ring/src/rsa/signing.rs

617 lines
25 KiB
Rust
Raw Normal View History

// Copyright 2015-2016 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
/// RSA PKCS#1 1.5 signatures.
use {bits, bssl, c, der, digest, error};
use rand;
use std;
use super::bigint;
use super::bigint::{GFp_BN_free, GFp_BN_MONT_CTX_free};
use untrusted;
/// An RSA key pair, used for signing. Feature: `rsa_signing`.
///
/// After constructing an `RSAKeyPair`, construct one or more
/// `RSASigningState`s that reference the `RSAKeyPair` and use
/// `RSASigningState::sign()` to generate signatures. See `ring::signature`'s
/// module-level documentation for an example.
pub struct RSAKeyPair {
rsa: RSA,
// The length of the public modulus in bits.
n_bits: bits::BitLength,
}
impl RSAKeyPair {
/// Parse a private key in DER-encoded ASN.1 `RSAPrivateKey` form (see
/// [RFC 3447 Appendix A.1.2]).
///
/// Only two-prime keys (version 0) keys are supported. The public modulus
/// (n) must be at least 2048 bits. Currently, the public modulus must be
/// no larger than 4096 bits.
///
/// Here's one way to generate a key in the required format using OpenSSL:
///
/// ```sh
/// openssl genpkey -algorithm RSA \
/// -pkeyopt rsa_keygen_bits:2048 \
/// -outform der \
/// -out private_key.der
/// ```
///
/// Often, keys generated for use in OpenSSL-based software are
/// encoded in PEM format, which is not supported by *ring*. PEM-encoded
/// keys that are in `RSAPrivateKey` format can be decoded into the using
/// an OpenSSL command like this:
///
/// ```sh
/// openssl rsa -in private_key.pem -outform DER -out private_key.der
/// ```
///
/// If these commands don't work, it is likely that the private key is in a
/// different format like PKCS#8, which isn't supported yet. An upcoming
/// version of *ring* will likely replace the support for the
/// `RSAPrivateKey` format with support for the PKCS#8 format.
///
/// [RFC 3447 Appendix A.1.2]:
/// https://tools.ietf.org/html/rfc3447#appendix-A.1.2
pub fn from_der(input: untrusted::Input)
-> Result<RSAKeyPair, error::Unspecified> {
input.read_all(error::Unspecified, |input| {
der::nested(input, der::Tag::Sequence, error::Unspecified, |input| {
let version = try!(der::small_nonnegative_integer(input));
if version != 0 {
return Err(error::Unspecified);
}
let n = try!(bigint::Positive::from_der(input));
let e = try!(bigint::Positive::from_der(input));
let d = try!(bigint::Positive::from_der(input));
let p = try!(bigint::Positive::from_der(input));
let q = try!(bigint::Positive::from_der(input));
let dmp1 = try!(bigint::Positive::from_der(input));
let dmq1 = try!(bigint::Positive::from_der(input));
let iqmp = try!(bigint::Positive::from_der(input));
let n_bits = n.bit_length();
// XXX: The maximum limit of 4096 bits is primarily due to lack
// of testing of larger key sizes; see, in particular,
// https://www.mail-archive.com/openssl-dev@openssl.org/msg44586.html
// and
// https://www.mail-archive.com/openssl-dev@openssl.org/msg44759.html.
// Also, this limit might help with memory management decisions
// later.
let (n, e) = try!(super::check_public_modulus_and_exponent(
n, e, bits::BitLength::from_usize_bits(2048),
super::PRIVATE_KEY_PUBLIC_MODULUS_MAX_BITS));
let d = try!(d.into_odd_positive());
if !(e < d) {
return Err(error::Unspecified);
}
if !(d < n) {
return Err(error::Unspecified);
}
2016-11-26 00:47:38 -10:00
let half_n_bits = n_bits.half_rounded_up();
if p.bit_length() != half_n_bits {
return Err(error::Unspecified);
}
let p = try!(p.into_odd_positive());
if !(p < d) {
return Err(error::Unspecified);
}
if p.bit_length() != q.bit_length() {
return Err(error::Unspecified);
}
// XXX: |p < q| is actual OK, it seems, but our implementation
// of CRT-based moduluar exponentiation used requires that
// |q > p|. (|p == q| is just wrong.)
let q = try!(q.into_odd_positive());
if !(q < p) {
return Err(error::Unspecified);
}
2016-11-26 00:47:38 -10:00
let n = try!(n.into_modulus::<N>());
// Verify that p * q == n. We restrict ourselves to modular
// multiplication. We rely on the fact that we've verified
// 0 < q < p < n. We check that q and p are close to sqrt(n)
// and then assume that these preconditions are enough to
// let us assume that checking p * q == 0 (mod n) is equivalent
// to checking p * q == n.
let q_mod_n = {
let q = try!(q.try_clone());
try!(q.into_elem(&n))
};
let p_mod_n = {
let p = try!(p.try_clone());
try!(p.into_elem_decoded(&n))
};
let pq_mod_n =
try!(bigint::elem_mul_mixed(&q_mod_n, &p_mod_n, &n));
if !pq_mod_n.is_zero() {
return Err(error::Unspecified);
}
// XXX: We don't check that `dmp1 == d % (p - 1)` or that
// `dmq1 == d % (q - 1)` because we don't (in the long term)
// have a good way to do modulo with an even modulus. Instead
// we just check that `1 <= dmp1 < p - 1` and
// `1 <= dmq1 < q - 1`. We'll check them, to some unknown
// extent, when we do the private key operation, since we
// verify that the result of the private key operation using
// the CRT parameters is consistent with `n` and `e`. TODO:
// Either prove that what we do is sufficient, or make it so.
//
// We need to prove that `dmp1` < p - 1`. If we verify
// `dmp1 < p` then we'll know that either `dmp1 == p - 1` or
// `dmp1 < p - 1`. Since `p` is odd, `p - 1` is even. `d` is
// odd, and an odd number modulo an even number is odd.
// Therefore `dmp1` must be odd. But then it cannot be `p - 1`
// and so we know `dmp1 < p - 1`.
let dmp1 = try!(dmp1.into_odd_positive());
if !(dmp1 < p) {
return Err(error::Unspecified);
}
// The same argument can be used to prove `dmq1 < q - 1`.
let dmq1 = try!(dmq1.into_odd_positive());
if !(dmq1 < q) {
return Err(error::Unspecified);
}
let p = try!(p.into_modulus::<P>());
let iqmp = try!(iqmp.into_elem(&p));
let q_mod_p = {
let q = try!(q.try_clone());
try!(q.into_elem_decoded(&p))
};
let iqmp_times_q_mod_p =
try!(bigint::elem_mul_mixed(&iqmp, &q_mod_p, &p));
if !iqmp_times_q_mod_p.is_one() {
return Err(error::Unspecified);
}
let q_mod_n_decoded = {
let q = try!(q.try_clone());
try!(q.into_elem_decoded(&n))
};
let qq =
try!(bigint::elem_mul_mixed(&q_mod_n, &q_mod_n_decoded,
&n));
let qq = try!(qq.into_odd_positive());
let qq = try!(qq.into_modulus::<QQ>());
2016-11-26 00:47:38 -10:00
let q = try!(q.into_modulus::<Q>());
Ok(RSAKeyPair {
rsa: RSA {
e: e.into_raw(), dmp1: dmp1.into_raw(),
dmq1: dmq1.into_raw(), mont_n: n.into_raw(),
mont_p: p.into_raw(), mont_q: q.into_raw(),
mont_qq: qq.into_raw(),
qmn_mont: q_mod_n.into_raw_montgomery_encoded(),
iqmp_mont: iqmp.into_raw_montgomery_encoded(),
},
n_bits: n_bits,
})
})
})
}
/// Returns the length in bytes of the key pair's public modulus.
///
/// A signature has the same length as the public modulus.
2016-08-22 17:56:40 -10:00
pub fn public_modulus_len(&self) -> usize {
self.n_bits.as_usize_bytes_rounded_up()
2016-08-22 17:56:40 -10:00
}
}
unsafe impl Send for RSAKeyPair {}
unsafe impl Sync for RSAKeyPair {}
2016-11-26 00:47:38 -10:00
enum N {}
unsafe impl bigint::Field for N {}
enum P {}
unsafe impl bigint::Field for P {}
enum Q {}
unsafe impl bigint::Field for Q {}
enum QQ {}
unsafe impl bigint::Field for QQ {}
2016-11-26 00:47:38 -10:00
/// Needs to be kept in sync with `struct rsa_st` (in `include/openssl/rsa.h`).
#[repr(C)]
struct RSA {
e: *mut bigint::BIGNUM,
dmp1: *mut bigint::BIGNUM,
dmq1: *mut bigint::BIGNUM,
mont_n: *mut bigint::BN_MONT_CTX,
mont_p: *mut bigint::BN_MONT_CTX,
mont_q: *mut bigint::BN_MONT_CTX,
mont_qq: *mut bigint::BN_MONT_CTX,
qmn_mont: *mut bigint::BIGNUM,
iqmp_mont: *mut bigint::BIGNUM,
}
impl Drop for RSA {
fn drop(&mut self) {
unsafe {
GFp_BN_free(self.e);
GFp_BN_free(self.dmp1);
GFp_BN_free(self.dmq1);
GFp_BN_MONT_CTX_free(self.mont_n);
GFp_BN_MONT_CTX_free(self.mont_p);
GFp_BN_MONT_CTX_free(self.mont_q);
GFp_BN_MONT_CTX_free(self.mont_qq);
GFp_BN_free(self.qmn_mont);
GFp_BN_free(self.iqmp_mont);
}
}
}
/// State used for RSA Signing. Feature: `rsa_signing`.
///
/// # Performance Considerations
///
/// Every time `sign` is called, some internal state is updated. Usually the
/// state update is relatively cheap, but the first time, and periodically, a
/// relatively expensive computation (computing the modular inverse of a random
/// number modulo the public key modulus, for blinding the RSA exponentiation)
/// will be done. Reusing the same `RSASigningState` when generating multiple
/// signatures improves the computational efficiency of signing by minimizing
/// the frequency of the expensive computations.
///
/// `RSASigningState` is not `Sync`; i.e. concurrent use of an `sign()` on the
/// same `RSASigningState` from multiple threads is not allowed. An
/// `RSASigningState` can be wrapped in a `Mutex` to be shared between threads;
/// this would maximize the computational efficiency (as explained above) and
/// minimizes memory usage, but it also minimizes concurrency because all the
/// calls to `sign()` would be serialized. To increases concurrency one could
/// create multiple `RSASigningState`s that share the same `RSAKeyPair`; the
/// number of `RSASigningState` in use at once determines the concurrency
/// factor. This increases memory usage, but only by a small amount, as each
/// `RSASigningState` is much smaller than the `RSAKeyPair` that they would
/// share. Using multiple `RSASigningState` per `RSAKeyPair` may also decrease
/// computational efficiency by increasing the frequency of the expensive
/// modular inversions; managing a pool of `RSASigningState`s in a
/// most-recently-used fashion would improve the computational efficiency.
pub struct RSASigningState {
key_pair: std::sync::Arc<RSAKeyPair>,
blinding: Blinding,
}
impl RSASigningState {
/// Construct an `RSASigningState` for the given `RSAKeyPair`.
pub fn new(key_pair: std::sync::Arc<RSAKeyPair>)
-> Result<Self, error::Unspecified> {
let blinding = unsafe { GFp_BN_BLINDING_new() };
if blinding.is_null() {
return Err(error::Unspecified);
}
Ok(RSASigningState {
key_pair: key_pair,
blinding: Blinding { blinding: blinding },
})
}
/// The `RSAKeyPair`. This can be used, for example, to access the key
/// pair's public key through the `RSASigningState`.
pub fn key_pair(&self) -> &RSAKeyPair { self.key_pair.as_ref() }
/// Sign `msg`. `msg` is digested using the digest algorithm from
/// `padding_alg` and the digest is then padded using the padding algorithm
/// from `padding_alg`. The signature it written into `signature`;
/// `signature`'s length must be exactly the length returned by
/// `public_modulus_len()`. `rng` is used for blinding the message during
/// signing, to mitigate some side-channel (e.g. timing) attacks.
///
/// Many other crypto libraries have signing functions that takes a
/// precomputed digest as input, instead of the message to digest. This
/// function does *not* take a precomputed digest; instead, `sign`
/// calculates the digest itself.
///
/// Lots of effort has been made to make the signing operations close to
/// constant time to protect the private key from side channel attacks. On
/// x86-64, this is done pretty well, but not perfectly. On other
/// platforms, it is done less perfectly. To help mitigate the current
/// imperfections, and for defense-in-depth, base blinding is always done.
/// Exponent blinding is not done, but it may be done in the future.
pub fn sign(&mut self, padding_alg: &'static ::signature::RSAEncoding,
rng: &rand::SecureRandom, msg: &[u8], signature: &mut [u8])
-> Result<(), error::Unspecified> {
let mod_bits = self.key_pair.n_bits;
if signature.len() != mod_bits.as_usize_bytes_rounded_up() {
return Err(error::Unspecified);
}
let m_hash = digest::digest(padding_alg.digest_alg(), msg);
try!(padding_alg.encode(&m_hash, signature, mod_bits, rng));
let mut rand = rand::RAND::new(rng);
bssl::map_result(unsafe {
GFp_rsa_private_transform(&self.key_pair.rsa,
signature.as_mut_ptr(), signature.len(),
self.blinding.blinding, &mut rand)
})
}
}
struct Blinding {
blinding: *mut BN_BLINDING,
}
impl Drop for Blinding {
fn drop(&mut self) { unsafe { GFp_BN_BLINDING_free(self.blinding) } }
}
unsafe impl Send for Blinding {}
/// Needs to be kept in sync with `bn_blinding_st` in `crypto/rsa/blinding.c`.
#[allow(non_camel_case_types)]
#[repr(C)]
struct BN_BLINDING {
a: *mut bigint::BIGNUM,
ai: *mut bigint::BIGNUM,
counter: u32,
}
extern {
fn GFp_BN_BLINDING_new() -> *mut BN_BLINDING;
fn GFp_BN_BLINDING_free(b: *mut BN_BLINDING);
}
#[allow(improper_ctypes)]
extern {
fn GFp_rsa_private_transform(rsa: *const RSA, inout: *mut u8,
len: c::size_t, blinding: *mut BN_BLINDING,
rng: *mut rand::RAND) -> c::int;
}
#[cfg(test)]
mod tests {
// We intentionally avoid `use super::*` so that we are sure to use only
// the public API; this ensures that enough of the API is public.
use {error, rand, signature, test};
use std;
use untrusted;
extern {
static GFp_BN_BLINDING_COUNTER: u32;
}
#[test]
fn test_signature_rsa_pkcs1_sign() {
let rng = rand::SystemRandom::new();
test::from_file("src/rsa/rsa_pkcs1_sign_tests.txt",
|section, test_case| {
assert_eq!(section, "");
let digest_name = test_case.consume_string("Digest");
let alg = match digest_name.as_ref() {
"SHA256" => &signature::RSA_PKCS1_SHA256,
"SHA384" => &signature::RSA_PKCS1_SHA384,
"SHA512" => &signature::RSA_PKCS1_SHA512,
_ => { panic!("Unsupported digest: {}", digest_name) }
};
let private_key = test_case.consume_bytes("Key");
let msg = test_case.consume_bytes("Msg");
let expected = test_case.consume_bytes("Sig");
let result = test_case.consume_string("Result");
let private_key = untrusted::Input::from(&private_key);
let key_pair = signature::RSAKeyPair::from_der(private_key);
if key_pair.is_err() && result == "Fail-Invalid-Key" {
return Ok(());
}
let key_pair = key_pair.unwrap();
let key_pair = std::sync::Arc::new(key_pair);
// XXX: This test is too slow on Android ARM Travis CI builds.
// TODO: re-enable these tests on Android ARM.
let mut signing_state =
signature::RSASigningState::new(key_pair).unwrap();
let mut actual: std::vec::Vec<u8> =
vec![0; signing_state.key_pair().public_modulus_len()];
signing_state.sign(alg, &rng, &msg, actual.as_mut_slice()).unwrap();
assert_eq!(actual.as_slice() == &expected[..], result == "Pass");
Ok(())
});
}
// `RSAKeyPair::sign` requires that the output buffer is the same length as
// the public key modulus. Test what happens when it isn't the same length.
#[test]
fn test_signature_rsa_pkcs1_sign_output_buffer_len() {
// Sign the message "hello, world", using PKCS#1 v1.5 padding and the
// SHA256 digest algorithm.
const MESSAGE: &'static [u8] = b"hello, world";
let rng = rand::SystemRandom::new();
const PRIVATE_KEY_DER: &'static [u8] =
include_bytes!("signature_rsa_example_private_key.der");
let key_bytes_der = untrusted::Input::from(PRIVATE_KEY_DER);
let key_pair = signature::RSAKeyPair::from_der(key_bytes_der).unwrap();
let key_pair = std::sync::Arc::new(key_pair);
let mut signing_state =
signature::RSASigningState::new(key_pair).unwrap();
// The output buffer is one byte too short.
let mut signature =
vec![0; signing_state.key_pair().public_modulus_len() - 1];
assert!(signing_state.sign(&signature::RSA_PKCS1_SHA256, &rng, MESSAGE,
&mut signature).is_err());
// The output buffer is the right length.
signature.push(0);
assert!(signing_state.sign(&signature::RSA_PKCS1_SHA256, &rng, MESSAGE,
&mut signature).is_ok());
// The output buffer is one byte too long.
signature.push(0);
assert!(signing_state.sign(&signature::RSA_PKCS1_SHA256, &rng, MESSAGE,
&mut signature).is_err());
}
// Once the `BN_BLINDING` in an `RSAKeyPair` has been used
// `GFp_BN_BLINDING_COUNTER` times, a new blinding should be created. we
// don't check that a new blinding was created; we just make sure to
// exercise the code path, so this is basically a coverage test.
#[test]
fn test_signature_rsa_pkcs1_sign_blinding_reuse() {
const MESSAGE: &'static [u8] = b"hello, world";
let rng = rand::SystemRandom::new();
const PRIVATE_KEY_DER: &'static [u8] =
include_bytes!("signature_rsa_example_private_key.der");
let key_bytes_der = untrusted::Input::from(PRIVATE_KEY_DER);
let key_pair = signature::RSAKeyPair::from_der(key_bytes_der).unwrap();
let key_pair = std::sync::Arc::new(key_pair);
let mut signature = vec![0; key_pair.public_modulus_len()];
let mut signing_state =
signature::RSASigningState::new(key_pair).unwrap();
let blinding_counter = unsafe { GFp_BN_BLINDING_COUNTER };
for _ in 0..(blinding_counter + 1) {
let prev_counter =
unsafe { (*signing_state.blinding.blinding).counter };
let _ = signing_state.sign(&signature::RSA_PKCS1_SHA256, &rng,
MESSAGE, &mut signature);
let counter = unsafe { (*signing_state.blinding.blinding).counter };
assert_eq!(counter, (prev_counter + 1) % blinding_counter);
}
}
// In `crypto/rsa/blinding.c`, when `bn_blinding_create_param` fails to
// randomly generate an invertible blinding factor too many times in a
// loop, it returns an error. Check that we observe this.
#[test]
fn test_signature_rsa_pkcs1_sign_blinding_creation_failure() {
const MESSAGE: &'static [u8] = b"hello, world";
// Stub RNG that is constantly 0. In `bn_blinding_create_param`, this
// causes the candidate blinding factors to always be 0, which has no
// inverse, so `BN_mod_inverse_no_branch` fails.
let rng = test::rand::FixedByteRandom { byte: 0x00 };
const PRIVATE_KEY_DER: &'static [u8] =
include_bytes!("signature_rsa_example_private_key.der");
let key_bytes_der = untrusted::Input::from(PRIVATE_KEY_DER);
let key_pair = signature::RSAKeyPair::from_der(key_bytes_der).unwrap();
let key_pair = std::sync::Arc::new(key_pair);
let mut signing_state =
signature::RSASigningState::new(key_pair).unwrap();
let mut signature =
vec![0; signing_state.key_pair().public_modulus_len()];
let result = signing_state.sign(&signature::RSA_PKCS1_SHA256, &rng,
MESSAGE, &mut signature);
assert!(result.is_err());
}
#[cfg(feature = "rsa_signing")]
#[test]
fn test_signature_rsa_pss_sign() {
// Outputs the same value whenever a certain length is requested (the
// same as the length of the salt). Otherwise, the rng is used.
struct DeterministicSalt<'a> {
salt: &'a [u8],
rng: &'a rand::SecureRandom
}
impl<'a> rand::SecureRandom for DeterministicSalt<'a> {
fn fill(&self, dest: &mut [u8]) -> Result<(), error::Unspecified> {
let dest_len = dest.len();
if dest_len != self.salt.len() {
try!(self.rng.fill(dest));
} else {
dest.copy_from_slice(&self.salt);
}
Ok(())
}
}
let rng = rand::SystemRandom::new();
test::from_file("src/rsa/rsa_pss_sign_tests.txt", |section, test_case| {
assert_eq!(section, "");
let digest_name = test_case.consume_string("Digest");
let alg = match digest_name.as_ref() {
"SHA256" => &signature::RSA_PSS_SHA256,
"SHA384" => &signature::RSA_PSS_SHA384,
"SHA512" => &signature::RSA_PSS_SHA512,
_ => { panic!("Unsupported digest: {}", digest_name) }
};
let result = test_case.consume_string("Result");
let private_key = test_case.consume_bytes("Key");
let private_key = untrusted::Input::from(&private_key);
let key_pair = signature::RSAKeyPair::from_der(private_key);
if key_pair.is_err() && result == "Fail-Invalid-Key" {
return Ok(());
}
let key_pair = key_pair.unwrap();
let key_pair = std::sync::Arc::new(key_pair);
let msg = test_case.consume_bytes("Msg");
let salt = test_case.consume_bytes("Salt");
let expected = test_case.consume_bytes("Sig");
let new_rng = DeterministicSalt { salt: &salt, rng: &rng };
let mut signing_state =
signature::RSASigningState::new(key_pair).unwrap();
let mut actual: std::vec::Vec<u8> =
vec![0; signing_state.key_pair().public_modulus_len()];
try!(signing_state.sign(alg, &new_rng, &msg, actual.as_mut_slice()));
assert_eq!(actual.as_slice() == &expected[..], result == "Pass");
Ok(())
});
}
#[test]
fn test_sync_and_send() {
const PRIVATE_KEY_DER: &'static [u8] =
include_bytes!("signature_rsa_example_private_key.der");
let key_bytes_der = untrusted::Input::from(PRIVATE_KEY_DER);
let key_pair = signature::RSAKeyPair::from_der(key_bytes_der).unwrap();
let key_pair = std::sync::Arc::new(key_pair);
let _: &Send = &key_pair;
let _: &Sync = &key_pair;
let signing_state = signature::RSASigningState::new(key_pair).unwrap();
let _: &Send = &signing_state;
// TODO: Test that signing_state is NOT Sync; i.e.
// `let _: &Sync = &signing_state;` must fail
}
}