMBS],
|
|
|
|
const Limb p_y[P256_LIMBS]) {
|
|
|
|
alignas(32) P256_POINT out;
|
|
|
|
ecp_nistz256_windowed_mul(&out, p_scalar, p_x, p_y);
|
|
|
|
|
|
|
|
limbs_copy(r->X, out.X, P256_LIMBS);
|
|
|
|
limbs_copy(r->Y, out.Y, P256_LIMBS);
|
|
|
|
limbs_copy(r->Z, out.Z, P256_LIMBS);
|
|
|
|
}
|
|
|
|
|
2021-03-29 15:44:52 -07:00
|
|
|
void p256_point_mul_base(P256_POINT *r, const Limb scalar[P256_LIMBS]) {
|
2020-06-10 15:50:32 -05:00
|
|
|
alignas(32) p256_point_union_t t, p;
|
|
|
|
|
|
|
|
P256_SCALAR_BYTES p_str;
|
|
|
|
p256_scalar_bytes_from_limbs(p_str, scalar);
|
|
|
|
|
|
|
|
// First window
|
|
|
|
size_t index = 0;
|
|
|
|
crypto_word wvalue = calc_first_wvalue(&index, p_str);
|
|
|
|
|
|
|
|
ecp_nistz256_select_w7(&p.a, ecp_nistz256_precomputed[0], wvalue >> 1);
|
|
|
|
ecp_nistz256_neg(p.p.Z, p.p.Y);
|
|
|
|
copy_conditional(p.p.Y, p.p.Z, wvalue & 1);
|
|
|
|
|
|
|
|
// Convert |p| from affine to Jacobian coordinates. We set Z to zero if |p|
|
|
|
|
// is infinity and |ONE| otherwise. |p| was computed from the table, so it
|
|
|
|
// is infinity iff |wvalue >> 1| is zero.
|
2021-03-29 15:44:52 -07:00
|
|
|
OPENSSL_memset(p.p.Z, 0, sizeof(p.p.Z));
|
2020-06-10 15:50:32 -05:00
|
|
|
copy_conditional(p.p.Z, ONE, is_not_zero(wvalue >> 1));
|
|
|
|
|
|
|
|
for (int i = 1; i < 37; i++) {
|
|
|
|
wvalue = calc_wvalue(&index, p_str);
|
|
|
|
|
|
|
|
ecp_nistz256_select_w7(&t.a, ecp_nistz256_precomputed[i], wvalue >> 1);
|
|
|
|
|
|
|
|
ecp_nistz256_neg(t.p.Z, t.a.Y);
|
|
|
|
copy_conditional(t.a.Y, t.p.Z, wvalue & 1);
|
|
|
|
|
|
|
|
// Note |ecp_nistz256_point_add_affine| does not work if |p.p| and |t.a|
|
|
|
|
// are the same non-infinity point.
|
|
|
|
ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
|
|
|
|
}
|
|
|
|
|
|
|
|
limbs_copy(r->X, p.p.X, P256_LIMBS);
|
|
|
|
limbs_copy(r->Y, p.p.Y, P256_LIMBS);
|
|
|
|
limbs_copy(r->Z, p.p.Z, P256_LIMBS);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* defined(OPENSSL_USE_NISTZ256) */
|