Run comment conversion script on include/

ssl is all that's left. Will do that once that's at a quiet point.

Change-Id: Ia183aed5671e3b2de333def138d7f2c9296fb517
Reviewed-on: https://boringssl-review.googlesource.com/19564
Commit-Queue: David Benjamin <davidben@google.com>
Commit-Queue: Adam Langley <agl@google.com>
Reviewed-by: Adam Langley <agl@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
This commit is contained in:
David Benjamin 2017-08-18 19:21:50 -04:00 committed by CQ bot account: commit-bot@chromium.org
parent 808f832917
commit 4512b792ba
56 changed files with 6990 additions and 6993 deletions

View File

@ -22,271 +22,271 @@ extern "C" {
#endif
/* Authenticated Encryption with Additional Data.
*
* AEAD couples confidentiality and integrity in a single primitive. AEAD
* algorithms take a key and then can seal and open individual messages. Each
* message has a unique, per-message nonce and, optionally, additional data
* which is authenticated but not included in the ciphertext.
*
* The |EVP_AEAD_CTX_init| function initialises an |EVP_AEAD_CTX| structure and
* performs any precomputation needed to use |aead| with |key|. The length of
* the key, |key_len|, is given in bytes.
*
* The |tag_len| argument contains the length of the tags, in bytes, and allows
* for the processing of truncated authenticators. A zero value indicates that
* the default tag length should be used and this is defined as
* |EVP_AEAD_DEFAULT_TAG_LENGTH| in order to make the code clear. Using
* truncated tags increases an attacker's chance of creating a valid forgery.
* Be aware that the attacker's chance may increase more than exponentially as
* would naively be expected.
*
* When no longer needed, the initialised |EVP_AEAD_CTX| structure must be
* passed to |EVP_AEAD_CTX_cleanup|, which will deallocate any memory used.
*
* With an |EVP_AEAD_CTX| in hand, one can seal and open messages. These
* operations are intended to meet the standard notions of privacy and
* authenticity for authenticated encryption. For formal definitions see
* Bellare and Namprempre, "Authenticated encryption: relations among notions
* and analysis of the generic composition paradigm," Lecture Notes in Computer
* Science B<1976> (2000), 531545,
* http://www-cse.ucsd.edu/~mihir/papers/oem.html.
*
* When sealing messages, a nonce must be given. The length of the nonce is
* fixed by the AEAD in use and is returned by |EVP_AEAD_nonce_length|. *The
* nonce must be unique for all messages with the same key*. This is critically
* important - nonce reuse may completely undermine the security of the AEAD.
* Nonces may be predictable and public, so long as they are unique. Uniqueness
* may be achieved with a simple counter or, if large enough, may be generated
* randomly. The nonce must be passed into the "open" operation by the receiver
* so must either be implicit (e.g. a counter), or must be transmitted along
* with the sealed message.
*
* The "seal" and "open" operations are atomic - an entire message must be
* encrypted or decrypted in a single call. Large messages may have to be split
* up in order to accommodate this. When doing so, be mindful of the need not to
* repeat nonces and the possibility that an attacker could duplicate, reorder
* or drop message chunks. For example, using a single key for a given (large)
* message and sealing chunks with nonces counting from zero would be secure as
* long as the number of chunks was securely transmitted. (Otherwise an
* attacker could truncate the message by dropping chunks from the end.)
*
* The number of chunks could be transmitted by prefixing it to the plaintext,
* for example. This also assumes that no other message would ever use the same
* key otherwise the rule that nonces must be unique for a given key would be
* violated.
*
* The "seal" and "open" operations also permit additional data to be
* authenticated via the |ad| parameter. This data is not included in the
* ciphertext and must be identical for both the "seal" and "open" call. This
* permits implicit context to be authenticated but may be empty if not needed.
*
* The "seal" and "open" operations may work in-place if the |out| and |in|
* arguments are equal. Otherwise, if |out| and |in| alias, input data may be
* overwritten before it is read. This situation will cause an error.
*
* The "seal" and "open" operations return one on success and zero on error. */
// Authenticated Encryption with Additional Data.
//
// AEAD couples confidentiality and integrity in a single primitive. AEAD
// algorithms take a key and then can seal and open individual messages. Each
// message has a unique, per-message nonce and, optionally, additional data
// which is authenticated but not included in the ciphertext.
//
// The |EVP_AEAD_CTX_init| function initialises an |EVP_AEAD_CTX| structure and
// performs any precomputation needed to use |aead| with |key|. The length of
// the key, |key_len|, is given in bytes.
//
// The |tag_len| argument contains the length of the tags, in bytes, and allows
// for the processing of truncated authenticators. A zero value indicates that
// the default tag length should be used and this is defined as
// |EVP_AEAD_DEFAULT_TAG_LENGTH| in order to make the code clear. Using
// truncated tags increases an attacker's chance of creating a valid forgery.
// Be aware that the attacker's chance may increase more than exponentially as
// would naively be expected.
//
// When no longer needed, the initialised |EVP_AEAD_CTX| structure must be
// passed to |EVP_AEAD_CTX_cleanup|, which will deallocate any memory used.
//
// With an |EVP_AEAD_CTX| in hand, one can seal and open messages. These
// operations are intended to meet the standard notions of privacy and
// authenticity for authenticated encryption. For formal definitions see
// Bellare and Namprempre, "Authenticated encryption: relations among notions
// and analysis of the generic composition paradigm," Lecture Notes in Computer
// Science B<1976> (2000), 531545,
// http://www-cse.ucsd.edu/~mihir/papers/oem.html.
//
// When sealing messages, a nonce must be given. The length of the nonce is
// fixed by the AEAD in use and is returned by |EVP_AEAD_nonce_length|. *The
// nonce must be unique for all messages with the same key*. This is critically
// important - nonce reuse may completely undermine the security of the AEAD.
// Nonces may be predictable and public, so long as they are unique. Uniqueness
// may be achieved with a simple counter or, if large enough, may be generated
// randomly. The nonce must be passed into the "open" operation by the receiver
// so must either be implicit (e.g. a counter), or must be transmitted along
// with the sealed message.
//
// The "seal" and "open" operations are atomic - an entire message must be
// encrypted or decrypted in a single call. Large messages may have to be split
// up in order to accommodate this. When doing so, be mindful of the need not to
// repeat nonces and the possibility that an attacker could duplicate, reorder
// or drop message chunks. For example, using a single key for a given (large)
// message and sealing chunks with nonces counting from zero would be secure as
// long as the number of chunks was securely transmitted. (Otherwise an
// attacker could truncate the message by dropping chunks from the end.)
//
// The number of chunks could be transmitted by prefixing it to the plaintext,
// for example. This also assumes that no other message would ever use the same
// key otherwise the rule that nonces must be unique for a given key would be
// violated.
//
// The "seal" and "open" operations also permit additional data to be
// authenticated via the |ad| parameter. This data is not included in the
// ciphertext and must be identical for both the "seal" and "open" call. This
// permits implicit context to be authenticated but may be empty if not needed.
//
// The "seal" and "open" operations may work in-place if the |out| and |in|
// arguments are equal. Otherwise, if |out| and |in| alias, input data may be
// overwritten before it is read. This situation will cause an error.
//
// The "seal" and "open" operations return one on success and zero on error.
/* AEAD algorithms. */
// AEAD algorithms.
/* EVP_aead_aes_128_gcm is AES-128 in Galois Counter Mode. */
// EVP_aead_aes_128_gcm is AES-128 in Galois Counter Mode.
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm(void);
/* EVP_aead_aes_256_gcm is AES-256 in Galois Counter Mode. */
// EVP_aead_aes_256_gcm is AES-256 in Galois Counter Mode.
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm(void);
/* EVP_aead_chacha20_poly1305 is the AEAD built from ChaCha20 and
* Poly1305 as described in RFC 7539. */
// EVP_aead_chacha20_poly1305 is the AEAD built from ChaCha20 and
// Poly1305 as described in RFC 7539.
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_chacha20_poly1305(void);
/* EVP_aead_aes_128_ctr_hmac_sha256 is AES-128 in CTR mode with HMAC-SHA256 for
* authentication. The nonce is 12 bytes; the bottom 32-bits are used as the
* block counter, thus the maximum plaintext size is 64GB. */
// EVP_aead_aes_128_ctr_hmac_sha256 is AES-128 in CTR mode with HMAC-SHA256 for
// authentication. The nonce is 12 bytes; the bottom 32-bits are used as the
// block counter, thus the maximum plaintext size is 64GB.
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_ctr_hmac_sha256(void);
/* EVP_aead_aes_256_ctr_hmac_sha256 is AES-256 in CTR mode with HMAC-SHA256 for
* authentication. See |EVP_aead_aes_128_ctr_hmac_sha256| for details. */
// EVP_aead_aes_256_ctr_hmac_sha256 is AES-256 in CTR mode with HMAC-SHA256 for
// authentication. See |EVP_aead_aes_128_ctr_hmac_sha256| for details.
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_ctr_hmac_sha256(void);
/* EVP_aead_aes_128_gcm_siv is AES-128 in GCM-SIV mode. See
* https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-02 */
// EVP_aead_aes_128_gcm_siv is AES-128 in GCM-SIV mode. See
// https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-02
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm_siv(void);
/* EVP_aead_aes_256_gcm_siv is AES-256 in GCM-SIV mode. See
* https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-02 */
// EVP_aead_aes_256_gcm_siv is AES-256 in GCM-SIV mode. See
// https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-02
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm_siv(void);
/* EVP_has_aes_hardware returns one if we enable hardware support for fast and
* constant-time AES-GCM. */
// EVP_has_aes_hardware returns one if we enable hardware support for fast and
// constant-time AES-GCM.
OPENSSL_EXPORT int EVP_has_aes_hardware(void);
/* Utility functions. */
// Utility functions.
/* EVP_AEAD_key_length returns the length, in bytes, of the keys used by
* |aead|. */
// EVP_AEAD_key_length returns the length, in bytes, of the keys used by
// |aead|.
OPENSSL_EXPORT size_t EVP_AEAD_key_length(const EVP_AEAD *aead);
/* EVP_AEAD_nonce_length returns the length, in bytes, of the per-message nonce
* for |aead|. */
// EVP_AEAD_nonce_length returns the length, in bytes, of the per-message nonce
// for |aead|.
OPENSSL_EXPORT size_t EVP_AEAD_nonce_length(const EVP_AEAD *aead);
/* EVP_AEAD_max_overhead returns the maximum number of additional bytes added
* by the act of sealing data with |aead|. */
// EVP_AEAD_max_overhead returns the maximum number of additional bytes added
// by the act of sealing data with |aead|.
OPENSSL_EXPORT size_t EVP_AEAD_max_overhead(const EVP_AEAD *aead);
/* EVP_AEAD_max_tag_len returns the maximum tag length when using |aead|. This
* is the largest value that can be passed as |tag_len| to
* |EVP_AEAD_CTX_init|. */
// EVP_AEAD_max_tag_len returns the maximum tag length when using |aead|. This
// is the largest value that can be passed as |tag_len| to
// |EVP_AEAD_CTX_init|.
OPENSSL_EXPORT size_t EVP_AEAD_max_tag_len(const EVP_AEAD *aead);
/* AEAD operations. */
// AEAD operations.
/* An EVP_AEAD_CTX represents an AEAD algorithm configured with a specific key
* and message-independent IV. */
// An EVP_AEAD_CTX represents an AEAD algorithm configured with a specific key
// and message-independent IV.
typedef struct evp_aead_ctx_st {
const EVP_AEAD *aead;
/* aead_state is an opaque pointer to whatever state the AEAD needs to
* maintain. */
// aead_state is an opaque pointer to whatever state the AEAD needs to
// maintain.
void *aead_state;
/* tag_len may contain the actual length of the authentication tag if it is
* known at initialization time. */
// tag_len may contain the actual length of the authentication tag if it is
// known at initialization time.
uint8_t tag_len;
} EVP_AEAD_CTX;
/* EVP_AEAD_MAX_KEY_LENGTH contains the maximum key length used by
* any AEAD defined in this header. */
// EVP_AEAD_MAX_KEY_LENGTH contains the maximum key length used by
// any AEAD defined in this header.
#define EVP_AEAD_MAX_KEY_LENGTH 80
/* EVP_AEAD_MAX_NONCE_LENGTH contains the maximum nonce length used by
* any AEAD defined in this header. */
// EVP_AEAD_MAX_NONCE_LENGTH contains the maximum nonce length used by
// any AEAD defined in this header.
#define EVP_AEAD_MAX_NONCE_LENGTH 16
/* EVP_AEAD_MAX_OVERHEAD contains the maximum overhead used by any AEAD
* defined in this header. */
// EVP_AEAD_MAX_OVERHEAD contains the maximum overhead used by any AEAD
// defined in this header.
#define EVP_AEAD_MAX_OVERHEAD 64
/* EVP_AEAD_DEFAULT_TAG_LENGTH is a magic value that can be passed to
* EVP_AEAD_CTX_init to indicate that the default tag length for an AEAD should
* be used. */
// EVP_AEAD_DEFAULT_TAG_LENGTH is a magic value that can be passed to
// EVP_AEAD_CTX_init to indicate that the default tag length for an AEAD should
// be used.
#define EVP_AEAD_DEFAULT_TAG_LENGTH 0
/* EVP_AEAD_CTX_zero sets an uninitialized |ctx| to the zero state. It must be
* initialized with |EVP_AEAD_CTX_init| before use. It is safe, but not
* necessary, to call |EVP_AEAD_CTX_cleanup| in this state. This may be used for
* more uniform cleanup of |EVP_AEAD_CTX|. */
// EVP_AEAD_CTX_zero sets an uninitialized |ctx| to the zero state. It must be
// initialized with |EVP_AEAD_CTX_init| before use. It is safe, but not
// necessary, to call |EVP_AEAD_CTX_cleanup| in this state. This may be used for
// more uniform cleanup of |EVP_AEAD_CTX|.
OPENSSL_EXPORT void EVP_AEAD_CTX_zero(EVP_AEAD_CTX *ctx);
/* EVP_AEAD_CTX_new allocates an |EVP_AEAD_CTX|, calls |EVP_AEAD_CTX_init| and
* returns the |EVP_AEAD_CTX|, or NULL on error. */
// EVP_AEAD_CTX_new allocates an |EVP_AEAD_CTX|, calls |EVP_AEAD_CTX_init| and
// returns the |EVP_AEAD_CTX|, or NULL on error.
OPENSSL_EXPORT EVP_AEAD_CTX *EVP_AEAD_CTX_new(const EVP_AEAD *aead,
const uint8_t *key,
size_t key_len, size_t tag_len);
/* EVP_AEAD_CTX_free calls |EVP_AEAD_CTX_cleanup| and |OPENSSL_free| on
* |ctx|. */
// EVP_AEAD_CTX_free calls |EVP_AEAD_CTX_cleanup| and |OPENSSL_free| on
// |ctx|.
OPENSSL_EXPORT void EVP_AEAD_CTX_free(EVP_AEAD_CTX *ctx);
/* EVP_AEAD_CTX_init initializes |ctx| for the given AEAD algorithm. The |impl|
* argument is ignored and should be NULL. Authentication tags may be truncated
* by passing a size as |tag_len|. A |tag_len| of zero indicates the default
* tag length and this is defined as EVP_AEAD_DEFAULT_TAG_LENGTH for
* readability.
*
* Returns 1 on success. Otherwise returns 0 and pushes to the error stack. In
* the error case, you do not need to call |EVP_AEAD_CTX_cleanup|, but it's
* harmless to do so. */
// EVP_AEAD_CTX_init initializes |ctx| for the given AEAD algorithm. The |impl|
// argument is ignored and should be NULL. Authentication tags may be truncated
// by passing a size as |tag_len|. A |tag_len| of zero indicates the default
// tag length and this is defined as EVP_AEAD_DEFAULT_TAG_LENGTH for
// readability.
//
// Returns 1 on success. Otherwise returns 0 and pushes to the error stack. In
// the error case, you do not need to call |EVP_AEAD_CTX_cleanup|, but it's
// harmless to do so.
OPENSSL_EXPORT int EVP_AEAD_CTX_init(EVP_AEAD_CTX *ctx, const EVP_AEAD *aead,
const uint8_t *key, size_t key_len,
size_t tag_len, ENGINE *impl);
/* EVP_AEAD_CTX_cleanup frees any data allocated by |ctx|. It is a no-op to
* call |EVP_AEAD_CTX_cleanup| on a |EVP_AEAD_CTX| that has been |memset| to
* all zeros. */
// EVP_AEAD_CTX_cleanup frees any data allocated by |ctx|. It is a no-op to
// call |EVP_AEAD_CTX_cleanup| on a |EVP_AEAD_CTX| that has been |memset| to
// all zeros.
OPENSSL_EXPORT void EVP_AEAD_CTX_cleanup(EVP_AEAD_CTX *ctx);
/* EVP_AEAD_CTX_seal encrypts and authenticates |in_len| bytes from |in| and
* authenticates |ad_len| bytes from |ad| and writes the result to |out|. It
* returns one on success and zero otherwise.
*
* This function may be called concurrently with itself or any other seal/open
* function on the same |EVP_AEAD_CTX|.
*
* At most |max_out_len| bytes are written to |out| and, in order to ensure
* success, |max_out_len| should be |in_len| plus the result of
* |EVP_AEAD_max_overhead|. On successful return, |*out_len| is set to the
* actual number of bytes written.
*
* The length of |nonce|, |nonce_len|, must be equal to the result of
* |EVP_AEAD_nonce_length| for this AEAD.
*
* |EVP_AEAD_CTX_seal| never results in a partial output. If |max_out_len| is
* insufficient, zero will be returned. If any error occurs, |out| will be
* filled with zero bytes and |*out_len| set to zero.
*
* If |in| and |out| alias then |out| must be == |in|. */
// EVP_AEAD_CTX_seal encrypts and authenticates |in_len| bytes from |in| and
// authenticates |ad_len| bytes from |ad| and writes the result to |out|. It
// returns one on success and zero otherwise.
//
// This function may be called concurrently with itself or any other seal/open
// function on the same |EVP_AEAD_CTX|.
//
// At most |max_out_len| bytes are written to |out| and, in order to ensure
// success, |max_out_len| should be |in_len| plus the result of
// |EVP_AEAD_max_overhead|. On successful return, |*out_len| is set to the
// actual number of bytes written.
//
// The length of |nonce|, |nonce_len|, must be equal to the result of
// |EVP_AEAD_nonce_length| for this AEAD.
//
// |EVP_AEAD_CTX_seal| never results in a partial output. If |max_out_len| is
// insufficient, zero will be returned. If any error occurs, |out| will be
// filled with zero bytes and |*out_len| set to zero.
//
// If |in| and |out| alias then |out| must be == |in|.
OPENSSL_EXPORT int EVP_AEAD_CTX_seal(const EVP_AEAD_CTX *ctx, uint8_t *out,
size_t *out_len, size_t max_out_len,
const uint8_t *nonce, size_t nonce_len,
const uint8_t *in, size_t in_len,
const uint8_t *ad, size_t ad_len);
/* EVP_AEAD_CTX_open authenticates |in_len| bytes from |in| and |ad_len| bytes
* from |ad| and decrypts at most |in_len| bytes into |out|. It returns one on
* success and zero otherwise.
*
* This function may be called concurrently with itself or any other seal/open
* function on the same |EVP_AEAD_CTX|.
*
* At most |in_len| bytes are written to |out|. In order to ensure success,
* |max_out_len| should be at least |in_len|. On successful return, |*out_len|
* is set to the the actual number of bytes written.
*
* The length of |nonce|, |nonce_len|, must be equal to the result of
* |EVP_AEAD_nonce_length| for this AEAD.
*
* |EVP_AEAD_CTX_open| never results in a partial output. If |max_out_len| is
* insufficient, zero will be returned. If any error occurs, |out| will be
* filled with zero bytes and |*out_len| set to zero.
*
* If |in| and |out| alias then |out| must be == |in|. */
// EVP_AEAD_CTX_open authenticates |in_len| bytes from |in| and |ad_len| bytes
// from |ad| and decrypts at most |in_len| bytes into |out|. It returns one on
// success and zero otherwise.
//
// This function may be called concurrently with itself or any other seal/open
// function on the same |EVP_AEAD_CTX|.
//
// At most |in_len| bytes are written to |out|. In order to ensure success,
// |max_out_len| should be at least |in_len|. On successful return, |*out_len|
// is set to the the actual number of bytes written.
//
// The length of |nonce|, |nonce_len|, must be equal to the result of
// |EVP_AEAD_nonce_length| for this AEAD.
//
// |EVP_AEAD_CTX_open| never results in a partial output. If |max_out_len| is
// insufficient, zero will be returned. If any error occurs, |out| will be
// filled with zero bytes and |*out_len| set to zero.
//
// If |in| and |out| alias then |out| must be == |in|.
OPENSSL_EXPORT int EVP_AEAD_CTX_open(const EVP_AEAD_CTX *ctx, uint8_t *out,
size_t *out_len, size_t max_out_len,
const uint8_t *nonce, size_t nonce_len,
const uint8_t *in, size_t in_len,
const uint8_t *ad, size_t ad_len);
/* EVP_AEAD_CTX_seal_scatter encrypts and authenticates |in_len| bytes from |in|
* and authenticates |ad_len| bytes from |ad|. It writes |in_len| bytes of
* ciphertext to |out| and the authentication tag to |out_tag|. It returns one
* on success and zero otherwise.
*
* This function may be called concurrently with itself or any other seal/open
* function on the same |EVP_AEAD_CTX|.
*
* Exactly |in_len| bytes are written to |out|, and up to
* |EVP_AEAD_max_overhead+extra_in_len| bytes to |out_tag|. On successful
* return, |*out_tag_len| is set to the actual number of bytes written to
* |out_tag|.
*
* |extra_in| may point to an additional plaintext input buffer if the cipher
* supports it. If present, |extra_in_len| additional bytes of plaintext are
* encrypted and authenticated, and the ciphertext is written (before the tag)
* to |out_tag|. |max_out_tag_len| must be sized to allow for the additional
* |extra_in_len| bytes.
*
* The length of |nonce|, |nonce_len|, must be equal to the result of
* |EVP_AEAD_nonce_length| for this AEAD.
*
* |EVP_AEAD_CTX_seal_scatter| never results in a partial output. If
* |max_out_tag_len| is insufficient, zero will be returned. If any error
* occurs, |out| and |out_tag| will be filled with zero bytes and |*out_tag_len|
* set to zero.
*
* If |in| and |out| alias then |out| must be == |in|. |out_tag| may not alias
* any other argument. */
// EVP_AEAD_CTX_seal_scatter encrypts and authenticates |in_len| bytes from |in|
// and authenticates |ad_len| bytes from |ad|. It writes |in_len| bytes of
// ciphertext to |out| and the authentication tag to |out_tag|. It returns one
// on success and zero otherwise.
//
// This function may be called concurrently with itself or any other seal/open
// function on the same |EVP_AEAD_CTX|.
//
// Exactly |in_len| bytes are written to |out|, and up to
// |EVP_AEAD_max_overhead+extra_in_len| bytes to |out_tag|. On successful
// return, |*out_tag_len| is set to the actual number of bytes written to
// |out_tag|.
//
// |extra_in| may point to an additional plaintext input buffer if the cipher
// supports it. If present, |extra_in_len| additional bytes of plaintext are
// encrypted and authenticated, and the ciphertext is written (before the tag)
// to |out_tag|. |max_out_tag_len| must be sized to allow for the additional
// |extra_in_len| bytes.
//
// The length of |nonce|, |nonce_len|, must be equal to the result of
// |EVP_AEAD_nonce_length| for this AEAD.
//
// |EVP_AEAD_CTX_seal_scatter| never results in a partial output. If
// |max_out_tag_len| is insufficient, zero will be returned. If any error
// occurs, |out| and |out_tag| will be filled with zero bytes and |*out_tag_len|
// set to zero.
//
// If |in| and |out| alias then |out| must be == |in|. |out_tag| may not alias
// any other argument.
OPENSSL_EXPORT int EVP_AEAD_CTX_seal_scatter(
const EVP_AEAD_CTX *ctx, uint8_t *out,
uint8_t *out_tag, size_t *out_tag_len, size_t max_out_tag_len,
@ -295,39 +295,39 @@ OPENSSL_EXPORT int EVP_AEAD_CTX_seal_scatter(
const uint8_t *extra_in, size_t extra_in_len,
const uint8_t *ad, size_t ad_len);
/* EVP_AEAD_CTX_open_gather decrypts and authenticates |in_len| bytes from |in|
* and authenticates |ad_len| bytes from |ad| using |in_tag_len| bytes of
* authentication tag from |in_tag|. If successful, it writes |in_len| bytes of
* plaintext to |out|. It returns one on success and zero otherwise.
*
* This function may be called concurrently with itself or any other seal/open
* function on the same |EVP_AEAD_CTX|.
*
* The length of |nonce|, |nonce_len|, must be equal to the result of
* |EVP_AEAD_nonce_length| for this AEAD.
*
* |EVP_AEAD_CTX_open_gather| never results in a partial output. If any error
* occurs, |out| will be filled with zero bytes.
*
* If |in| and |out| alias then |out| must be == |in|. */
// EVP_AEAD_CTX_open_gather decrypts and authenticates |in_len| bytes from |in|
// and authenticates |ad_len| bytes from |ad| using |in_tag_len| bytes of
// authentication tag from |in_tag|. If successful, it writes |in_len| bytes of
// plaintext to |out|. It returns one on success and zero otherwise.
//
// This function may be called concurrently with itself or any other seal/open
// function on the same |EVP_AEAD_CTX|.
//
// The length of |nonce|, |nonce_len|, must be equal to the result of
// |EVP_AEAD_nonce_length| for this AEAD.
//
// |EVP_AEAD_CTX_open_gather| never results in a partial output. If any error
// occurs, |out| will be filled with zero bytes.
//
// If |in| and |out| alias then |out| must be == |in|.
OPENSSL_EXPORT int EVP_AEAD_CTX_open_gather(
const EVP_AEAD_CTX *ctx, uint8_t *out, const uint8_t *nonce,
size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *in_tag,
size_t in_tag_len, const uint8_t *ad, size_t ad_len);
/* EVP_AEAD_CTX_aead returns the underlying AEAD for |ctx|, or NULL if one has
* not been set. */
// EVP_AEAD_CTX_aead returns the underlying AEAD for |ctx|, or NULL if one has
// not been set.
OPENSSL_EXPORT const EVP_AEAD *EVP_AEAD_CTX_aead(const EVP_AEAD_CTX *ctx);
/* TLS-specific AEAD algorithms.
*
* These AEAD primitives do not meet the definition of generic AEADs. They are
* all specific to TLS and should not be used outside of that context. They must
* be initialized with |EVP_AEAD_CTX_init_with_direction|, are stateful, and may
* not be used concurrently. Any nonces are used as IVs, so they must be
* unpredictable. They only accept an |ad| parameter of length 11 (the standard
* TLS one with length omitted). */
// TLS-specific AEAD algorithms.
//
// These AEAD primitives do not meet the definition of generic AEADs. They are
// all specific to TLS and should not be used outside of that context. They must
// be initialized with |EVP_AEAD_CTX_init_with_direction|, are stateful, and may
// not be used concurrently. Any nonces are used as IVs, so they must be
// unpredictable. They only accept an |ad| parameter of length 11 (the standard
// TLS one with length omitted).
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls(void);
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls_implicit_iv(void);
@ -343,22 +343,22 @@ OPENSSL_EXPORT const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv(void);
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_null_sha1_tls(void);
/* EVP_aead_aes_128_gcm_tls12 is AES-128 in Galois Counter Mode using the TLS
* 1.2 nonce construction. */
// EVP_aead_aes_128_gcm_tls12 is AES-128 in Galois Counter Mode using the TLS
// 1.2 nonce construction.
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm_tls12(void);
/* EVP_aead_aes_256_gcm_tls12 is AES-256 in Galois Counter Mode using the TLS
* 1.2 nonce construction. */
// EVP_aead_aes_256_gcm_tls12 is AES-256 in Galois Counter Mode using the TLS
// 1.2 nonce construction.
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm_tls12(void);
/* SSLv3-specific AEAD algorithms.
*
* These AEAD primitives do not meet the definition of generic AEADs. They are
* all specific to SSLv3 and should not be used outside of that context. They
* must be initialized with |EVP_AEAD_CTX_init_with_direction|, are stateful,
* and may not be used concurrently. They only accept an |ad| parameter of
* length 9 (the standard TLS one with length and version omitted). */
// SSLv3-specific AEAD algorithms.
//
// These AEAD primitives do not meet the definition of generic AEADs. They are
// all specific to SSLv3 and should not be used outside of that context. They
// must be initialized with |EVP_AEAD_CTX_init_with_direction|, are stateful,
// and may not be used concurrently. They only accept an |ad| parameter of
// length 9 (the standard TLS one with length and version omitted).
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_ssl3(void);
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_ssl3(void);
@ -366,33 +366,33 @@ OPENSSL_EXPORT const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_ssl3(void);
OPENSSL_EXPORT const EVP_AEAD *EVP_aead_null_sha1_ssl3(void);
/* Obscure functions. */
// Obscure functions.
/* evp_aead_direction_t denotes the direction of an AEAD operation. */
// evp_aead_direction_t denotes the direction of an AEAD operation.
enum evp_aead_direction_t {
evp_aead_open,
evp_aead_seal,
};
/* EVP_AEAD_CTX_init_with_direction calls |EVP_AEAD_CTX_init| for normal
* AEADs. For TLS-specific and SSL3-specific AEADs, it initializes |ctx| for a
* given direction. */
// EVP_AEAD_CTX_init_with_direction calls |EVP_AEAD_CTX_init| for normal
// AEADs. For TLS-specific and SSL3-specific AEADs, it initializes |ctx| for a
// given direction.
OPENSSL_EXPORT int EVP_AEAD_CTX_init_with_direction(
EVP_AEAD_CTX *ctx, const EVP_AEAD *aead, const uint8_t *key, size_t key_len,
size_t tag_len, enum evp_aead_direction_t dir);
/* EVP_AEAD_CTX_get_iv sets |*out_len| to the length of the IV for |ctx| and
* sets |*out_iv| to point to that many bytes of the current IV. This is only
* meaningful for AEADs with implicit IVs (i.e. CBC mode in SSLv3 and TLS 1.0).
*
* It returns one on success or zero on error. */
// EVP_AEAD_CTX_get_iv sets |*out_len| to the length of the IV for |ctx| and
// sets |*out_iv| to point to that many bytes of the current IV. This is only
// meaningful for AEADs with implicit IVs (i.e. CBC mode in SSLv3 and TLS 1.0).
//
// It returns one on success or zero on error.
OPENSSL_EXPORT int EVP_AEAD_CTX_get_iv(const EVP_AEAD_CTX *ctx,
const uint8_t **out_iv, size_t *out_len);
/* EVP_AEAD_CTX_tag_len computes the exact byte length of the tag written by
* |EVP_AEAD_CTX_seal_scatter| and writes it to |*out_tag_len|. It returns one
* on success or zero on error. |in_len| and |extra_in_len| must equal the
* arguments of the same names passed to |EVP_AEAD_CTX_seal_scatter|. */
// EVP_AEAD_CTX_tag_len computes the exact byte length of the tag written by
// |EVP_AEAD_CTX_seal_scatter| and writes it to |*out_tag_len|. It returns one
// on success or zero on error. |in_len| and |extra_in_len| must equal the
// arguments of the same names passed to |EVP_AEAD_CTX_seal_scatter|.
OPENSSL_EXPORT int EVP_AEAD_CTX_tag_len(const EVP_AEAD_CTX *ctx,
size_t *out_tag_len,
const size_t in_len,
@ -400,7 +400,7 @@ OPENSSL_EXPORT int EVP_AEAD_CTX_tag_len(const EVP_AEAD_CTX *ctx,
#if defined(__cplusplus)
} /* extern C */
} // extern C
#if !defined(BORINGSSL_NO_CXX)
extern "C++" {
@ -420,4 +420,4 @@ BORINGSSL_MAKE_DELETER(EVP_AEAD_CTX, EVP_AEAD_CTX_free)
#endif
#endif /* OPENSSL_HEADER_AEAD_H */
#endif // OPENSSL_HEADER_AEAD_H

View File

@ -56,115 +56,115 @@ extern "C" {
#endif
/* Raw AES functions. */
// Raw AES functions.
#define AES_ENCRYPT 1
#define AES_DECRYPT 0
/* AES_MAXNR is the maximum number of AES rounds. */
// AES_MAXNR is the maximum number of AES rounds.
#define AES_MAXNR 14
#define AES_BLOCK_SIZE 16
/* aes_key_st should be an opaque type, but EVP requires that the size be
* known. */
// aes_key_st should be an opaque type, but EVP requires that the size be
// known.
struct aes_key_st {
uint32_t rd_key[4 * (AES_MAXNR + 1)];
unsigned rounds;
};
typedef struct aes_key_st AES_KEY;
/* AES_set_encrypt_key configures |aeskey| to encrypt with the |bits|-bit key,
* |key|.
*
* WARNING: unlike other OpenSSL functions, this returns zero on success and a
* negative number on error. */
// AES_set_encrypt_key configures |aeskey| to encrypt with the |bits|-bit key,
// |key|.
//
// WARNING: unlike other OpenSSL functions, this returns zero on success and a
// negative number on error.
OPENSSL_EXPORT int AES_set_encrypt_key(const uint8_t *key, unsigned bits,
AES_KEY *aeskey);
/* AES_set_decrypt_key configures |aeskey| to decrypt with the |bits|-bit key,
* |key|.
*
* WARNING: unlike other OpenSSL functions, this returns zero on success and a
* negative number on error. */
// AES_set_decrypt_key configures |aeskey| to decrypt with the |bits|-bit key,
// |key|.
//
// WARNING: unlike other OpenSSL functions, this returns zero on success and a
// negative number on error.
OPENSSL_EXPORT int AES_set_decrypt_key(const uint8_t *key, unsigned bits,
AES_KEY *aeskey);
/* AES_encrypt encrypts a single block from |in| to |out| with |key|. The |in|
* and |out| pointers may overlap. */
// AES_encrypt encrypts a single block from |in| to |out| with |key|. The |in|
// and |out| pointers may overlap.
OPENSSL_EXPORT void AES_encrypt(const uint8_t *in, uint8_t *out,
const AES_KEY *key);
/* AES_decrypt decrypts a single block from |in| to |out| with |key|. The |in|
* and |out| pointers may overlap. */
// AES_decrypt decrypts a single block from |in| to |out| with |key|. The |in|
// and |out| pointers may overlap.
OPENSSL_EXPORT void AES_decrypt(const uint8_t *in, uint8_t *out,
const AES_KEY *key);
/* Block cipher modes. */
// Block cipher modes.
/* AES_ctr128_encrypt encrypts (or decrypts, it's the same in CTR mode) |len|
* bytes from |in| to |out|. The |num| parameter must be set to zero on the
* first call and |ivec| will be incremented. */
// AES_ctr128_encrypt encrypts (or decrypts, it's the same in CTR mode) |len|
// bytes from |in| to |out|. The |num| parameter must be set to zero on the
// first call and |ivec| will be incremented.
OPENSSL_EXPORT void AES_ctr128_encrypt(const uint8_t *in, uint8_t *out,
size_t len, const AES_KEY *key,
uint8_t ivec[AES_BLOCK_SIZE],
uint8_t ecount_buf[AES_BLOCK_SIZE],
unsigned int *num);
/* AES_ecb_encrypt encrypts (or decrypts, if |enc| == |AES_DECRYPT|) a single,
* 16 byte block from |in| to |out|. */
// AES_ecb_encrypt encrypts (or decrypts, if |enc| == |AES_DECRYPT|) a single,
// 16 byte block from |in| to |out|.
OPENSSL_EXPORT void AES_ecb_encrypt(const uint8_t *in, uint8_t *out,
const AES_KEY *key, const int enc);
/* AES_cbc_encrypt encrypts (or decrypts, if |enc| == |AES_DECRYPT|) |len|
* bytes from |in| to |out|. The length must be a multiple of the block size. */
// AES_cbc_encrypt encrypts (or decrypts, if |enc| == |AES_DECRYPT|) |len|
// bytes from |in| to |out|. The length must be a multiple of the block size.
OPENSSL_EXPORT void AES_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t len,
const AES_KEY *key, uint8_t *ivec,
const int enc);
/* AES_ofb128_encrypt encrypts (or decrypts, it's the same in OFB mode) |len|
* bytes from |in| to |out|. The |num| parameter must be set to zero on the
* first call. */
// AES_ofb128_encrypt encrypts (or decrypts, it's the same in OFB mode) |len|
// bytes from |in| to |out|. The |num| parameter must be set to zero on the
// first call.
OPENSSL_EXPORT void AES_ofb128_encrypt(const uint8_t *in, uint8_t *out,
size_t len, const AES_KEY *key,
uint8_t *ivec, int *num);
/* AES_cfb128_encrypt encrypts (or decrypts, if |enc| == |AES_DECRYPT|) |len|
* bytes from |in| to |out|. The |num| parameter must be set to zero on the
* first call. */
// AES_cfb128_encrypt encrypts (or decrypts, if |enc| == |AES_DECRYPT|) |len|
// bytes from |in| to |out|. The |num| parameter must be set to zero on the
// first call.
OPENSSL_EXPORT void AES_cfb128_encrypt(const uint8_t *in, uint8_t *out,
size_t len, const AES_KEY *key,
uint8_t *ivec, int *num, int enc);
/* AES key wrap.
*
* These functions implement AES Key Wrap mode, as defined in RFC 3394. They
* should never be used except to interoperate with existing systems that use
* this mode. */
// AES key wrap.
//
// These functions implement AES Key Wrap mode, as defined in RFC 3394. They
// should never be used except to interoperate with existing systems that use
// this mode.
/* AES_wrap_key performs AES key wrap on |in| which must be a multiple of 8
* bytes. |iv| must point to an 8 byte value or be NULL to use the default IV.
* |key| must have been configured for encryption. On success, it writes
* |in_len| + 8 bytes to |out| and returns |in_len| + 8. Otherwise, it returns
* -1. */
// AES_wrap_key performs AES key wrap on |in| which must be a multiple of 8
// bytes. |iv| must point to an 8 byte value or be NULL to use the default IV.
// |key| must have been configured for encryption. On success, it writes
// |in_len| + 8 bytes to |out| and returns |in_len| + 8. Otherwise, it returns
// -1.
OPENSSL_EXPORT int AES_wrap_key(const AES_KEY *key, const uint8_t *iv,
uint8_t *out, const uint8_t *in, size_t in_len);
/* AES_unwrap_key performs AES key unwrap on |in| which must be a multiple of 8
* bytes. |iv| must point to an 8 byte value or be NULL to use the default IV.
* |key| must have been configured for decryption. On success, it writes
* |in_len| - 8 bytes to |out| and returns |in_len| - 8. Otherwise, it returns
* -1. */
// AES_unwrap_key performs AES key unwrap on |in| which must be a multiple of 8
// bytes. |iv| must point to an 8 byte value or be NULL to use the default IV.
// |key| must have been configured for decryption. On success, it writes
// |in_len| - 8 bytes to |out| and returns |in_len| - 8. Otherwise, it returns
// -1.
OPENSSL_EXPORT int AES_unwrap_key(const AES_KEY *key, const uint8_t *iv,
uint8_t *out, const uint8_t *in,
size_t in_len);
#if defined(__cplusplus)
} /* extern C */
} // extern C
#endif
#endif /* OPENSSL_HEADER_AES_H */
#endif // OPENSSL_HEADER_AES_H

View File

@ -69,10 +69,10 @@
# else
# define __ARMEL__
# endif
/* Why doesn't gcc define __ARM_ARCH__? Instead it defines
* bunch of below macros. See all_architectires[] table in
* gcc/config/arm/arm.c. On a side note it defines
* __ARMEL__/__ARMEB__ for little-/big-endian. */
// Why doesn't gcc define __ARM_ARCH__? Instead it defines
// bunch of below macros. See all_architectires[] table in
// gcc/config/arm/arm.c. On a side note it defines
// __ARMEL__/__ARMEB__ for little-/big-endian.
# elif defined(__ARM_ARCH)
# define __ARM_ARCH__ __ARM_ARCH
# elif defined(__ARM_ARCH_8A__)
@ -98,24 +98,24 @@
# endif
#endif
/* Even when building for 32-bit ARM, support for aarch64 crypto instructions
* will be included. */
// Even when building for 32-bit ARM, support for aarch64 crypto instructions
// will be included.
#define __ARM_MAX_ARCH__ 8
/* ARMV7_NEON is true when a NEON unit is present in the current CPU. */
// ARMV7_NEON is true when a NEON unit is present in the current CPU.
#define ARMV7_NEON (1 << 0)
/* ARMV8_AES indicates support for hardware AES instructions. */
// ARMV8_AES indicates support for hardware AES instructions.
#define ARMV8_AES (1 << 2)
/* ARMV8_SHA1 indicates support for hardware SHA-1 instructions. */
// ARMV8_SHA1 indicates support for hardware SHA-1 instructions.
#define ARMV8_SHA1 (1 << 3)
/* ARMV8_SHA256 indicates support for hardware SHA-256 instructions. */
// ARMV8_SHA256 indicates support for hardware SHA-256 instructions.
#define ARMV8_SHA256 (1 << 4)
/* ARMV8_PMULL indicates support for carryless multiplication. */
// ARMV8_PMULL indicates support for carryless multiplication.
#define ARMV8_PMULL (1 << 5)
#endif /* OPENSSL_HEADER_ARM_ARCH_H */
#endif // OPENSSL_HEADER_ARM_ARCH_H

View File

@ -54,20 +54,20 @@
#define OPENSSL_HEADER_BASE_H
/* This file should be the first included by all BoringSSL headers. */
// This file should be the first included by all BoringSSL headers.
#include <stddef.h>
#include <stdint.h>
#include <sys/types.h>
#if defined(__MINGW32__)
/* stdio.h is needed on MinGW for __MINGW_PRINTF_FORMAT. */
// stdio.h is needed on MinGW for __MINGW_PRINTF_FORMAT.
#include <stdio.h>
#endif
/* Include a BoringSSL-only header so consumers including this header without
* setting up include paths do not accidentally pick up the system
* opensslconf.h. */
// Include a BoringSSL-only header so consumers including this header without
// setting up include paths do not accidentally pick up the system
// opensslconf.h.
#include <openssl/is_boringssl.h>
#include <openssl/opensslconf.h>
@ -107,10 +107,10 @@ extern "C" {
#elif defined(__myriad2__)
#define OPENSSL_32_BIT
#else
/* Note BoringSSL only supports standard 32-bit and 64-bit two's-complement,
* little-endian architectures. Functions will not produce the correct answer
* on other systems. Run the crypto_test binary, notably
* crypto/compiler_test.cc, before adding a new architecture. */
// Note BoringSSL only supports standard 32-bit and 64-bit two's-complement,
// little-endian architectures. Functions will not produce the correct answer
// on other systems. Run the crypto_test binary, notably
// crypto/compiler_test.cc, before adding a new architecture.
#error "Unknown target CPU"
#endif
@ -139,14 +139,14 @@ extern "C" {
#define OPENSSL_VERSION_NUMBER 0x100020af
#define SSLEAY_VERSION_NUMBER OPENSSL_VERSION_NUMBER
/* BORINGSSL_API_VERSION is a positive integer that increments as BoringSSL
* changes over time. The value itself is not meaningful. It will be incremented
* whenever is convenient to coordinate an API change with consumers. This will
* not denote any special point in development.
*
* A consumer may use this symbol in the preprocessor to temporarily build
* against multiple revisions of BoringSSL at the same time. It is not
* recommended to do so for longer than is necessary. */
// BORINGSSL_API_VERSION is a positive integer that increments as BoringSSL
// changes over time. The value itself is not meaningful. It will be incremented
// whenever is convenient to coordinate an API change with consumers. This will
// not denote any special point in development.
//
// A consumer may use this symbol in the preprocessor to temporarily build
// against multiple revisions of BoringSSL at the same time. It is not
// recommended to do so for longer than is necessary.
#define BORINGSSL_API_VERSION 4
#if defined(BORINGSSL_SHARED_LIBRARY)
@ -159,7 +159,7 @@ extern "C" {
#define OPENSSL_EXPORT __declspec(dllimport)
#endif
#else /* defined(OPENSSL_WINDOWS) */
#else // defined(OPENSSL_WINDOWS)
#if defined(BORINGSSL_IMPLEMENTATION)
#define OPENSSL_EXPORT __attribute__((visibility("default")))
@ -167,19 +167,19 @@ extern "C" {
#define OPENSSL_EXPORT
#endif
#endif /* defined(OPENSSL_WINDOWS) */
#endif // defined(OPENSSL_WINDOWS)
#else /* defined(BORINGSSL_SHARED_LIBRARY) */
#else // defined(BORINGSSL_SHARED_LIBRARY)
#define OPENSSL_EXPORT
#endif /* defined(BORINGSSL_SHARED_LIBRARY) */
#endif // defined(BORINGSSL_SHARED_LIBRARY)
#if defined(__GNUC__)
/* MinGW has two different printf implementations. Ensure the format macro
* matches the selected implementation. See
* https://sourceforge.net/p/mingw-w64/wiki2/gnu%20printf/. */
// MinGW has two different printf implementations. Ensure the format macro
// matches the selected implementation. See
// https://sourceforge.net/p/mingw-w64/wiki2/gnu%20printf/.
#if defined(__MINGW_PRINTF_FORMAT)
#define OPENSSL_PRINTF_FORMAT_FUNC(string_index, first_to_check) \
__attribute__( \
@ -192,7 +192,7 @@ extern "C" {
#define OPENSSL_PRINTF_FORMAT_FUNC(string_index, first_to_check)
#endif
/* OPENSSL_MSVC_PRAGMA emits a pragma on MSVC and nothing on other compilers. */
// OPENSSL_MSVC_PRAGMA emits a pragma on MSVC and nothing on other compilers.
#if defined(_MSC_VER)
#define OPENSSL_MSVC_PRAGMA(arg) __pragma(arg)
#else
@ -219,7 +219,7 @@ extern "C" {
#endif
#endif
/* CRYPTO_THREADID is a dummy value. */
// CRYPTO_THREADID is a dummy value.
typedef int CRYPTO_THREADID;
typedef int ASN1_BOOLEAN;
@ -341,7 +341,7 @@ typedef void *OPENSSL_BLOCK;
#if defined(__cplusplus)
} /* extern C */
} // extern C
#elif !defined(BORINGSSL_NO_CXX)
#define BORINGSSL_NO_CXX
#endif
@ -441,8 +441,8 @@ using UniquePtr = std::unique_ptr<T, internal::Deleter<T>>;
} // namespace bssl
} /* extern C++ */
} // extern C++
#endif // !BORINGSSL_NO_CXX
#endif /* OPENSSL_HEADER_BASE_H */
#endif // OPENSSL_HEADER_BASE_H

View File

@ -64,124 +64,124 @@ extern "C" {
#endif
/* base64 functions.
*
* For historical reasons, these functions have the EVP_ prefix but just do
* base64 encoding and decoding. */
// base64 functions.
//
// For historical reasons, these functions have the EVP_ prefix but just do
// base64 encoding and decoding.
/* Encoding */
// Encoding
/* EVP_EncodeBlock encodes |src_len| bytes from |src| and writes the
* result to |dst| with a trailing NUL. It returns the number of bytes
* written, not including this trailing NUL. */
// EVP_EncodeBlock encodes |src_len| bytes from |src| and writes the
// result to |dst| with a trailing NUL. It returns the number of bytes
// written, not including this trailing NUL.
OPENSSL_EXPORT size_t EVP_EncodeBlock(uint8_t *dst, const uint8_t *src,
size_t src_len);
/* EVP_EncodedLength sets |*out_len| to the number of bytes that will be needed
* to call |EVP_EncodeBlock| on an input of length |len|. This includes the
* final NUL that |EVP_EncodeBlock| writes. It returns one on success or zero
* on error. */
// EVP_EncodedLength sets |*out_len| to the number of bytes that will be needed
// to call |EVP_EncodeBlock| on an input of length |len|. This includes the
// final NUL that |EVP_EncodeBlock| writes. It returns one on success or zero
// on error.
OPENSSL_EXPORT int EVP_EncodedLength(size_t *out_len, size_t len);
/* Decoding */
// Decoding
/* EVP_DecodedLength sets |*out_len| to the maximum number of bytes that will
* be needed to call |EVP_DecodeBase64| on an input of length |len|. It returns
* one on success or zero if |len| is not a valid length for a base64-encoded
* string. */
// EVP_DecodedLength sets |*out_len| to the maximum number of bytes that will
// be needed to call |EVP_DecodeBase64| on an input of length |len|. It returns
// one on success or zero if |len| is not a valid length for a base64-encoded
// string.
OPENSSL_EXPORT int EVP_DecodedLength(size_t *out_len, size_t len);
/* EVP_DecodeBase64 decodes |in_len| bytes from base64 and writes
* |*out_len| bytes to |out|. |max_out| is the size of the output
* buffer. If it is not enough for the maximum output size, the
* operation fails. It returns one on success or zero on error. */
// EVP_DecodeBase64 decodes |in_len| bytes from base64 and writes
// |*out_len| bytes to |out|. |max_out| is the size of the output
// buffer. If it is not enough for the maximum output size, the
// operation fails. It returns one on success or zero on error.
OPENSSL_EXPORT int EVP_DecodeBase64(uint8_t *out, size_t *out_len,
size_t max_out, const uint8_t *in,
size_t in_len);
/* Deprecated functions.
*
* OpenSSL provides a streaming base64 implementation, however its behavior is
* very specific to PEM. It is also very lenient of invalid input. Use of any of
* these functions is thus deprecated. */
// Deprecated functions.
//
// OpenSSL provides a streaming base64 implementation, however its behavior is
// very specific to PEM. It is also very lenient of invalid input. Use of any of
// these functions is thus deprecated.
/* EVP_EncodeInit initialises |*ctx|, which is typically stack
* allocated, for an encoding operation.
*
* NOTE: The encoding operation breaks its output with newlines every
* 64 characters of output (48 characters of input). Use
* EVP_EncodeBlock to encode raw base64. */
// EVP_EncodeInit initialises |*ctx|, which is typically stack
// allocated, for an encoding operation.
//
// NOTE: The encoding operation breaks its output with newlines every
// 64 characters of output (48 characters of input). Use
// EVP_EncodeBlock to encode raw base64.
OPENSSL_EXPORT void EVP_EncodeInit(EVP_ENCODE_CTX *ctx);
/* EVP_EncodeUpdate encodes |in_len| bytes from |in| and writes an encoded
* version of them to |out| and sets |*out_len| to the number of bytes written.
* Some state may be contained in |ctx| so |EVP_EncodeFinal| must be used to
* flush it before using the encoded data. */
// EVP_EncodeUpdate encodes |in_len| bytes from |in| and writes an encoded
// version of them to |out| and sets |*out_len| to the number of bytes written.
// Some state may be contained in |ctx| so |EVP_EncodeFinal| must be used to
// flush it before using the encoded data.
OPENSSL_EXPORT void EVP_EncodeUpdate(EVP_ENCODE_CTX *ctx, uint8_t *out,
int *out_len, const uint8_t *in,
size_t in_len);
/* EVP_EncodeFinal flushes any remaining output bytes from |ctx| to |out| and
* sets |*out_len| to the number of bytes written. */
// EVP_EncodeFinal flushes any remaining output bytes from |ctx| to |out| and
// sets |*out_len| to the number of bytes written.
OPENSSL_EXPORT void EVP_EncodeFinal(EVP_ENCODE_CTX *ctx, uint8_t *out,
int *out_len);
/* EVP_DecodeInit initialises |*ctx|, which is typically stack allocated, for
* a decoding operation.
*
* TODO(davidben): This isn't a straight-up base64 decode either. Document
* and/or fix exactly what's going on here; maximum line length and such. */
// EVP_DecodeInit initialises |*ctx|, which is typically stack allocated, for
// a decoding operation.
//
// TODO(davidben): This isn't a straight-up base64 decode either. Document
// and/or fix exactly what's going on here; maximum line length and such.
OPENSSL_EXPORT void EVP_DecodeInit(EVP_ENCODE_CTX *ctx);
/* EVP_DecodeUpdate decodes |in_len| bytes from |in| and writes the decoded
* data to |out| and sets |*out_len| to the number of bytes written. Some state
* may be contained in |ctx| so |EVP_DecodeFinal| must be used to flush it
* before using the encoded data.
*
* It returns -1 on error, one if a full line of input was processed and zero
* if the line was short (i.e. it was the last line). */
// EVP_DecodeUpdate decodes |in_len| bytes from |in| and writes the decoded
// data to |out| and sets |*out_len| to the number of bytes written. Some state
// may be contained in |ctx| so |EVP_DecodeFinal| must be used to flush it
// before using the encoded data.
//
// It returns -1 on error, one if a full line of input was processed and zero
// if the line was short (i.e. it was the last line).
OPENSSL_EXPORT int EVP_DecodeUpdate(EVP_ENCODE_CTX *ctx, uint8_t *out,
int *out_len, const uint8_t *in,
size_t in_len);
/* EVP_DecodeFinal flushes any remaining output bytes from |ctx| to |out| and
* sets |*out_len| to the number of bytes written. It returns one on success
* and minus one on error. */
// EVP_DecodeFinal flushes any remaining output bytes from |ctx| to |out| and
// sets |*out_len| to the number of bytes written. It returns one on success
// and minus one on error.
OPENSSL_EXPORT int EVP_DecodeFinal(EVP_ENCODE_CTX *ctx, uint8_t *out,
int *out_len);
/* EVP_DecodeBlock encodes |src_len| bytes from |src| and writes the result to
* |dst|. It returns the number of bytes written or -1 on error.
*
* WARNING: EVP_DecodeBlock's return value does not take padding into
* account. It also strips leading whitespace and trailing
* whitespace and minuses. */
// EVP_DecodeBlock encodes |src_len| bytes from |src| and writes the result to
// |dst|. It returns the number of bytes written or -1 on error.
//
// WARNING: EVP_DecodeBlock's return value does not take padding into
// account. It also strips leading whitespace and trailing
// whitespace and minuses.
OPENSSL_EXPORT int EVP_DecodeBlock(uint8_t *dst, const uint8_t *src,
size_t src_len);
struct evp_encode_ctx_st {
/* data_used indicates the number of bytes of |data| that are valid. When
* encoding, |data| will be filled and encoded as a lump. When decoding, only
* the first four bytes of |data| will be used. */
// data_used indicates the number of bytes of |data| that are valid. When
// encoding, |data| will be filled and encoded as a lump. When decoding, only
// the first four bytes of |data| will be used.
unsigned data_used;
uint8_t data[48];
/* eof_seen indicates that the end of the base64 data has been seen when
* decoding. Only whitespace can follow. */
// eof_seen indicates that the end of the base64 data has been seen when
// decoding. Only whitespace can follow.
char eof_seen;
/* error_encountered indicates that invalid base64 data was found. This will
* cause all future calls to fail. */
// error_encountered indicates that invalid base64 data was found. This will
// cause all future calls to fail.
char error_encountered;
};
#if defined(__cplusplus)
} /* extern C */
} // extern C
#endif
#endif /* OPENSSL_HEADER_BASE64_H */
#endif // OPENSSL_HEADER_BASE64_H

File diff suppressed because it is too large Load Diff

View File

@ -90,4 +90,4 @@ OPENSSL_EXPORT void BF_cbc_encrypt(const uint8_t *in, uint8_t *out, long length,
}
#endif
#endif /* OPENSSL_HEADER_BLOWFISH_H */
#endif // OPENSSL_HEADER_BLOWFISH_H

File diff suppressed because it is too large Load Diff

View File

@ -64,59 +64,59 @@ extern "C" {
#endif
/* Memory and string functions, see also mem.h. */
// Memory and string functions, see also mem.h.
/* buf_mem_st (aka |BUF_MEM|) is a generic buffer object used by OpenSSL. */
// buf_mem_st (aka |BUF_MEM|) is a generic buffer object used by OpenSSL.
struct buf_mem_st {
size_t length; /* current number of bytes */
size_t length; // current number of bytes
char *data;
size_t max; /* size of buffer */
size_t max; // size of buffer
};
/* BUF_MEM_new creates a new BUF_MEM which has no allocated data buffer. */
// BUF_MEM_new creates a new BUF_MEM which has no allocated data buffer.
OPENSSL_EXPORT BUF_MEM *BUF_MEM_new(void);
/* BUF_MEM_free frees |buf->data| if needed and then frees |buf| itself. */
// BUF_MEM_free frees |buf->data| if needed and then frees |buf| itself.
OPENSSL_EXPORT void BUF_MEM_free(BUF_MEM *buf);
/* BUF_MEM_reserve ensures |buf| has capacity |cap| and allocates memory if
* needed. It returns one on success and zero on error. */
// BUF_MEM_reserve ensures |buf| has capacity |cap| and allocates memory if
// needed. It returns one on success and zero on error.
OPENSSL_EXPORT int BUF_MEM_reserve(BUF_MEM *buf, size_t cap);
/* BUF_MEM_grow ensures that |buf| has length |len| and allocates memory if
* needed. If the length of |buf| increased, the new bytes are filled with
* zeros. It returns the length of |buf|, or zero if there's an error. */
// BUF_MEM_grow ensures that |buf| has length |len| and allocates memory if
// needed. If the length of |buf| increased, the new bytes are filled with
// zeros. It returns the length of |buf|, or zero if there's an error.
OPENSSL_EXPORT size_t BUF_MEM_grow(BUF_MEM *buf, size_t len);
/* BUF_MEM_grow_clean acts the same as |BUF_MEM_grow|, but clears the previous
* contents of memory if reallocing. */
// BUF_MEM_grow_clean acts the same as |BUF_MEM_grow|, but clears the previous
// contents of memory if reallocing.
OPENSSL_EXPORT size_t BUF_MEM_grow_clean(BUF_MEM *buf, size_t len);
/* BUF_strdup returns an allocated, duplicate of |str|. */
// BUF_strdup returns an allocated, duplicate of |str|.
OPENSSL_EXPORT char *BUF_strdup(const char *str);
/* BUF_strnlen returns the number of characters in |str|, excluding the NUL
* byte, but at most |max_len|. This function never reads more than |max_len|
* bytes from |str|. */
// BUF_strnlen returns the number of characters in |str|, excluding the NUL
// byte, but at most |max_len|. This function never reads more than |max_len|
// bytes from |str|.
OPENSSL_EXPORT size_t BUF_strnlen(const char *str, size_t max_len);
/* BUF_strndup returns an allocated, duplicate of |str|, which is, at most,
* |size| bytes. The result is always NUL terminated. */
// BUF_strndup returns an allocated, duplicate of |str|, which is, at most,
// |size| bytes. The result is always NUL terminated.
OPENSSL_EXPORT char *BUF_strndup(const char *str, size_t size);
/* BUF_memdup returns an allocated, duplicate of |size| bytes from |data|. */
// BUF_memdup returns an allocated, duplicate of |size| bytes from |data|.
OPENSSL_EXPORT void *BUF_memdup(const void *data, size_t size);
/* BUF_strlcpy acts like strlcpy(3). */
// BUF_strlcpy acts like strlcpy(3).
OPENSSL_EXPORT size_t BUF_strlcpy(char *dst, const char *src, size_t dst_size);
/* BUF_strlcat acts like strlcat(3). */
// BUF_strlcat acts like strlcat(3).
OPENSSL_EXPORT size_t BUF_strlcat(char *dst, const char *src, size_t dst_size);
#if defined(__cplusplus)
} /* extern C */
} // extern C
extern "C++" {
@ -126,8 +126,8 @@ BORINGSSL_MAKE_DELETER(BUF_MEM, BUF_MEM_free)
} // namespace bssl
} /* extern C++ */
} // extern C++
#endif
#endif /* OPENSSL_HEADER_BUFFER_H */
#endif // OPENSSL_HEADER_BUFFER_H

View File

@ -22,110 +22,110 @@ extern "C" {
#endif
/* Bytestrings are used for parsing and building TLS and ASN.1 messages.
*
* A "CBS" (CRYPTO ByteString) represents a string of bytes in memory and
* provides utility functions for safely parsing length-prefixed structures
* like TLS and ASN.1 from it.
*
* A "CBB" (CRYPTO ByteBuilder) is a memory buffer that grows as needed and
* provides utility functions for building length-prefixed messages. */
// Bytestrings are used for parsing and building TLS and ASN.1 messages.
//
// A "CBS" (CRYPTO ByteString) represents a string of bytes in memory and
// provides utility functions for safely parsing length-prefixed structures
// like TLS and ASN.1 from it.
//
// A "CBB" (CRYPTO ByteBuilder) is a memory buffer that grows as needed and
// provides utility functions for building length-prefixed messages.
/* CRYPTO ByteString */
// CRYPTO ByteString
struct cbs_st {
const uint8_t *data;
size_t len;
};
/* CBS_init sets |cbs| to point to |data|. It does not take ownership of
* |data|. */
// CBS_init sets |cbs| to point to |data|. It does not take ownership of
// |data|.
OPENSSL_EXPORT void CBS_init(CBS *cbs, const uint8_t *data, size_t len);
/* CBS_skip advances |cbs| by |len| bytes. It returns one on success and zero
* otherwise. */
// CBS_skip advances |cbs| by |len| bytes. It returns one on success and zero
// otherwise.
OPENSSL_EXPORT int CBS_skip(CBS *cbs, size_t len);
/* CBS_data returns a pointer to the contents of |cbs|. */
// CBS_data returns a pointer to the contents of |cbs|.
OPENSSL_EXPORT const uint8_t *CBS_data(const CBS *cbs);
/* CBS_len returns the number of bytes remaining in |cbs|. */
// CBS_len returns the number of bytes remaining in |cbs|.
OPENSSL_EXPORT size_t CBS_len(const CBS *cbs);
/* CBS_stow copies the current contents of |cbs| into |*out_ptr| and
* |*out_len|. If |*out_ptr| is not NULL, the contents are freed with
* OPENSSL_free. It returns one on success and zero on allocation failure. On
* success, |*out_ptr| should be freed with OPENSSL_free. If |cbs| is empty,
* |*out_ptr| will be NULL. */
// CBS_stow copies the current contents of |cbs| into |*out_ptr| and
// |*out_len|. If |*out_ptr| is not NULL, the contents are freed with
// OPENSSL_free. It returns one on success and zero on allocation failure. On
// success, |*out_ptr| should be freed with OPENSSL_free. If |cbs| is empty,
// |*out_ptr| will be NULL.
OPENSSL_EXPORT int CBS_stow(const CBS *cbs, uint8_t **out_ptr, size_t *out_len);
/* CBS_strdup copies the current contents of |cbs| into |*out_ptr| as a
* NUL-terminated C string. If |*out_ptr| is not NULL, the contents are freed
* with OPENSSL_free. It returns one on success and zero on allocation
* failure. On success, |*out_ptr| should be freed with OPENSSL_free.
*
* NOTE: If |cbs| contains NUL bytes, the string will be truncated. Call
* |CBS_contains_zero_byte(cbs)| to check for NUL bytes. */
// CBS_strdup copies the current contents of |cbs| into |*out_ptr| as a
// NUL-terminated C string. If |*out_ptr| is not NULL, the contents are freed
// with OPENSSL_free. It returns one on success and zero on allocation
// failure. On success, |*out_ptr| should be freed with OPENSSL_free.
//
// NOTE: If |cbs| contains NUL bytes, the string will be truncated. Call
// |CBS_contains_zero_byte(cbs)| to check for NUL bytes.
OPENSSL_EXPORT int CBS_strdup(const CBS *cbs, char **out_ptr);
/* CBS_contains_zero_byte returns one if the current contents of |cbs| contains
* a NUL byte and zero otherwise. */
// CBS_contains_zero_byte returns one if the current contents of |cbs| contains
// a NUL byte and zero otherwise.
OPENSSL_EXPORT int CBS_contains_zero_byte(const CBS *cbs);
/* CBS_mem_equal compares the current contents of |cbs| with the |len| bytes
* starting at |data|. If they're equal, it returns one, otherwise zero. If the
* lengths match, it uses a constant-time comparison. */
// CBS_mem_equal compares the current contents of |cbs| with the |len| bytes
// starting at |data|. If they're equal, it returns one, otherwise zero. If the
// lengths match, it uses a constant-time comparison.
OPENSSL_EXPORT int CBS_mem_equal(const CBS *cbs, const uint8_t *data,
size_t len);
/* CBS_get_u8 sets |*out| to the next uint8_t from |cbs| and advances |cbs|. It
* returns one on success and zero on error. */
// CBS_get_u8 sets |*out| to the next uint8_t from |cbs| and advances |cbs|. It
// returns one on success and zero on error.
OPENSSL_EXPORT int CBS_get_u8(CBS *cbs, uint8_t *out);
/* CBS_get_u16 sets |*out| to the next, big-endian uint16_t from |cbs| and
* advances |cbs|. It returns one on success and zero on error. */
// CBS_get_u16 sets |*out| to the next, big-endian uint16_t from |cbs| and
// advances |cbs|. It returns one on success and zero on error.
OPENSSL_EXPORT int CBS_get_u16(CBS *cbs, uint16_t *out);
/* CBS_get_u24 sets |*out| to the next, big-endian 24-bit value from |cbs| and
* advances |cbs|. It returns one on success and zero on error. */
// CBS_get_u24 sets |*out| to the next, big-endian 24-bit value from |cbs| and
// advances |cbs|. It returns one on success and zero on error.
OPENSSL_EXPORT int CBS_get_u24(CBS *cbs, uint32_t *out);
/* CBS_get_u32 sets |*out| to the next, big-endian uint32_t value from |cbs|
* and advances |cbs|. It returns one on success and zero on error. */
// CBS_get_u32 sets |*out| to the next, big-endian uint32_t value from |cbs|
// and advances |cbs|. It returns one on success and zero on error.
OPENSSL_EXPORT int CBS_get_u32(CBS *cbs, uint32_t *out);
/* CBS_get_last_u8 sets |*out| to the last uint8_t from |cbs| and shortens
* |cbs|. It returns one on success and zero on error. */
// CBS_get_last_u8 sets |*out| to the last uint8_t from |cbs| and shortens
// |cbs|. It returns one on success and zero on error.
OPENSSL_EXPORT int CBS_get_last_u8(CBS *cbs, uint8_t *out);
/* CBS_get_bytes sets |*out| to the next |len| bytes from |cbs| and advances
* |cbs|. It returns one on success and zero on error. */
// CBS_get_bytes sets |*out| to the next |len| bytes from |cbs| and advances
// |cbs|. It returns one on success and zero on error.
OPENSSL_EXPORT int CBS_get_bytes(CBS *cbs, CBS *out, size_t len);
/* CBS_copy_bytes copies the next |len| bytes from |cbs| to |out| and advances
* |cbs|. It returns one on success and zero on error. */
// CBS_copy_bytes copies the next |len| bytes from |cbs| to |out| and advances
// |cbs|. It returns one on success and zero on error.
OPENSSL_EXPORT int CBS_copy_bytes(CBS *cbs, uint8_t *out, size_t len);
/* CBS_get_u8_length_prefixed sets |*out| to the contents of an 8-bit,
* length-prefixed value from |cbs| and advances |cbs| over it. It returns one
* on success and zero on error. */
// CBS_get_u8_length_prefixed sets |*out| to the contents of an 8-bit,
// length-prefixed value from |cbs| and advances |cbs| over it. It returns one
// on success and zero on error.
OPENSSL_EXPORT int CBS_get_u8_length_prefixed(CBS *cbs, CBS *out);
/* CBS_get_u16_length_prefixed sets |*out| to the contents of a 16-bit,
* big-endian, length-prefixed value from |cbs| and advances |cbs| over it. It
* returns one on success and zero on error. */
// CBS_get_u16_length_prefixed sets |*out| to the contents of a 16-bit,
// big-endian, length-prefixed value from |cbs| and advances |cbs| over it. It
// returns one on success and zero on error.
OPENSSL_EXPORT int CBS_get_u16_length_prefixed(CBS *cbs, CBS *out);
/* CBS_get_u24_length_prefixed sets |*out| to the contents of a 24-bit,
* big-endian, length-prefixed value from |cbs| and advances |cbs| over it. It
* returns one on success and zero on error. */
// CBS_get_u24_length_prefixed sets |*out| to the contents of a 24-bit,
// big-endian, length-prefixed value from |cbs| and advances |cbs| over it. It
// returns one on success and zero on error.
OPENSSL_EXPORT int CBS_get_u24_length_prefixed(CBS *cbs, CBS *out);
/* Parsing ASN.1 */
// Parsing ASN.1
/* The following values are tag numbers for UNIVERSAL elements. */
// The following values are tag numbers for UNIVERSAL elements.
#define CBS_ASN1_BOOLEAN 0x1u
#define CBS_ASN1_INTEGER 0x2u
#define CBS_ASN1_BITSTRING 0x3u
@ -149,143 +149,143 @@ OPENSSL_EXPORT int CBS_get_u24_length_prefixed(CBS *cbs, CBS *out);
#define CBS_ASN1_UNIVERSALSTRING 0x1cu
#define CBS_ASN1_BMPSTRING 0x1eu
/* CBS_ASN1_CONSTRUCTED may be ORed into a tag to toggle the constructed
* bit. |CBS| and |CBB| APIs consider the constructed bit to be part of the
* tag. */
// CBS_ASN1_CONSTRUCTED may be ORed into a tag to toggle the constructed
// bit. |CBS| and |CBB| APIs consider the constructed bit to be part of the
// tag.
#define CBS_ASN1_CONSTRUCTED 0x20u
/* The following values specify the constructed bit or tag class and may be ORed
* into a tag number to produce the final tag. If none is used, the tag will be
* UNIVERSAL.
*
* Note that although they currently match the DER serialization, consumers must
* use these bits rather than make assumptions about the representation. This is
* to allow for tag numbers beyond 31 in the future. */
// The following values specify the constructed bit or tag class and may be ORed
// into a tag number to produce the final tag. If none is used, the tag will be
// UNIVERSAL.
//
// Note that although they currently match the DER serialization, consumers must
// use these bits rather than make assumptions about the representation. This is
// to allow for tag numbers beyond 31 in the future.
#define CBS_ASN1_APPLICATION 0x40u
#define CBS_ASN1_CONTEXT_SPECIFIC 0x80u
#define CBS_ASN1_PRIVATE 0xc0u
/* CBS_ASN1_CLASS_MASK may be ANDed with a tag to query its class. */
// CBS_ASN1_CLASS_MASK may be ANDed with a tag to query its class.
#define CBS_ASN1_CLASS_MASK 0xc0u
/* CBS_ASN1_TAG_NUMBER_MASK may be ANDed with a tag to query its number. */
// CBS_ASN1_TAG_NUMBER_MASK may be ANDed with a tag to query its number.
#define CBS_ASN1_TAG_NUMBER_MASK 0x1fu
/* CBS_get_asn1 sets |*out| to the contents of DER-encoded, ASN.1 element (not
* including tag and length bytes) and advances |cbs| over it. The ASN.1
* element must match |tag_value|. It returns one on success and zero
* on error.
*
* Tag numbers greater than 30 are not supported (i.e. short form only). */
// CBS_get_asn1 sets |*out| to the contents of DER-encoded, ASN.1 element (not
// including tag and length bytes) and advances |cbs| over it. The ASN.1
// element must match |tag_value|. It returns one on success and zero
// on error.
//
// Tag numbers greater than 30 are not supported (i.e. short form only).
OPENSSL_EXPORT int CBS_get_asn1(CBS *cbs, CBS *out, unsigned tag_value);
/* CBS_get_asn1_element acts like |CBS_get_asn1| but |out| will include the
* ASN.1 header bytes too. */
// CBS_get_asn1_element acts like |CBS_get_asn1| but |out| will include the
// ASN.1 header bytes too.
OPENSSL_EXPORT int CBS_get_asn1_element(CBS *cbs, CBS *out, unsigned tag_value);
/* CBS_peek_asn1_tag looks ahead at the next ASN.1 tag and returns one
* if the next ASN.1 element on |cbs| would have tag |tag_value|. If
* |cbs| is empty or the tag does not match, it returns zero. Note: if
* it returns one, CBS_get_asn1 may still fail if the rest of the
* element is malformed. */
// CBS_peek_asn1_tag looks ahead at the next ASN.1 tag and returns one
// if the next ASN.1 element on |cbs| would have tag |tag_value|. If
// |cbs| is empty or the tag does not match, it returns zero. Note: if
// it returns one, CBS_get_asn1 may still fail if the rest of the
// element is malformed.
OPENSSL_EXPORT int CBS_peek_asn1_tag(const CBS *cbs, unsigned tag_value);
/* CBS_get_any_asn1 sets |*out| to contain the next ASN.1 element from |*cbs|
* (not including tag and length bytes), sets |*out_tag| to the tag number, and
* advances |*cbs|. It returns one on success and zero on error. Either of |out|
* and |out_tag| may be NULL to ignore the value.
*
* Tag numbers greater than 30 are not supported (i.e. short form only). */
// CBS_get_any_asn1 sets |*out| to contain the next ASN.1 element from |*cbs|
// (not including tag and length bytes), sets |*out_tag| to the tag number, and
// advances |*cbs|. It returns one on success and zero on error. Either of |out|
// and |out_tag| may be NULL to ignore the value.
//
// Tag numbers greater than 30 are not supported (i.e. short form only).
OPENSSL_EXPORT int CBS_get_any_asn1(CBS *cbs, CBS *out, unsigned *out_tag);
/* CBS_get_any_asn1_element sets |*out| to contain the next ASN.1 element from
* |*cbs| (including header bytes) and advances |*cbs|. It sets |*out_tag| to
* the tag number and |*out_header_len| to the length of the ASN.1 header. Each
* of |out|, |out_tag|, and |out_header_len| may be NULL to ignore the value.
*
* Tag numbers greater than 30 are not supported (i.e. short form only). */
// CBS_get_any_asn1_element sets |*out| to contain the next ASN.1 element from
// |*cbs| (including header bytes) and advances |*cbs|. It sets |*out_tag| to
// the tag number and |*out_header_len| to the length of the ASN.1 header. Each
// of |out|, |out_tag|, and |out_header_len| may be NULL to ignore the value.
//
// Tag numbers greater than 30 are not supported (i.e. short form only).
OPENSSL_EXPORT int CBS_get_any_asn1_element(CBS *cbs, CBS *out,
unsigned *out_tag,
size_t *out_header_len);
/* CBS_get_any_ber_asn1_element acts the same as |CBS_get_any_asn1_element| but
* also allows indefinite-length elements to be returned. In that case,
* |*out_header_len| and |CBS_len(out)| will both be two as only the header is
* returned, otherwise it behaves the same as the previous function. */
// CBS_get_any_ber_asn1_element acts the same as |CBS_get_any_asn1_element| but
// also allows indefinite-length elements to be returned. In that case,
// |*out_header_len| and |CBS_len(out)| will both be two as only the header is
// returned, otherwise it behaves the same as the previous function.
OPENSSL_EXPORT int CBS_get_any_ber_asn1_element(CBS *cbs, CBS *out,
unsigned *out_tag,
size_t *out_header_len);
/* CBS_get_asn1_uint64 gets an ASN.1 INTEGER from |cbs| using |CBS_get_asn1|
* and sets |*out| to its value. It returns one on success and zero on error,
* where error includes the integer being negative, or too large to represent
* in 64 bits. */
// CBS_get_asn1_uint64 gets an ASN.1 INTEGER from |cbs| using |CBS_get_asn1|
// and sets |*out| to its value. It returns one on success and zero on error,
// where error includes the integer being negative, or too large to represent
// in 64 bits.
OPENSSL_EXPORT int CBS_get_asn1_uint64(CBS *cbs, uint64_t *out);
/* CBS_get_optional_asn1 gets an optional explicitly-tagged element from |cbs|
* tagged with |tag| and sets |*out| to its contents. If present and if
* |out_present| is not NULL, it sets |*out_present| to one, otherwise zero. It
* returns one on success, whether or not the element was present, and zero on
* decode failure. */
// CBS_get_optional_asn1 gets an optional explicitly-tagged element from |cbs|
// tagged with |tag| and sets |*out| to its contents. If present and if
// |out_present| is not NULL, it sets |*out_present| to one, otherwise zero. It
// returns one on success, whether or not the element was present, and zero on
// decode failure.
OPENSSL_EXPORT int CBS_get_optional_asn1(CBS *cbs, CBS *out, int *out_present,
unsigned tag);
/* CBS_get_optional_asn1_octet_string gets an optional
* explicitly-tagged OCTET STRING from |cbs|. If present, it sets
* |*out| to the string and |*out_present| to one. Otherwise, it sets
* |*out| to empty and |*out_present| to zero. |out_present| may be
* NULL. It returns one on success, whether or not the element was
* present, and zero on decode failure. */
// CBS_get_optional_asn1_octet_string gets an optional
// explicitly-tagged OCTET STRING from |cbs|. If present, it sets
// |*out| to the string and |*out_present| to one. Otherwise, it sets
// |*out| to empty and |*out_present| to zero. |out_present| may be
// NULL. It returns one on success, whether or not the element was
// present, and zero on decode failure.
OPENSSL_EXPORT int CBS_get_optional_asn1_octet_string(CBS *cbs, CBS *out,
int *out_present,
unsigned tag);
/* CBS_get_optional_asn1_uint64 gets an optional explicitly-tagged
* INTEGER from |cbs|. If present, it sets |*out| to the
* value. Otherwise, it sets |*out| to |default_value|. It returns one
* on success, whether or not the element was present, and zero on
* decode failure. */
// CBS_get_optional_asn1_uint64 gets an optional explicitly-tagged
// INTEGER from |cbs|. If present, it sets |*out| to the
// value. Otherwise, it sets |*out| to |default_value|. It returns one
// on success, whether or not the element was present, and zero on
// decode failure.
OPENSSL_EXPORT int CBS_get_optional_asn1_uint64(CBS *cbs, uint64_t *out,
unsigned tag,
uint64_t default_value);
/* CBS_get_optional_asn1_bool gets an optional, explicitly-tagged BOOLEAN from
* |cbs|. If present, it sets |*out| to either zero or one, based on the
* boolean. Otherwise, it sets |*out| to |default_value|. It returns one on
* success, whether or not the element was present, and zero on decode
* failure. */
// CBS_get_optional_asn1_bool gets an optional, explicitly-tagged BOOLEAN from
// |cbs|. If present, it sets |*out| to either zero or one, based on the
// boolean. Otherwise, it sets |*out| to |default_value|. It returns one on
// success, whether or not the element was present, and zero on decode
// failure.
OPENSSL_EXPORT int CBS_get_optional_asn1_bool(CBS *cbs, int *out, unsigned tag,
int default_value);
/* CBS_is_valid_asn1_bitstring returns one if |cbs| is a valid ASN.1 BIT STRING
* and zero otherwise. */
// CBS_is_valid_asn1_bitstring returns one if |cbs| is a valid ASN.1 BIT STRING
// and zero otherwise.
OPENSSL_EXPORT int CBS_is_valid_asn1_bitstring(const CBS *cbs);
/* CBS_asn1_bitstring_has_bit returns one if |cbs| is a valid ASN.1 BIT STRING
* and the specified bit is present and set. Otherwise, it returns zero. |bit|
* is indexed starting from zero. */
// CBS_asn1_bitstring_has_bit returns one if |cbs| is a valid ASN.1 BIT STRING
// and the specified bit is present and set. Otherwise, it returns zero. |bit|
// is indexed starting from zero.
OPENSSL_EXPORT int CBS_asn1_bitstring_has_bit(const CBS *cbs, unsigned bit);
/* CRYPTO ByteBuilder.
*
* |CBB| objects allow one to build length-prefixed serialisations. A |CBB|
* object is associated with a buffer and new buffers are created with
* |CBB_init|. Several |CBB| objects can point at the same buffer when a
* length-prefix is pending, however only a single |CBB| can be 'current' at
* any one time. For example, if one calls |CBB_add_u8_length_prefixed| then
* the new |CBB| points at the same buffer as the original. But if the original
* |CBB| is used then the length prefix is written out and the new |CBB| must
* not be used again.
*
* If one needs to force a length prefix to be written out because a |CBB| is
* going out of scope, use |CBB_flush|. If an operation on a |CBB| fails, it is
* in an undefined state and must not be used except to call |CBB_cleanup|. */
// CRYPTO ByteBuilder.
//
// |CBB| objects allow one to build length-prefixed serialisations. A |CBB|
// object is associated with a buffer and new buffers are created with
// |CBB_init|. Several |CBB| objects can point at the same buffer when a
// length-prefix is pending, however only a single |CBB| can be 'current' at
// any one time. For example, if one calls |CBB_add_u8_length_prefixed| then
// the new |CBB| points at the same buffer as the original. But if the original
// |CBB| is used then the length prefix is written out and the new |CBB| must
// not be used again.
//
// If one needs to force a length prefix to be written out because a |CBB| is
// going out of scope, use |CBB_flush|. If an operation on a |CBB| fails, it is
// in an undefined state and must not be used except to call |CBB_cleanup|.
struct cbb_buffer_st {
uint8_t *buf;
size_t len; /* The number of valid bytes. */
size_t cap; /* The size of buf. */
size_t len; // The number of valid bytes.
size_t cap; // The size of buf.
char can_resize; /* One iff |buf| is owned by this object. If not then |buf|
cannot be resized. */
char error; /* One iff there was an error writing to this CBB. All future
@ -294,147 +294,147 @@ struct cbb_buffer_st {
struct cbb_st {
struct cbb_buffer_st *base;
/* child points to a child CBB if a length-prefix is pending. */
// child points to a child CBB if a length-prefix is pending.
CBB *child;
/* offset is the number of bytes from the start of |base->buf| to this |CBB|'s
* pending length prefix. */
// offset is the number of bytes from the start of |base->buf| to this |CBB|'s
// pending length prefix.
size_t offset;
/* pending_len_len contains the number of bytes in this |CBB|'s pending
* length-prefix, or zero if no length-prefix is pending. */
// pending_len_len contains the number of bytes in this |CBB|'s pending
// length-prefix, or zero if no length-prefix is pending.
uint8_t pending_len_len;
char pending_is_asn1;
/* is_top_level is true iff this is a top-level |CBB| (as opposed to a child
* |CBB|). Top-level objects are valid arguments for |CBB_finish|. */
// is_top_level is true iff this is a top-level |CBB| (as opposed to a child
// |CBB|). Top-level objects are valid arguments for |CBB_finish|.
char is_top_level;
};
/* CBB_zero sets an uninitialised |cbb| to the zero state. It must be
* initialised with |CBB_init| or |CBB_init_fixed| before use, but it is safe to
* call |CBB_cleanup| without a successful |CBB_init|. This may be used for more
* uniform cleanup of a |CBB|. */
// CBB_zero sets an uninitialised |cbb| to the zero state. It must be
// initialised with |CBB_init| or |CBB_init_fixed| before use, but it is safe to
// call |CBB_cleanup| without a successful |CBB_init|. This may be used for more
// uniform cleanup of a |CBB|.
OPENSSL_EXPORT void CBB_zero(CBB *cbb);
/* CBB_init initialises |cbb| with |initial_capacity|. Since a |CBB| grows as
* needed, the |initial_capacity| is just a hint. It returns one on success or
* zero on error. */
// CBB_init initialises |cbb| with |initial_capacity|. Since a |CBB| grows as
// needed, the |initial_capacity| is just a hint. It returns one on success or
// zero on error.
OPENSSL_EXPORT int CBB_init(CBB *cbb, size_t initial_capacity);
/* CBB_init_fixed initialises |cbb| to write to |len| bytes at |buf|. Since
* |buf| cannot grow, trying to write more than |len| bytes will cause CBB
* functions to fail. It returns one on success or zero on error. */
// CBB_init_fixed initialises |cbb| to write to |len| bytes at |buf|. Since
// |buf| cannot grow, trying to write more than |len| bytes will cause CBB
// functions to fail. It returns one on success or zero on error.
OPENSSL_EXPORT int CBB_init_fixed(CBB *cbb, uint8_t *buf, size_t len);
/* CBB_cleanup frees all resources owned by |cbb| and other |CBB| objects
* writing to the same buffer. This should be used in an error case where a
* serialisation is abandoned.
*
* This function can only be called on a "top level" |CBB|, i.e. one initialised
* with |CBB_init| or |CBB_init_fixed|, or a |CBB| set to the zero state with
* |CBB_zero|. */
// CBB_cleanup frees all resources owned by |cbb| and other |CBB| objects
// writing to the same buffer. This should be used in an error case where a
// serialisation is abandoned.
//
// This function can only be called on a "top level" |CBB|, i.e. one initialised
// with |CBB_init| or |CBB_init_fixed|, or a |CBB| set to the zero state with
// |CBB_zero|.
OPENSSL_EXPORT void CBB_cleanup(CBB *cbb);
/* CBB_finish completes any pending length prefix and sets |*out_data| to a
* malloced buffer and |*out_len| to the length of that buffer. The caller
* takes ownership of the buffer and, unless the buffer was fixed with
* |CBB_init_fixed|, must call |OPENSSL_free| when done.
*
* It can only be called on a "top level" |CBB|, i.e. one initialised with
* |CBB_init| or |CBB_init_fixed|. It returns one on success and zero on
* error. */
// CBB_finish completes any pending length prefix and sets |*out_data| to a
// malloced buffer and |*out_len| to the length of that buffer. The caller
// takes ownership of the buffer and, unless the buffer was fixed with
// |CBB_init_fixed|, must call |OPENSSL_free| when done.
//
// It can only be called on a "top level" |CBB|, i.e. one initialised with
// |CBB_init| or |CBB_init_fixed|. It returns one on success and zero on
// error.
OPENSSL_EXPORT int CBB_finish(CBB *cbb, uint8_t **out_data, size_t *out_len);
/* CBB_flush causes any pending length prefixes to be written out and any child
* |CBB| objects of |cbb| to be invalidated. This allows |cbb| to continue to be
* used after the children go out of scope, e.g. when local |CBB| objects are
* added as children to a |CBB| that persists after a function returns. This
* function returns one on success or zero on error. */
// CBB_flush causes any pending length prefixes to be written out and any child
// |CBB| objects of |cbb| to be invalidated. This allows |cbb| to continue to be
// used after the children go out of scope, e.g. when local |CBB| objects are
// added as children to a |CBB| that persists after a function returns. This
// function returns one on success or zero on error.
OPENSSL_EXPORT int CBB_flush(CBB *cbb);
/* CBB_data returns a pointer to the bytes written to |cbb|. It does not flush
* |cbb|. The pointer is valid until the next operation to |cbb|.
*
* To avoid unfinalized length prefixes, it is a fatal error to call this on a
* CBB with any active children. */
// CBB_data returns a pointer to the bytes written to |cbb|. It does not flush
// |cbb|. The pointer is valid until the next operation to |cbb|.
//
// To avoid unfinalized length prefixes, it is a fatal error to call this on a
// CBB with any active children.
OPENSSL_EXPORT const uint8_t *CBB_data(const CBB *cbb);
/* CBB_len returns the number of bytes written to |cbb|. It does not flush
* |cbb|.
*
* To avoid unfinalized length prefixes, it is a fatal error to call this on a
* CBB with any active children. */
// CBB_len returns the number of bytes written to |cbb|. It does not flush
// |cbb|.
//
// To avoid unfinalized length prefixes, it is a fatal error to call this on a
// CBB with any active children.
OPENSSL_EXPORT size_t CBB_len(const CBB *cbb);
/* CBB_add_u8_length_prefixed sets |*out_contents| to a new child of |cbb|. The
* data written to |*out_contents| will be prefixed in |cbb| with an 8-bit
* length. It returns one on success or zero on error. */
// CBB_add_u8_length_prefixed sets |*out_contents| to a new child of |cbb|. The
// data written to |*out_contents| will be prefixed in |cbb| with an 8-bit
// length. It returns one on success or zero on error.
OPENSSL_EXPORT int CBB_add_u8_length_prefixed(CBB *cbb, CBB *out_contents);
/* CBB_add_u16_length_prefixed sets |*out_contents| to a new child of |cbb|.
* The data written to |*out_contents| will be prefixed in |cbb| with a 16-bit,
* big-endian length. It returns one on success or zero on error. */
// CBB_add_u16_length_prefixed sets |*out_contents| to a new child of |cbb|.
// The data written to |*out_contents| will be prefixed in |cbb| with a 16-bit,
// big-endian length. It returns one on success or zero on error.
OPENSSL_EXPORT int CBB_add_u16_length_prefixed(CBB *cbb, CBB *out_contents);
/* CBB_add_u24_length_prefixed sets |*out_contents| to a new child of |cbb|.
* The data written to |*out_contents| will be prefixed in |cbb| with a 24-bit,
* big-endian length. It returns one on success or zero on error. */
// CBB_add_u24_length_prefixed sets |*out_contents| to a new child of |cbb|.
// The data written to |*out_contents| will be prefixed in |cbb| with a 24-bit,
// big-endian length. It returns one on success or zero on error.
OPENSSL_EXPORT int CBB_add_u24_length_prefixed(CBB *cbb, CBB *out_contents);
/* CBB_add_asn1 sets |*out_contents| to a |CBB| into which the contents of an
* ASN.1 object can be written. The |tag| argument will be used as the tag for
* the object. Passing in |tag| number 31 will return in an error since only
* single octet identifiers are supported. It returns one on success or zero
* on error. */
// CBB_add_asn1 sets |*out_contents| to a |CBB| into which the contents of an
// ASN.1 object can be written. The |tag| argument will be used as the tag for
// the object. Passing in |tag| number 31 will return in an error since only
// single octet identifiers are supported. It returns one on success or zero
// on error.
OPENSSL_EXPORT int CBB_add_asn1(CBB *cbb, CBB *out_contents, unsigned tag);
/* CBB_add_bytes appends |len| bytes from |data| to |cbb|. It returns one on
* success and zero otherwise. */
// CBB_add_bytes appends |len| bytes from |data| to |cbb|. It returns one on
// success and zero otherwise.
OPENSSL_EXPORT int CBB_add_bytes(CBB *cbb, const uint8_t *data, size_t len);
/* CBB_add_space appends |len| bytes to |cbb| and sets |*out_data| to point to
* the beginning of that space. The caller must then write |len| bytes of
* actual contents to |*out_data|. It returns one on success and zero
* otherwise. */
// CBB_add_space appends |len| bytes to |cbb| and sets |*out_data| to point to
// the beginning of that space. The caller must then write |len| bytes of
// actual contents to |*out_data|. It returns one on success and zero
// otherwise.
OPENSSL_EXPORT int CBB_add_space(CBB *cbb, uint8_t **out_data, size_t len);
/* CBB_reserve ensures |cbb| has room for |len| additional bytes and sets
* |*out_data| to point to the beginning of that space. It returns one on
* success and zero otherwise. The caller may write up to |len| bytes to
* |*out_data| and call |CBB_did_write| to complete the write. |*out_data| is
* valid until the next operation on |cbb| or an ancestor |CBB|. */
// CBB_reserve ensures |cbb| has room for |len| additional bytes and sets
// |*out_data| to point to the beginning of that space. It returns one on
// success and zero otherwise. The caller may write up to |len| bytes to
// |*out_data| and call |CBB_did_write| to complete the write. |*out_data| is
// valid until the next operation on |cbb| or an ancestor |CBB|.
OPENSSL_EXPORT int CBB_reserve(CBB *cbb, uint8_t **out_data, size_t len);
/* CBB_did_write advances |cbb| by |len| bytes, assuming the space has been
* written to by the caller. It returns one on success and zero on error. */
// CBB_did_write advances |cbb| by |len| bytes, assuming the space has been
// written to by the caller. It returns one on success and zero on error.
OPENSSL_EXPORT int CBB_did_write(CBB *cbb, size_t len);
/* CBB_add_u8 appends an 8-bit number from |value| to |cbb|. It returns one on
* success and zero otherwise. */
// CBB_add_u8 appends an 8-bit number from |value| to |cbb|. It returns one on
// success and zero otherwise.
OPENSSL_EXPORT int CBB_add_u8(CBB *cbb, uint8_t value);
/* CBB_add_u16 appends a 16-bit, big-endian number from |value| to |cbb|. It
* returns one on success and zero otherwise. */
// CBB_add_u16 appends a 16-bit, big-endian number from |value| to |cbb|. It
// returns one on success and zero otherwise.
OPENSSL_EXPORT int CBB_add_u16(CBB *cbb, uint16_t value);
/* CBB_add_u24 appends a 24-bit, big-endian number from |value| to |cbb|. It
* returns one on success and zero otherwise. */
// CBB_add_u24 appends a 24-bit, big-endian number from |value| to |cbb|. It
// returns one on success and zero otherwise.
OPENSSL_EXPORT int CBB_add_u24(CBB *cbb, uint32_t value);
/* CBB_add_u32 appends a 32-bit, big-endian number from |value| to |cbb|. It
* returns one on success and zero otherwise. */
// CBB_add_u32 appends a 32-bit, big-endian number from |value| to |cbb|. It
// returns one on success and zero otherwise.
OPENSSL_EXPORT int CBB_add_u32(CBB *cbb, uint32_t value);
/* CBB_discard_child discards the current unflushed child of |cbb|. Neither the
* child's contents nor the length prefix will be included in the output. */
// CBB_discard_child discards the current unflushed child of |cbb|. Neither the
// child's contents nor the length prefix will be included in the output.
OPENSSL_EXPORT void CBB_discard_child(CBB *cbb);
/* CBB_add_asn1_uint64 writes an ASN.1 INTEGER into |cbb| using |CBB_add_asn1|
* and writes |value| in its contents. It returns one on success and zero on
* error. */
// CBB_add_asn1_uint64 writes an ASN.1 INTEGER into |cbb| using |CBB_add_asn1|
// and writes |value| in its contents. It returns one on success and zero on
// error.
OPENSSL_EXPORT int CBB_add_asn1_uint64(CBB *cbb, uint64_t value);
#if defined(__cplusplus)
} /* extern C */
} // extern C
#if !defined(BORINGSSL_NO_CXX)
@ -451,4 +451,4 @@ using ScopedCBB = internal::StackAllocated<CBB, void, CBB_zero, CBB_cleanup>;
#endif
#endif /* OPENSSL_HEADER_BYTESTRING_H */
#endif // OPENSSL_HEADER_BYTESTRING_H

View File

@ -72,7 +72,7 @@ extern "C" {
typedef struct cast_key_st {
uint32_t data[32];
int short_key; /* Use reduced rounds for short key */
int short_key; // Use reduced rounds for short key
} CAST_KEY;
OPENSSL_EXPORT void CAST_set_key(CAST_KEY *key, size_t len,
@ -93,4 +93,4 @@ OPENSSL_EXPORT void CAST_cfb64_encrypt(const uint8_t *in, uint8_t *out,
}
#endif
#endif /* OPENSSL_HEADER_CAST_H */
#endif // OPENSSL_HEADER_CAST_H

View File

@ -22,16 +22,16 @@ extern "C" {
#endif
/* CRYPTO_chacha_20 encrypts |in_len| bytes from |in| with the given key and
* nonce and writes the result to |out|. If |in| and |out| alias, they must be
* equal. The initial block counter is specified by |counter|. */
// CRYPTO_chacha_20 encrypts |in_len| bytes from |in| with the given key and
// nonce and writes the result to |out|. If |in| and |out| alias, they must be
// equal. The initial block counter is specified by |counter|.
OPENSSL_EXPORT void CRYPTO_chacha_20(uint8_t *out, const uint8_t *in,
size_t in_len, const uint8_t key[32],
const uint8_t nonce[12], uint32_t counter);
#if defined(__cplusplus)
} /* extern C */
} // extern C
#endif
#endif /* OPENSSL_HEADER_CHACHA_H */
#endif // OPENSSL_HEADER_CHACHA_H

View File

@ -64,13 +64,13 @@ extern "C" {
#endif
/* Ciphers. */
// Ciphers.
/* Cipher primitives.
*
* The following functions return |EVP_CIPHER| objects that implement the named
* cipher algorithm. */
// Cipher primitives.
//
// The following functions return |EVP_CIPHER| objects that implement the named
// cipher algorithm.
OPENSSL_EXPORT const EVP_CIPHER *EVP_rc4(void);
@ -92,242 +92,242 @@ OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_256_ctr(void);
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_256_ofb(void);
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_256_xts(void);
/* EVP_enc_null returns a 'cipher' that passes plaintext through as
* ciphertext. */
// EVP_enc_null returns a 'cipher' that passes plaintext through as
// ciphertext.
OPENSSL_EXPORT const EVP_CIPHER *EVP_enc_null(void);
/* EVP_rc2_cbc returns a cipher that implements 128-bit RC2 in CBC mode. */
// EVP_rc2_cbc returns a cipher that implements 128-bit RC2 in CBC mode.
OPENSSL_EXPORT const EVP_CIPHER *EVP_rc2_cbc(void);
/* EVP_rc2_40_cbc returns a cipher that implements 40-bit RC2 in CBC mode. This
* is obviously very, very weak and is included only in order to read PKCS#12
* files, which often encrypt the certificate chain using this cipher. It is
* deliberately not exported. */
// EVP_rc2_40_cbc returns a cipher that implements 40-bit RC2 in CBC mode. This
// is obviously very, very weak and is included only in order to read PKCS#12
// files, which often encrypt the certificate chain using this cipher. It is
// deliberately not exported.
const EVP_CIPHER *EVP_rc2_40_cbc(void);
/* EVP_get_cipherbynid returns the cipher corresponding to the given NID, or
* NULL if no such cipher is known. */
// EVP_get_cipherbynid returns the cipher corresponding to the given NID, or
// NULL if no such cipher is known.
OPENSSL_EXPORT const EVP_CIPHER *EVP_get_cipherbynid(int nid);
/* Cipher context allocation.
*
* An |EVP_CIPHER_CTX| represents the state of an encryption or decryption in
* progress. */
// Cipher context allocation.
//
// An |EVP_CIPHER_CTX| represents the state of an encryption or decryption in
// progress.
/* EVP_CIPHER_CTX_init initialises an, already allocated, |EVP_CIPHER_CTX|. */
// EVP_CIPHER_CTX_init initialises an, already allocated, |EVP_CIPHER_CTX|.
OPENSSL_EXPORT void EVP_CIPHER_CTX_init(EVP_CIPHER_CTX *ctx);
/* EVP_CIPHER_CTX_new allocates a fresh |EVP_CIPHER_CTX|, calls
* |EVP_CIPHER_CTX_init| and returns it, or NULL on allocation failure. */
// EVP_CIPHER_CTX_new allocates a fresh |EVP_CIPHER_CTX|, calls
// |EVP_CIPHER_CTX_init| and returns it, or NULL on allocation failure.
OPENSSL_EXPORT EVP_CIPHER_CTX *EVP_CIPHER_CTX_new(void);
/* EVP_CIPHER_CTX_cleanup frees any memory referenced by |ctx|. It returns
* one. */
// EVP_CIPHER_CTX_cleanup frees any memory referenced by |ctx|. It returns
// one.
OPENSSL_EXPORT int EVP_CIPHER_CTX_cleanup(EVP_CIPHER_CTX *ctx);
/* EVP_CIPHER_CTX_free calls |EVP_CIPHER_CTX_cleanup| on |ctx| and then frees
* |ctx| itself. */
// EVP_CIPHER_CTX_free calls |EVP_CIPHER_CTX_cleanup| on |ctx| and then frees
// |ctx| itself.
OPENSSL_EXPORT void EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *ctx);
/* EVP_CIPHER_CTX_copy sets |out| to be a duplicate of the current state of
* |in|. The |out| argument must have been previously initialised. */
// EVP_CIPHER_CTX_copy sets |out| to be a duplicate of the current state of
// |in|. The |out| argument must have been previously initialised.
OPENSSL_EXPORT int EVP_CIPHER_CTX_copy(EVP_CIPHER_CTX *out,
const EVP_CIPHER_CTX *in);
/* Cipher context configuration. */
// Cipher context configuration.
/* EVP_CipherInit_ex configures |ctx| for a fresh encryption (or decryption, if
* |enc| is zero) operation using |cipher|. If |ctx| has been previously
* configured with a cipher then |cipher|, |key| and |iv| may be |NULL| and
* |enc| may be -1 to reuse the previous values. The operation will use |key|
* as the key and |iv| as the IV (if any). These should have the correct
* lengths given by |EVP_CIPHER_key_length| and |EVP_CIPHER_iv_length|. It
* returns one on success and zero on error. */
// EVP_CipherInit_ex configures |ctx| for a fresh encryption (or decryption, if
// |enc| is zero) operation using |cipher|. If |ctx| has been previously
// configured with a cipher then |cipher|, |key| and |iv| may be |NULL| and
// |enc| may be -1 to reuse the previous values. The operation will use |key|
// as the key and |iv| as the IV (if any). These should have the correct
// lengths given by |EVP_CIPHER_key_length| and |EVP_CIPHER_iv_length|. It
// returns one on success and zero on error.
OPENSSL_EXPORT int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx,
const EVP_CIPHER *cipher, ENGINE *engine,
const uint8_t *key, const uint8_t *iv,
int enc);
/* EVP_EncryptInit_ex calls |EVP_CipherInit_ex| with |enc| equal to one. */
// EVP_EncryptInit_ex calls |EVP_CipherInit_ex| with |enc| equal to one.
OPENSSL_EXPORT int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx,
const EVP_CIPHER *cipher, ENGINE *impl,
const uint8_t *key, const uint8_t *iv);
/* EVP_DecryptInit_ex calls |EVP_CipherInit_ex| with |enc| equal to zero. */
// EVP_DecryptInit_ex calls |EVP_CipherInit_ex| with |enc| equal to zero.
OPENSSL_EXPORT int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx,
const EVP_CIPHER *cipher, ENGINE *impl,
const uint8_t *key, const uint8_t *iv);
/* Cipher operations. */
// Cipher operations.
/* EVP_EncryptUpdate encrypts |in_len| bytes from |in| to |out|. The number
* of output bytes may be up to |in_len| plus the block length minus one and
* |out| must have sufficient space. The number of bytes actually output is
* written to |*out_len|. It returns one on success and zero otherwise. */
// EVP_EncryptUpdate encrypts |in_len| bytes from |in| to |out|. The number
// of output bytes may be up to |in_len| plus the block length minus one and
// |out| must have sufficient space. The number of bytes actually output is
// written to |*out_len|. It returns one on success and zero otherwise.
OPENSSL_EXPORT int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out,
int *out_len, const uint8_t *in,
int in_len);
/* EVP_EncryptFinal_ex writes at most a block of ciphertext to |out| and sets
* |*out_len| to the number of bytes written. If padding is enabled (the
* default) then standard padding is applied to create the final block. If
* padding is disabled (with |EVP_CIPHER_CTX_set_padding|) then any partial
* block remaining will cause an error. The function returns one on success and
* zero otherwise. */
// EVP_EncryptFinal_ex writes at most a block of ciphertext to |out| and sets
// |*out_len| to the number of bytes written. If padding is enabled (the
// default) then standard padding is applied to create the final block. If
// padding is disabled (with |EVP_CIPHER_CTX_set_padding|) then any partial
// block remaining will cause an error. The function returns one on success and
// zero otherwise.
OPENSSL_EXPORT int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, uint8_t *out,
int *out_len);
/* EVP_DecryptUpdate decrypts |in_len| bytes from |in| to |out|. The number of
* output bytes may be up to |in_len| plus the block length minus one and |out|
* must have sufficient space. The number of bytes actually output is written
* to |*out_len|. It returns one on success and zero otherwise. */
// EVP_DecryptUpdate decrypts |in_len| bytes from |in| to |out|. The number of
// output bytes may be up to |in_len| plus the block length minus one and |out|
// must have sufficient space. The number of bytes actually output is written
// to |*out_len|. It returns one on success and zero otherwise.
OPENSSL_EXPORT int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out,
int *out_len, const uint8_t *in,
int in_len);
/* EVP_DecryptFinal_ex writes at most a block of ciphertext to |out| and sets
* |*out_len| to the number of bytes written. If padding is enabled (the
* default) then padding is removed from the final block.
*
* WARNING: it is unsafe to call this function with unauthenticated
* ciphertext if padding is enabled. */
// EVP_DecryptFinal_ex writes at most a block of ciphertext to |out| and sets
// |*out_len| to the number of bytes written. If padding is enabled (the
// default) then padding is removed from the final block.
//
// WARNING: it is unsafe to call this function with unauthenticated
// ciphertext if padding is enabled.
OPENSSL_EXPORT int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out,
int *out_len);
/* EVP_Cipher performs a one-shot encryption/decryption operation. No partial
* blocks are maintained between calls. However, any internal cipher state is
* still updated. For CBC-mode ciphers, the IV is updated to the final
* ciphertext block. For stream ciphers, the stream is advanced past the bytes
* used. It returns one on success and zero otherwise, unless |EVP_CIPHER_flags|
* has |EVP_CIPH_FLAG_CUSTOM_CIPHER| set. Then it returns the number of bytes
* written or -1 on error.
*
* WARNING: this differs from the usual return value convention when using
* |EVP_CIPH_FLAG_CUSTOM_CIPHER|.
*
* TODO(davidben): The normal ciphers currently never fail, even if, e.g.,
* |in_len| is not a multiple of the block size for CBC-mode decryption. The
* input just gets rounded up while the output gets truncated. This should
* either be officially documented or fail. */
// EVP_Cipher performs a one-shot encryption/decryption operation. No partial
// blocks are maintained between calls. However, any internal cipher state is
// still updated. For CBC-mode ciphers, the IV is updated to the final
// ciphertext block. For stream ciphers, the stream is advanced past the bytes
// used. It returns one on success and zero otherwise, unless |EVP_CIPHER_flags|
// has |EVP_CIPH_FLAG_CUSTOM_CIPHER| set. Then it returns the number of bytes
// written or -1 on error.
//
// WARNING: this differs from the usual return value convention when using
// |EVP_CIPH_FLAG_CUSTOM_CIPHER|.
//
// TODO(davidben): The normal ciphers currently never fail, even if, e.g.,
// |in_len| is not a multiple of the block size for CBC-mode decryption. The
// input just gets rounded up while the output gets truncated. This should
// either be officially documented or fail.
OPENSSL_EXPORT int EVP_Cipher(EVP_CIPHER_CTX *ctx, uint8_t *out,
const uint8_t *in, size_t in_len);
/* EVP_CipherUpdate calls either |EVP_EncryptUpdate| or |EVP_DecryptUpdate|
* depending on how |ctx| has been setup. */
// EVP_CipherUpdate calls either |EVP_EncryptUpdate| or |EVP_DecryptUpdate|
// depending on how |ctx| has been setup.
OPENSSL_EXPORT int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, uint8_t *out,
int *out_len, const uint8_t *in,
int in_len);
/* EVP_CipherFinal_ex calls either |EVP_EncryptFinal_ex| or
* |EVP_DecryptFinal_ex| depending on how |ctx| has been setup. */
// EVP_CipherFinal_ex calls either |EVP_EncryptFinal_ex| or
// |EVP_DecryptFinal_ex| depending on how |ctx| has been setup.
OPENSSL_EXPORT int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, uint8_t *out,
int *out_len);
/* Cipher context accessors. */
// Cipher context accessors.
/* EVP_CIPHER_CTX_cipher returns the |EVP_CIPHER| underlying |ctx|, or NULL if
* none has been set. */
// EVP_CIPHER_CTX_cipher returns the |EVP_CIPHER| underlying |ctx|, or NULL if
// none has been set.
OPENSSL_EXPORT const EVP_CIPHER *EVP_CIPHER_CTX_cipher(
const EVP_CIPHER_CTX *ctx);
/* EVP_CIPHER_CTX_nid returns a NID identifying the |EVP_CIPHER| underlying
* |ctx| (e.g. |NID_aes_128_gcm|). It will crash if no cipher has been
* configured. */
// EVP_CIPHER_CTX_nid returns a NID identifying the |EVP_CIPHER| underlying
// |ctx| (e.g. |NID_aes_128_gcm|). It will crash if no cipher has been
// configured.
OPENSSL_EXPORT int EVP_CIPHER_CTX_nid(const EVP_CIPHER_CTX *ctx);
/* EVP_CIPHER_CTX_block_size returns the block size, in bytes, of the cipher
* underlying |ctx|, or one if the cipher is a stream cipher. It will crash if
* no cipher has been configured. */
// EVP_CIPHER_CTX_block_size returns the block size, in bytes, of the cipher
// underlying |ctx|, or one if the cipher is a stream cipher. It will crash if
// no cipher has been configured.
OPENSSL_EXPORT unsigned EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX *ctx);
/* EVP_CIPHER_CTX_key_length returns the key size, in bytes, of the cipher
* underlying |ctx| or zero if no cipher has been configured. */
// EVP_CIPHER_CTX_key_length returns the key size, in bytes, of the cipher
// underlying |ctx| or zero if no cipher has been configured.
OPENSSL_EXPORT unsigned EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX *ctx);
/* EVP_CIPHER_CTX_iv_length returns the IV size, in bytes, of the cipher
* underlying |ctx|. It will crash if no cipher has been configured. */
// EVP_CIPHER_CTX_iv_length returns the IV size, in bytes, of the cipher
// underlying |ctx|. It will crash if no cipher has been configured.
OPENSSL_EXPORT unsigned EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX *ctx);
/* EVP_CIPHER_CTX_get_app_data returns the opaque, application data pointer for
* |ctx|, or NULL if none has been set. */
// EVP_CIPHER_CTX_get_app_data returns the opaque, application data pointer for
// |ctx|, or NULL if none has been set.
OPENSSL_EXPORT void *EVP_CIPHER_CTX_get_app_data(const EVP_CIPHER_CTX *ctx);
/* EVP_CIPHER_CTX_set_app_data sets the opaque, application data pointer for
* |ctx| to |data|. */
// EVP_CIPHER_CTX_set_app_data sets the opaque, application data pointer for
// |ctx| to |data|.
OPENSSL_EXPORT void EVP_CIPHER_CTX_set_app_data(EVP_CIPHER_CTX *ctx,
void *data);
/* EVP_CIPHER_CTX_flags returns a value which is the OR of zero or more
* |EVP_CIPH_*| flags. It will crash if no cipher has been configured. */
// EVP_CIPHER_CTX_flags returns a value which is the OR of zero or more
// |EVP_CIPH_*| flags. It will crash if no cipher has been configured.
OPENSSL_EXPORT uint32_t EVP_CIPHER_CTX_flags(const EVP_CIPHER_CTX *ctx);
/* EVP_CIPHER_CTX_mode returns one of the |EVP_CIPH_*| cipher mode values
* enumerated below. It will crash if no cipher has been configured. */
// EVP_CIPHER_CTX_mode returns one of the |EVP_CIPH_*| cipher mode values
// enumerated below. It will crash if no cipher has been configured.
OPENSSL_EXPORT uint32_t EVP_CIPHER_CTX_mode(const EVP_CIPHER_CTX *ctx);
/* EVP_CIPHER_CTX_ctrl is an |ioctl| like function. The |command| argument
* should be one of the |EVP_CTRL_*| values. The |arg| and |ptr| arguments are
* specific to the command in question. */
// EVP_CIPHER_CTX_ctrl is an |ioctl| like function. The |command| argument
// should be one of the |EVP_CTRL_*| values. The |arg| and |ptr| arguments are
// specific to the command in question.
OPENSSL_EXPORT int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int command,
int arg, void *ptr);
/* EVP_CIPHER_CTX_set_padding sets whether padding is enabled for |ctx| and
* returns one. Pass a non-zero |pad| to enable padding (the default) or zero
* to disable. */
// EVP_CIPHER_CTX_set_padding sets whether padding is enabled for |ctx| and
// returns one. Pass a non-zero |pad| to enable padding (the default) or zero
// to disable.
OPENSSL_EXPORT int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *ctx, int pad);
/* EVP_CIPHER_CTX_set_key_length sets the key length for |ctx|. This is only
* valid for ciphers that can take a variable length key. It returns one on
* success and zero on error. */
// EVP_CIPHER_CTX_set_key_length sets the key length for |ctx|. This is only
// valid for ciphers that can take a variable length key. It returns one on
// success and zero on error.
OPENSSL_EXPORT int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *ctx,
unsigned key_len);
/* Cipher accessors. */
// Cipher accessors.
/* EVP_CIPHER_nid returns a NID identifying |cipher|. (For example,
* |NID_aes_128_gcm|.) */
// EVP_CIPHER_nid returns a NID identifying |cipher|. (For example,
// |NID_aes_128_gcm|.)
OPENSSL_EXPORT int EVP_CIPHER_nid(const EVP_CIPHER *cipher);
/* EVP_CIPHER_block_size returns the block size, in bytes, for |cipher|, or one
* if |cipher| is a stream cipher. */
// EVP_CIPHER_block_size returns the block size, in bytes, for |cipher|, or one
// if |cipher| is a stream cipher.
OPENSSL_EXPORT unsigned EVP_CIPHER_block_size(const EVP_CIPHER *cipher);
/* EVP_CIPHER_key_length returns the key size, in bytes, for |cipher|. If
* |cipher| can take a variable key length then this function returns the
* default key length and |EVP_CIPHER_flags| will return a value with
* |EVP_CIPH_VARIABLE_LENGTH| set. */
// EVP_CIPHER_key_length returns the key size, in bytes, for |cipher|. If
// |cipher| can take a variable key length then this function returns the
// default key length and |EVP_CIPHER_flags| will return a value with
// |EVP_CIPH_VARIABLE_LENGTH| set.
OPENSSL_EXPORT unsigned EVP_CIPHER_key_length(const EVP_CIPHER *cipher);
/* EVP_CIPHER_iv_length returns the IV size, in bytes, of |cipher|, or zero if
* |cipher| doesn't take an IV. */
// EVP_CIPHER_iv_length returns the IV size, in bytes, of |cipher|, or zero if
// |cipher| doesn't take an IV.
OPENSSL_EXPORT unsigned EVP_CIPHER_iv_length(const EVP_CIPHER *cipher);
/* EVP_CIPHER_flags returns a value which is the OR of zero or more
* |EVP_CIPH_*| flags. */
// EVP_CIPHER_flags returns a value which is the OR of zero or more
// |EVP_CIPH_*| flags.
OPENSSL_EXPORT uint32_t EVP_CIPHER_flags(const EVP_CIPHER *cipher);
/* EVP_CIPHER_mode returns one of the cipher mode values enumerated below. */
// EVP_CIPHER_mode returns one of the cipher mode values enumerated below.
OPENSSL_EXPORT uint32_t EVP_CIPHER_mode(const EVP_CIPHER *cipher);
/* Key derivation. */
// Key derivation.
/* EVP_BytesToKey generates a key and IV for the cipher |type| by iterating
* |md| |count| times using |data| and |salt|. On entry, the |key| and |iv|
* buffers must have enough space to hold a key and IV for |type|. It returns
* the length of the key on success or zero on error. */
// EVP_BytesToKey generates a key and IV for the cipher |type| by iterating
// |md| |count| times using |data| and |salt|. On entry, the |key| and |iv|
// buffers must have enough space to hold a key and IV for |type|. It returns
// the length of the key on success or zero on error.
OPENSSL_EXPORT int EVP_BytesToKey(const EVP_CIPHER *type, const EVP_MD *md,
const uint8_t *salt, const uint8_t *data,
size_t data_len, unsigned count, uint8_t *key,
uint8_t *iv);
/* Cipher modes (for |EVP_CIPHER_mode|). */
// Cipher modes (for |EVP_CIPHER_mode|).
#define EVP_CIPH_STREAM_CIPHER 0x0
#define EVP_CIPH_ECB_MODE 0x1
@ -339,84 +339,84 @@ OPENSSL_EXPORT int EVP_BytesToKey(const EVP_CIPHER *type, const EVP_MD *md,
#define EVP_CIPH_XTS_MODE 0x7
/* Cipher flags (for |EVP_CIPHER_flags|). */
// Cipher flags (for |EVP_CIPHER_flags|).
/* EVP_CIPH_VARIABLE_LENGTH indicates that the cipher takes a variable length
* key. */
// EVP_CIPH_VARIABLE_LENGTH indicates that the cipher takes a variable length
// key.
#define EVP_CIPH_VARIABLE_LENGTH 0x40
/* EVP_CIPH_ALWAYS_CALL_INIT indicates that the |init| function for the cipher
* should always be called when initialising a new operation, even if the key
* is NULL to indicate that the same key is being used. */
// EVP_CIPH_ALWAYS_CALL_INIT indicates that the |init| function for the cipher
// should always be called when initialising a new operation, even if the key
// is NULL to indicate that the same key is being used.
#define EVP_CIPH_ALWAYS_CALL_INIT 0x80
/* EVP_CIPH_CUSTOM_IV indicates that the cipher manages the IV itself rather
* than keeping it in the |iv| member of |EVP_CIPHER_CTX|. */
// EVP_CIPH_CUSTOM_IV indicates that the cipher manages the IV itself rather
// than keeping it in the |iv| member of |EVP_CIPHER_CTX|.
#define EVP_CIPH_CUSTOM_IV 0x100
/* EVP_CIPH_CTRL_INIT indicates that EVP_CTRL_INIT should be used when
* initialising an |EVP_CIPHER_CTX|. */
// EVP_CIPH_CTRL_INIT indicates that EVP_CTRL_INIT should be used when
// initialising an |EVP_CIPHER_CTX|.
#define EVP_CIPH_CTRL_INIT 0x200
/* EVP_CIPH_FLAG_CUSTOM_CIPHER indicates that the cipher manages blocking
* itself. This causes EVP_(En|De)crypt_ex to be simple wrapper functions. */
// EVP_CIPH_FLAG_CUSTOM_CIPHER indicates that the cipher manages blocking
// itself. This causes EVP_(En|De)crypt_ex to be simple wrapper functions.
#define EVP_CIPH_FLAG_CUSTOM_CIPHER 0x400
/* EVP_CIPH_FLAG_AEAD_CIPHER specifies that the cipher is an AEAD. This is an
* older version of the proper AEAD interface. See aead.h for the current
* one. */
// EVP_CIPH_FLAG_AEAD_CIPHER specifies that the cipher is an AEAD. This is an
// older version of the proper AEAD interface. See aead.h for the current
// one.
#define EVP_CIPH_FLAG_AEAD_CIPHER 0x800
/* EVP_CIPH_CUSTOM_COPY indicates that the |ctrl| callback should be called
* with |EVP_CTRL_COPY| at the end of normal |EVP_CIPHER_CTX_copy|
* processing. */
// EVP_CIPH_CUSTOM_COPY indicates that the |ctrl| callback should be called
// with |EVP_CTRL_COPY| at the end of normal |EVP_CIPHER_CTX_copy|
// processing.
#define EVP_CIPH_CUSTOM_COPY 0x1000
/* Deprecated functions */
// Deprecated functions
/* EVP_CipherInit acts like EVP_CipherInit_ex except that |EVP_CIPHER_CTX_init|
* is called on |cipher| first, if |cipher| is not NULL. */
// EVP_CipherInit acts like EVP_CipherInit_ex except that |EVP_CIPHER_CTX_init|
// is called on |cipher| first, if |cipher| is not NULL.
OPENSSL_EXPORT int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
const uint8_t *key, const uint8_t *iv,
int enc);
/* EVP_EncryptInit calls |EVP_CipherInit| with |enc| equal to one. */
// EVP_EncryptInit calls |EVP_CipherInit| with |enc| equal to one.
OPENSSL_EXPORT int EVP_EncryptInit(EVP_CIPHER_CTX *ctx,
const EVP_CIPHER *cipher, const uint8_t *key,
const uint8_t *iv);
/* EVP_DecryptInit calls |EVP_CipherInit| with |enc| equal to zero. */
// EVP_DecryptInit calls |EVP_CipherInit| with |enc| equal to zero.
OPENSSL_EXPORT int EVP_DecryptInit(EVP_CIPHER_CTX *ctx,
const EVP_CIPHER *cipher, const uint8_t *key,
const uint8_t *iv);
/* EVP_add_cipher_alias does nothing and returns one. */
// EVP_add_cipher_alias does nothing and returns one.
OPENSSL_EXPORT int EVP_add_cipher_alias(const char *a, const char *b);
/* EVP_get_cipherbyname returns an |EVP_CIPHER| given a human readable name in
* |name|, or NULL if the name is unknown. */
// EVP_get_cipherbyname returns an |EVP_CIPHER| given a human readable name in
// |name|, or NULL if the name is unknown.
OPENSSL_EXPORT const EVP_CIPHER *EVP_get_cipherbyname(const char *name);
/* These AEADs are deprecated AES-GCM implementations that set
* |EVP_CIPH_FLAG_CUSTOM_CIPHER|. Use |EVP_aead_aes_128_gcm| and
* |EVP_aead_aes_256_gcm| instead. */
// These AEADs are deprecated AES-GCM implementations that set
// |EVP_CIPH_FLAG_CUSTOM_CIPHER|. Use |EVP_aead_aes_128_gcm| and
// |EVP_aead_aes_256_gcm| instead.
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_128_gcm(void);
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_256_gcm(void);
/* These are deprecated, 192-bit version of AES. */
// These are deprecated, 192-bit version of AES.
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_192_ecb(void);
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_192_cbc(void);
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_192_ctr(void);
OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_192_gcm(void);
/* Private functions. */
// Private functions.
/* EVP_CIPH_NO_PADDING disables padding in block ciphers. */
// EVP_CIPH_NO_PADDING disables padding in block ciphers.
#define EVP_CIPH_NO_PADDING 0x800
/* EVP_CIPHER_CTX_ctrl commands. */
// EVP_CIPHER_CTX_ctrl commands.
#define EVP_CTRL_INIT 0x0
#define EVP_CTRL_SET_KEY_LENGTH 0x1
#define EVP_CTRL_GET_RC2_KEY_BITS 0x2
@ -432,15 +432,15 @@ OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_192_gcm(void);
#define EVP_CTRL_GCM_SET_IV_FIXED 0x12
#define EVP_CTRL_GCM_IV_GEN 0x13
#define EVP_CTRL_AEAD_SET_MAC_KEY 0x17
/* Set the GCM invocation field, decrypt only */
// Set the GCM invocation field, decrypt only
#define EVP_CTRL_GCM_SET_IV_INV 0x18
/* GCM TLS constants */
/* Length of fixed part of IV derived from PRF */
// GCM TLS constants
// Length of fixed part of IV derived from PRF
#define EVP_GCM_TLS_FIXED_IV_LEN 4
/* Length of explicit part of IV part of TLS records */
// Length of explicit part of IV part of TLS records
#define EVP_GCM_TLS_EXPLICIT_IV_LEN 8
/* Length of tag for TLS */
// Length of tag for TLS
#define EVP_GCM_TLS_TAG_LEN 16
#define EVP_MAX_KEY_LENGTH 64
@ -448,51 +448,51 @@ OPENSSL_EXPORT const EVP_CIPHER *EVP_aes_192_gcm(void);
#define EVP_MAX_BLOCK_LENGTH 32
struct evp_cipher_ctx_st {
/* cipher contains the underlying cipher for this context. */
// cipher contains the underlying cipher for this context.
const EVP_CIPHER *cipher;
/* app_data is a pointer to opaque, user data. */
void *app_data; /* application stuff */
// app_data is a pointer to opaque, user data.
void *app_data; // application stuff
/* cipher_data points to the |cipher| specific state. */
// cipher_data points to the |cipher| specific state.
void *cipher_data;
/* key_len contains the length of the key, which may differ from
* |cipher->key_len| if the cipher can take a variable key length. */
// key_len contains the length of the key, which may differ from
// |cipher->key_len| if the cipher can take a variable key length.
unsigned key_len;
/* encrypt is one if encrypting and zero if decrypting. */
// encrypt is one if encrypting and zero if decrypting.
int encrypt;
/* flags contains the OR of zero or more |EVP_CIPH_*| flags, above. */
// flags contains the OR of zero or more |EVP_CIPH_*| flags, above.
uint32_t flags;
/* oiv contains the original IV value. */
// oiv contains the original IV value.
uint8_t oiv[EVP_MAX_IV_LENGTH];
/* iv contains the current IV value, which may have been updated. */
// iv contains the current IV value, which may have been updated.
uint8_t iv[EVP_MAX_IV_LENGTH];
/* buf contains a partial block which is used by, for example, CTR mode to
* store unused keystream bytes. */
// buf contains a partial block which is used by, for example, CTR mode to
// store unused keystream bytes.
uint8_t buf[EVP_MAX_BLOCK_LENGTH];
/* buf_len contains the number of bytes of a partial block contained in
* |buf|. */
// buf_len contains the number of bytes of a partial block contained in
// |buf|.
int buf_len;
/* num contains the number of bytes of |iv| which are valid for modes that
* manage partial blocks themselves. */
// num contains the number of bytes of |iv| which are valid for modes that
// manage partial blocks themselves.
unsigned num;
/* final_used is non-zero if the |final| buffer contains plaintext. */
// final_used is non-zero if the |final| buffer contains plaintext.
int final_used;
/* block_mask contains |cipher->block_size| minus one. (The block size
* assumed to be a power of two.) */
// block_mask contains |cipher->block_size| minus one. (The block size
// assumed to be a power of two.)
int block_mask;
uint8_t final[EVP_MAX_BLOCK_LENGTH]; /* possible final block */
uint8_t final[EVP_MAX_BLOCK_LENGTH]; // possible final block
} /* EVP_CIPHER_CTX */;
typedef struct evp_cipher_info_st {
@ -501,28 +501,28 @@ typedef struct evp_cipher_info_st {
} EVP_CIPHER_INFO;
struct evp_cipher_st {
/* type contains a NID identifing the cipher. (e.g. NID_aes_128_gcm.) */
// type contains a NID identifing the cipher. (e.g. NID_aes_128_gcm.)
int nid;
/* block_size contains the block size, in bytes, of the cipher, or 1 for a
* stream cipher. */
// block_size contains the block size, in bytes, of the cipher, or 1 for a
// stream cipher.
unsigned block_size;
/* key_len contains the key size, in bytes, for the cipher. If the cipher
* takes a variable key size then this contains the default size. */
// key_len contains the key size, in bytes, for the cipher. If the cipher
// takes a variable key size then this contains the default size.
unsigned key_len;
/* iv_len contains the IV size, in bytes, or zero if inapplicable. */
// iv_len contains the IV size, in bytes, or zero if inapplicable.
unsigned iv_len;
/* ctx_size contains the size, in bytes, of the per-key context for this
* cipher. */
// ctx_size contains the size, in bytes, of the per-key context for this
// cipher.
unsigned ctx_size;
/* flags contains the OR of a number of flags. See |EVP_CIPH_*|. */
// flags contains the OR of a number of flags. See |EVP_CIPH_*|.
uint32_t flags;
/* app_data is a pointer to opaque, user data. */
// app_data is a pointer to opaque, user data.
void *app_data;
int (*init)(EVP_CIPHER_CTX *ctx, const uint8_t *key, const uint8_t *iv,
@ -531,9 +531,9 @@ struct evp_cipher_st {
int (*cipher)(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
size_t inl);
/* cleanup, if non-NULL, releases memory associated with the context. It is
* called if |EVP_CTRL_INIT| succeeds. Note that |init| may not have been
* called at this point. */
// cleanup, if non-NULL, releases memory associated with the context. It is
// called if |EVP_CTRL_INIT| succeeds. Note that |init| may not have been
// called at this point.
void (*cleanup)(EVP_CIPHER_CTX *);
int (*ctrl)(EVP_CIPHER_CTX *, int type, int arg, void *ptr);
@ -541,7 +541,7 @@ struct evp_cipher_st {
#if defined(__cplusplus)
} /* extern C */
} // extern C
#if !defined(BORINGSSL_NO_CXX)
extern "C++" {
@ -588,4 +588,4 @@ using ScopedEVP_CIPHER_CTX =
#define CIPHER_R_NO_DIRECTION_SET 124
#define CIPHER_R_INVALID_NONCE 125
#endif /* OPENSSL_HEADER_CIPHER_H */
#endif // OPENSSL_HEADER_CIPHER_H

View File

@ -22,55 +22,55 @@ extern "C" {
#endif
/* CMAC.
*
* CMAC is a MAC based on AES-CBC and defined in
* https://tools.ietf.org/html/rfc4493#section-2.3. */
// CMAC.
//
// CMAC is a MAC based on AES-CBC and defined in
// https://tools.ietf.org/html/rfc4493#section-2.3.
/* One-shot functions. */
// One-shot functions.
/* AES_CMAC calculates the 16-byte, CMAC authenticator of |in_len| bytes of
* |in| and writes it to |out|. The |key_len| may be 16 or 32 bytes to select
* between AES-128 and AES-256. It returns one on success or zero on error. */
// AES_CMAC calculates the 16-byte, CMAC authenticator of |in_len| bytes of
// |in| and writes it to |out|. The |key_len| may be 16 or 32 bytes to select
// between AES-128 and AES-256. It returns one on success or zero on error.
OPENSSL_EXPORT int AES_CMAC(uint8_t out[16], const uint8_t *key, size_t key_len,
const uint8_t *in, size_t in_len);
/* Incremental interface. */
// Incremental interface.
/* CMAC_CTX_new allocates a fresh |CMAC_CTX| and returns it, or NULL on
* error. */
// CMAC_CTX_new allocates a fresh |CMAC_CTX| and returns it, or NULL on
// error.
OPENSSL_EXPORT CMAC_CTX *CMAC_CTX_new(void);
/* CMAC_CTX_free frees a |CMAC_CTX|. */
// CMAC_CTX_free frees a |CMAC_CTX|.
OPENSSL_EXPORT void CMAC_CTX_free(CMAC_CTX *ctx);
/* CMAC_Init configures |ctx| to use the given |key| and |cipher|. The CMAC RFC
* only specifies the use of AES-128 thus |key_len| should be 16 and |cipher|
* should be |EVP_aes_128_cbc()|. However, this implementation also supports
* AES-256 by setting |key_len| to 32 and |cipher| to |EVP_aes_256_cbc()|. The
* |engine| argument is ignored.
*
* It returns one on success or zero on error. */
// CMAC_Init configures |ctx| to use the given |key| and |cipher|. The CMAC RFC
// only specifies the use of AES-128 thus |key_len| should be 16 and |cipher|
// should be |EVP_aes_128_cbc()|. However, this implementation also supports
// AES-256 by setting |key_len| to 32 and |cipher| to |EVP_aes_256_cbc()|. The
// |engine| argument is ignored.
//
// It returns one on success or zero on error.
OPENSSL_EXPORT int CMAC_Init(CMAC_CTX *ctx, const void *key, size_t key_len,
const EVP_CIPHER *cipher, ENGINE *engine);
/* CMAC_Reset resets |ctx| so that a fresh message can be authenticated. */
// CMAC_Reset resets |ctx| so that a fresh message can be authenticated.
OPENSSL_EXPORT int CMAC_Reset(CMAC_CTX *ctx);
/* CMAC_Update processes |in_len| bytes of message from |in|. It returns one on
* success or zero on error. */
// CMAC_Update processes |in_len| bytes of message from |in|. It returns one on
// success or zero on error.
OPENSSL_EXPORT int CMAC_Update(CMAC_CTX *ctx, const uint8_t *in, size_t in_len);
/* CMAC_Final sets |*out_len| to 16 and, if |out| is not NULL, writes 16 bytes
* of authenticator to it. It returns one on success or zero on error. */
// CMAC_Final sets |*out_len| to 16 and, if |out| is not NULL, writes 16 bytes
// of authenticator to it. It returns one on success or zero on error.
OPENSSL_EXPORT int CMAC_Final(CMAC_CTX *ctx, uint8_t *out, size_t *out_len);
#if defined(__cplusplus)
} /* extern C */
} // extern C
extern "C++" {
@ -80,8 +80,8 @@ BORINGSSL_MAKE_DELETER(CMAC_CTX, CMAC_CTX_free)
} // namespace bssl
} /* extern C++ */
} // extern C++
#endif
#endif /* OPENSSL_HEADER_CMAC_H */
#endif // OPENSSL_HEADER_CMAC_H

View File

@ -67,17 +67,17 @@ extern "C" {
#endif
/* Config files look like:
*
* # Comment
*
* # This key is in the default section.
* key=value
*
* [section_name]
* key2=value2
*
* Config files are represented by a |CONF|. */
// Config files look like:
//
// # Comment
//
// # This key is in the default section.
// key=value
//
// [section_name]
// key2=value2
//
// Config files are represented by a |CONF|.
struct conf_value_st {
char *section;
@ -92,77 +92,77 @@ struct conf_st {
DEFINE_STACK_OF(CONF_VALUE)
/* NCONF_new returns a fresh, empty |CONF|, or NULL on error. The |method|
* argument must be NULL. */
// NCONF_new returns a fresh, empty |CONF|, or NULL on error. The |method|
// argument must be NULL.
OPENSSL_EXPORT CONF *NCONF_new(void *method);
/* NCONF_free frees all the data owned by |conf| and then |conf| itself. */
// NCONF_free frees all the data owned by |conf| and then |conf| itself.
OPENSSL_EXPORT void NCONF_free(CONF *conf);
/* NCONF_load parses the file named |filename| and adds the values found to
* |conf|. It returns one on success and zero on error. In the event of an
* error, if |out_error_line| is not NULL, |*out_error_line| is set to the
* number of the line that contained the error. */
// NCONF_load parses the file named |filename| and adds the values found to
// |conf|. It returns one on success and zero on error. In the event of an
// error, if |out_error_line| is not NULL, |*out_error_line| is set to the
// number of the line that contained the error.
int NCONF_load(CONF *conf, const char *filename, long *out_error_line);
/* NCONF_load_bio acts like |NCONF_load| but reads from |bio| rather than from
* a named file. */
// NCONF_load_bio acts like |NCONF_load| but reads from |bio| rather than from
// a named file.
int NCONF_load_bio(CONF *conf, BIO *bio, long *out_error_line);
/* NCONF_get_section returns a stack of values for a given section in |conf|.
* If |section| is NULL, the default section is returned. It returns NULL on
* error. */
// NCONF_get_section returns a stack of values for a given section in |conf|.
// If |section| is NULL, the default section is returned. It returns NULL on
// error.
STACK_OF(CONF_VALUE) *NCONF_get_section(const CONF *conf, const char *section);
/* NCONF_get_string returns the value of the key |name|, in section |section|.
* The |section| argument may be NULL to indicate the default section. It
* returns the value or NULL on error. */
// NCONF_get_string returns the value of the key |name|, in section |section|.
// The |section| argument may be NULL to indicate the default section. It
// returns the value or NULL on error.
const char *NCONF_get_string(const CONF *conf, const char *section,
const char *name);
/* Utility functions */
// Utility functions
/* CONF_parse_list takes a list separated by 'sep' and calls |list_cb| giving
* the start and length of each member, optionally stripping leading and
* trailing whitespace. This can be used to parse comma separated lists for
* example. If |list_cb| returns <= 0, then the iteration is halted and that
* value is returned immediately. Otherwise it returns one. Note that |list_cb|
* may be called on an empty member. */
// CONF_parse_list takes a list separated by 'sep' and calls |list_cb| giving
// the start and length of each member, optionally stripping leading and
// trailing whitespace. This can be used to parse comma separated lists for
// example. If |list_cb| returns <= 0, then the iteration is halted and that
// value is returned immediately. Otherwise it returns one. Note that |list_cb|
// may be called on an empty member.
int CONF_parse_list(const char *list, char sep, int remove_whitespace,
int (*list_cb)(const char *elem, int len, void *usr),
void *arg);
/* Deprecated functions */
// Deprecated functions
/* These defines do nothing but are provided to make old code easier to
* compile. */
// These defines do nothing but are provided to make old code easier to
// compile.
#define CONF_MFLAGS_DEFAULT_SECTION 0
#define CONF_MFLAGS_IGNORE_MISSING_FILE 0
typedef struct conf_must_be_null_st CONF_MUST_BE_NULL;
/* CONF_modules_load_file returns one. |filename| was originally a string, with
* NULL indicating the default. BoringSSL does not support configuration files,
* so this stub emulates the "default" no-op file but intentionally breaks
* compilation of consumers actively attempting to use this subsystem. */
// CONF_modules_load_file returns one. |filename| was originally a string, with
// NULL indicating the default. BoringSSL does not support configuration files,
// so this stub emulates the "default" no-op file but intentionally breaks
// compilation of consumers actively attempting to use this subsystem.
OPENSSL_EXPORT int CONF_modules_load_file(CONF_MUST_BE_NULL *filename,
const char *appname,
unsigned long flags);
/* CONF_modules_free does nothing. */
// CONF_modules_free does nothing.
OPENSSL_EXPORT void CONF_modules_free(void);
/* OPENSSL_config does nothing. */
// OPENSSL_config does nothing.
OPENSSL_EXPORT void OPENSSL_config(CONF_MUST_BE_NULL *config_name);
/* OPENSSL_no_config does nothing. */
// OPENSSL_no_config does nothing.
OPENSSL_EXPORT void OPENSSL_no_config(void);
#if defined(__cplusplus)
} /* extern C */
} // extern C
extern "C++" {
@ -172,7 +172,7 @@ BORINGSSL_MAKE_DELETER(CONF, NCONF_free)
} // namespace bssl
} /* extern C++ */
} // extern C++
#endif
@ -184,4 +184,4 @@ BORINGSSL_MAKE_DELETER(CONF, NCONF_free)
#define CONF_R_VARIABLE_HAS_NO_VALUE 105
#define CONF_R_VARIABLE_EXPANSION_TOO_LONG 106
#endif /* OPENSSL_HEADER_THREAD_H */
#endif // OPENSSL_HEADER_THREAD_H

View File

@ -68,28 +68,28 @@ extern "C" {
#endif
/* Runtime CPU feature support */
// Runtime CPU feature support
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
/* OPENSSL_ia32cap_P contains the Intel CPUID bits when running on an x86 or
* x86-64 system.
*
* Index 0:
* EDX for CPUID where EAX = 1
* Bit 20 is always zero
* Bit 28 is adjusted to reflect whether the data cache is shared between
* multiple logical cores
* Bit 30 is used to indicate an Intel CPU
* Index 1:
* ECX for CPUID where EAX = 1
* Bit 11 is used to indicate AMD XOP support, not SDBG
* Index 2:
* EBX for CPUID where EAX = 7
* Index 3 is set to zero.
*
* Note: the CPUID bits are pre-adjusted for the OSXSAVE bit and the YMM and XMM
* bits in XCR0, so it is not necessary to check those. */
// OPENSSL_ia32cap_P contains the Intel CPUID bits when running on an x86 or
// x86-64 system.
//
// Index 0:
// EDX for CPUID where EAX = 1
// Bit 20 is always zero
// Bit 28 is adjusted to reflect whether the data cache is shared between
// multiple logical cores
// Bit 30 is used to indicate an Intel CPU
// Index 1:
// ECX for CPUID where EAX = 1
// Bit 11 is used to indicate AMD XOP support, not SDBG
// Index 2:
// EBX for CPUID where EAX = 7
// Index 3 is set to zero.
//
// Note: the CPUID bits are pre-adjusted for the OSXSAVE bit and the YMM and XMM
// bits in XCR0, so it is not necessary to check those.
extern uint32_t OPENSSL_ia32cap_P[4];
#if defined(BORINGSSL_FIPS)
@ -105,25 +105,25 @@ static inline const uint32_t *OPENSSL_ia32cap_get(void) {
#if defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)
#if defined(OPENSSL_APPLE)
/* iOS builds use the static ARM configuration. */
// iOS builds use the static ARM configuration.
#define OPENSSL_STATIC_ARMCAP
#endif
#if !defined(OPENSSL_STATIC_ARMCAP)
/* CRYPTO_is_NEON_capable_at_runtime returns true if the current CPU has a NEON
* unit. Note that |OPENSSL_armcap_P| also exists and contains the same
* information in a form that's easier for assembly to use. */
// CRYPTO_is_NEON_capable_at_runtime returns true if the current CPU has a NEON
// unit. Note that |OPENSSL_armcap_P| also exists and contains the same
// information in a form that's easier for assembly to use.
OPENSSL_EXPORT char CRYPTO_is_NEON_capable_at_runtime(void);
/* CRYPTO_is_NEON_capable returns true if the current CPU has a NEON unit. If
* this is known statically then it returns one immediately. */
// CRYPTO_is_NEON_capable returns true if the current CPU has a NEON unit. If
// this is known statically then it returns one immediately.
static inline int CRYPTO_is_NEON_capable(void) {
/* Only statically skip the runtime lookup on aarch64. On arm, one CPU is
* known to have a broken NEON unit which is known to fail with on some
* hand-written NEON assembly. For now, continue to apply the workaround even
* when the compiler is instructed to freely emit NEON code. See
* https://crbug.com/341598 and https://crbug.com/606629. */
// Only statically skip the runtime lookup on aarch64. On arm, one CPU is
// known to have a broken NEON unit which is known to fail with on some
// hand-written NEON assembly. For now, continue to apply the workaround even
// when the compiler is instructed to freely emit NEON code. See
// https://crbug.com/341598 and https://crbug.com/606629.
#if defined(__ARM_NEON__) && !defined(OPENSSL_ARM)
return 1;
#else
@ -132,17 +132,17 @@ static inline int CRYPTO_is_NEON_capable(void) {
}
#if defined(OPENSSL_ARM)
/* CRYPTO_has_broken_NEON returns one if the current CPU is known to have a
* broken NEON unit. See https://crbug.com/341598. */
// CRYPTO_has_broken_NEON returns one if the current CPU is known to have a
// broken NEON unit. See https://crbug.com/341598.
OPENSSL_EXPORT int CRYPTO_has_broken_NEON(void);
#endif
/* CRYPTO_is_ARMv8_AES_capable returns true if the current CPU supports the
* ARMv8 AES instruction. */
// CRYPTO_is_ARMv8_AES_capable returns true if the current CPU supports the
// ARMv8 AES instruction.
int CRYPTO_is_ARMv8_AES_capable(void);
/* CRYPTO_is_ARMv8_PMULL_capable returns true if the current CPU supports the
* ARMv8 PMULL instruction. */
// CRYPTO_is_ARMv8_PMULL_capable returns true if the current CPU supports the
// ARMv8 PMULL instruction.
int CRYPTO_is_ARMv8_PMULL_capable(void);
#else
@ -171,22 +171,22 @@ static inline int CRYPTO_is_ARMv8_PMULL_capable(void) {
#endif
}
#endif /* OPENSSL_STATIC_ARMCAP */
#endif /* OPENSSL_ARM || OPENSSL_AARCH64 */
#endif // OPENSSL_STATIC_ARMCAP
#endif // OPENSSL_ARM || OPENSSL_AARCH64
#if defined(OPENSSL_PPC64LE)
/* CRYPTO_is_PPC64LE_vcrypto_capable returns true iff the current CPU supports
* the Vector.AES category of instructions. */
// CRYPTO_is_PPC64LE_vcrypto_capable returns true iff the current CPU supports
// the Vector.AES category of instructions.
int CRYPTO_is_PPC64LE_vcrypto_capable(void);
extern unsigned long OPENSSL_ppc64le_hwcap2;
#endif /* OPENSSL_PPC64LE */
#endif // OPENSSL_PPC64LE
#if defined(__cplusplus)
} /* extern C */
} // extern C
#endif
#endif /* OPENSSL_HEADER_CPU_H */
#endif // OPENSSL_HEADER_CPU_H

View File

@ -17,12 +17,12 @@
#include <openssl/base.h>
/* Upstream OpenSSL defines |OPENSSL_malloc|, etc., in crypto.h rather than
* mem.h. */
// Upstream OpenSSL defines |OPENSSL_malloc|, etc., in crypto.h rather than
// mem.h.
#include <openssl/mem.h>
/* Upstream OpenSSL defines |CRYPTO_LOCK|, etc., in crypto.h rather than
* thread.h. */
// Upstream OpenSSL defines |CRYPTO_LOCK|, etc., in crypto.h rather than
// thread.h.
#include <openssl/thread.h>
@ -31,65 +31,65 @@ extern "C" {
#endif
/* crypto.h contains functions for initializing the crypto library. */
// crypto.h contains functions for initializing the crypto library.
/* CRYPTO_library_init initializes the crypto library. It must be called if the
* library is built with BORINGSSL_NO_STATIC_INITIALIZER. Otherwise, it does
* nothing and a static initializer is used instead. It is safe to call this
* function multiple times and concurrently from multiple threads.
*
* On some ARM configurations, this function may require filesystem access and
* should be called before entering a sandbox. */
// CRYPTO_library_init initializes the crypto library. It must be called if the
// library is built with BORINGSSL_NO_STATIC_INITIALIZER. Otherwise, it does
// nothing and a static initializer is used instead. It is safe to call this
// function multiple times and concurrently from multiple threads.
//
// On some ARM configurations, this function may require filesystem access and
// should be called before entering a sandbox.
OPENSSL_EXPORT void CRYPTO_library_init(void);
/* CRYPTO_is_confidential_build returns one if the linked version of BoringSSL
* has been built with the BORINGSSL_CONFIDENTIAL define and zero otherwise.
*
* This is used by some consumers to identify whether they are using an
* internal version of BoringSSL. */
// CRYPTO_is_confidential_build returns one if the linked version of BoringSSL
// has been built with the BORINGSSL_CONFIDENTIAL define and zero otherwise.
//
// This is used by some consumers to identify whether they are using an
// internal version of BoringSSL.
OPENSSL_EXPORT int CRYPTO_is_confidential_build(void);
/* CRYPTO_has_asm returns one unless BoringSSL was built with OPENSSL_NO_ASM,
* in which case it returns zero. */
// CRYPTO_has_asm returns one unless BoringSSL was built with OPENSSL_NO_ASM,
// in which case it returns zero.
OPENSSL_EXPORT int CRYPTO_has_asm(void);
/* FIPS_mode returns zero unless BoringSSL is built with BORINGSSL_FIPS, in
* which case it returns one. */
// FIPS_mode returns zero unless BoringSSL is built with BORINGSSL_FIPS, in
// which case it returns one.
OPENSSL_EXPORT int FIPS_mode(void);
/* Deprecated functions. */
// Deprecated functions.
/* OPENSSL_VERSION_TEXT contains a string the identifies the version of
* OpenSSL. node.js requires a version number in this text. */
// OPENSSL_VERSION_TEXT contains a string the identifies the version of
// “OpenSSL”. node.js requires a version number in this text.
#define OPENSSL_VERSION_TEXT "OpenSSL 1.0.2 (compatible; BoringSSL)"
#define SSLEAY_VERSION 0
/* SSLeay_version is a compatibility function that returns the string
* "BoringSSL". */
// SSLeay_version is a compatibility function that returns the string
// "BoringSSL".
OPENSSL_EXPORT const char *SSLeay_version(int unused);
/* SSLeay is a compatibility function that returns OPENSSL_VERSION_NUMBER from
* base.h. */
// SSLeay is a compatibility function that returns OPENSSL_VERSION_NUMBER from
// base.h.
OPENSSL_EXPORT unsigned long SSLeay(void);
/* CRYPTO_malloc_init returns one. */
// CRYPTO_malloc_init returns one.
OPENSSL_EXPORT int CRYPTO_malloc_init(void);
/* ENGINE_load_builtin_engines does nothing. */
// ENGINE_load_builtin_engines does nothing.
OPENSSL_EXPORT void ENGINE_load_builtin_engines(void);
/* ENGINE_register_all_complete returns one. */
// ENGINE_register_all_complete returns one.
OPENSSL_EXPORT int ENGINE_register_all_complete(void);
/* OPENSSL_load_builtin_modules does nothing. */
// OPENSSL_load_builtin_modules does nothing.
OPENSSL_EXPORT void OPENSSL_load_builtin_modules(void);
#if defined(__cplusplus)
} /* extern C */
} // extern C
#endif
#endif /* OPENSSL_HEADER_CRYPTO_H */
#endif // OPENSSL_HEADER_CRYPTO_H

View File

@ -22,160 +22,160 @@ extern "C" {
#endif
/* Curve25519.
*
* Curve25519 is an elliptic curve. See https://tools.ietf.org/html/rfc7748. */
// Curve25519.
//
// Curve25519 is an elliptic curve. See https://tools.ietf.org/html/rfc7748.
/* X25519.
*
* X25519 is the Diffie-Hellman primitive built from curve25519. It is
* sometimes referred to as curve25519, but X25519 is a more precise name.
* See http://cr.yp.to/ecdh.html and https://tools.ietf.org/html/rfc7748. */
// X25519.
//
// X25519 is the Diffie-Hellman primitive built from curve25519. It is
// sometimes referred to as “curve25519”, but “X25519” is a more precise name.
// See http://cr.yp.to/ecdh.html and https://tools.ietf.org/html/rfc7748.
#define X25519_PRIVATE_KEY_LEN 32
#define X25519_PUBLIC_VALUE_LEN 32
#define X25519_SHARED_KEY_LEN 32
/* X25519_keypair sets |out_public_value| and |out_private_key| to a freshly
* generated, publicprivate key pair. */
// X25519_keypair sets |out_public_value| and |out_private_key| to a freshly
// generated, publicprivate key pair.
OPENSSL_EXPORT void X25519_keypair(uint8_t out_public_value[32],
uint8_t out_private_key[32]);
/* X25519 writes a shared key to |out_shared_key| that is calculated from the
* given private key and the peer's public value. It returns one on success and
* zero on error.
*
* Don't use the shared key directly, rather use a KDF and also include the two
* public values as inputs. */
// X25519 writes a shared key to |out_shared_key| that is calculated from the
// given private key and the peer's public value. It returns one on success and
// zero on error.
//
// Don't use the shared key directly, rather use a KDF and also include the two
// public values as inputs.
OPENSSL_EXPORT int X25519(uint8_t out_shared_key[32],
const uint8_t private_key[32],
const uint8_t peer_public_value[32]);
/* X25519_public_from_private calculates a Diffie-Hellman public value from the
* given private key and writes it to |out_public_value|. */
// X25519_public_from_private calculates a Diffie-Hellman public value from the
// given private key and writes it to |out_public_value|.
OPENSSL_EXPORT void X25519_public_from_private(uint8_t out_public_value[32],
const uint8_t private_key[32]);
/* Ed25519.
*
* Ed25519 is a signature scheme using a twisted-Edwards curve that is
* birationally equivalent to curve25519.
*
* Note that, unlike RFC 8032's formulation, our private key representation
* includes a public key suffix to make multiple key signing operations with the
* same key more efficient. The RFC 8032 key private key is referred to in this
* implementation as the "seed" and is the first 32 bytes of our private key. */
// Ed25519.
//
// Ed25519 is a signature scheme using a twisted-Edwards curve that is
// birationally equivalent to curve25519.
//
// Note that, unlike RFC 8032's formulation, our private key representation
// includes a public key suffix to make multiple key signing operations with the
// same key more efficient. The RFC 8032 key private key is referred to in this
// implementation as the "seed" and is the first 32 bytes of our private key.
#define ED25519_PRIVATE_KEY_LEN 64
#define ED25519_PUBLIC_KEY_LEN 32
#define ED25519_SIGNATURE_LEN 64
/* ED25519_keypair sets |out_public_key| and |out_private_key| to a freshly
* generated, publicprivate key pair. */
// ED25519_keypair sets |out_public_key| and |out_private_key| to a freshly
// generated, publicprivate key pair.
OPENSSL_EXPORT void ED25519_keypair(uint8_t out_public_key[32],
uint8_t out_private_key[64]);
/* ED25519_sign sets |out_sig| to be a signature of |message_len| bytes from
* |message| using |private_key|. It returns one on success or zero on
* error. */
// ED25519_sign sets |out_sig| to be a signature of |message_len| bytes from
// |message| using |private_key|. It returns one on success or zero on
// error.
OPENSSL_EXPORT int ED25519_sign(uint8_t out_sig[64], const uint8_t *message,
size_t message_len,
const uint8_t private_key[64]);
/* ED25519_verify returns one iff |signature| is a valid signature, by
* |public_key| of |message_len| bytes from |message|. It returns zero
* otherwise. */
// ED25519_verify returns one iff |signature| is a valid signature, by
// |public_key| of |message_len| bytes from |message|. It returns zero
// otherwise.
OPENSSL_EXPORT int ED25519_verify(const uint8_t *message, size_t message_len,
const uint8_t signature[64],
const uint8_t public_key[32]);
/* ED25519_keypair_from_seed calculates a public and private key from an
* Ed25519 seed. Seed values are not exposed by this API (although they
* happen to be the first 32 bytes of a private key) so this function is for
* interoperating with systems that may store just a seed instead of a full
* private key. */
// ED25519_keypair_from_seed calculates a public and private key from an
// Ed25519 “seed”. Seed values are not exposed by this API (although they
// happen to be the first 32 bytes of a private key) so this function is for
// interoperating with systems that may store just a seed instead of a full
// private key.
OPENSSL_EXPORT void ED25519_keypair_from_seed(uint8_t out_public_key[32],
uint8_t out_private_key[64],
const uint8_t seed[32]);
/* SPAKE2.
*
* SPAKE2 is a password-authenticated key-exchange. It allows two parties,
* who share a low-entropy secret (i.e. password), to agree on a shared key.
* An attacker can only make one guess of the password per execution of the
* protocol.
*
* See https://tools.ietf.org/html/draft-irtf-cfrg-spake2-02. */
// SPAKE2.
//
// SPAKE2 is a password-authenticated key-exchange. It allows two parties,
// who share a low-entropy secret (i.e. password), to agree on a shared key.
// An attacker can only make one guess of the password per execution of the
// protocol.
//
// See https://tools.ietf.org/html/draft-irtf-cfrg-spake2-02.
/* spake2_role_t enumerates the different “roles” in SPAKE2. The protocol
* requires that the symmetry of the two parties be broken so one participant
* must be Alice and the other be Bob. */
// spake2_role_t enumerates the different “roles” in SPAKE2. The protocol
// requires that the symmetry of the two parties be broken so one participant
// must be “Alice” and the other be “Bob”.
enum spake2_role_t {
spake2_role_alice,
spake2_role_bob,
};
/* SPAKE2_CTX_new creates a new |SPAKE2_CTX| (which can only be used for a
* single execution of the protocol). SPAKE2 requires the symmetry of the two
* parties to be broken which is indicated via |my_role| each party must pass
* a different value for this argument.
*
* The |my_name| and |their_name| arguments allow optional, opaque names to be
* bound into the protocol. For example MAC addresses, hostnames, usernames
* etc. These values are not exposed and can avoid context-confusion attacks
* when a password is shared between several devices. */
// SPAKE2_CTX_new creates a new |SPAKE2_CTX| (which can only be used for a
// single execution of the protocol). SPAKE2 requires the symmetry of the two
// parties to be broken which is indicated via |my_role| each party must pass
// a different value for this argument.
//
// The |my_name| and |their_name| arguments allow optional, opaque names to be
// bound into the protocol. For example MAC addresses, hostnames, usernames
// etc. These values are not exposed and can avoid context-confusion attacks
// when a password is shared between several devices.
OPENSSL_EXPORT SPAKE2_CTX *SPAKE2_CTX_new(
enum spake2_role_t my_role,
const uint8_t *my_name, size_t my_name_len,
const uint8_t *their_name, size_t their_name_len);
/* SPAKE2_CTX_free frees |ctx| and all the resources that it has allocated. */
// SPAKE2_CTX_free frees |ctx| and all the resources that it has allocated.
OPENSSL_EXPORT void SPAKE2_CTX_free(SPAKE2_CTX *ctx);
/* SPAKE2_MAX_MSG_SIZE is the maximum size of a SPAKE2 message. */
// SPAKE2_MAX_MSG_SIZE is the maximum size of a SPAKE2 message.
#define SPAKE2_MAX_MSG_SIZE 32
/* SPAKE2_generate_msg generates a SPAKE2 message given |password|, writes
* it to |out| and sets |*out_len| to the number of bytes written.
*
* At most |max_out_len| bytes are written to |out| and, in order to ensure
* success, |max_out_len| should be at least |SPAKE2_MAX_MSG_SIZE| bytes.
*
* This function can only be called once for a given |SPAKE2_CTX|.
*
* It returns one on success and zero on error. */
// SPAKE2_generate_msg generates a SPAKE2 message given |password|, writes
// it to |out| and sets |*out_len| to the number of bytes written.
//
// At most |max_out_len| bytes are written to |out| and, in order to ensure
// success, |max_out_len| should be at least |SPAKE2_MAX_MSG_SIZE| bytes.
//
// This function can only be called once for a given |SPAKE2_CTX|.
//
// It returns one on success and zero on error.
OPENSSL_EXPORT int SPAKE2_generate_msg(SPAKE2_CTX *ctx, uint8_t *out,
size_t *out_len, size_t max_out_len,
const uint8_t *password,
size_t password_len);
/* SPAKE2_MAX_KEY_SIZE is the maximum amount of key material that SPAKE2 will
* produce. */
// SPAKE2_MAX_KEY_SIZE is the maximum amount of key material that SPAKE2 will
// produce.
#define SPAKE2_MAX_KEY_SIZE 64
/* SPAKE2_process_msg completes the SPAKE2 exchange given the peer's message in
* |their_msg|, writes at most |max_out_key_len| bytes to |out_key| and sets
* |*out_key_len| to the number of bytes written.
*
* The resulting keying material is suitable for:
* a) Using directly in a key-confirmation step: i.e. each side could
* transmit a hash of their role, a channel-binding value and the key
* material to prove to the other side that they know the shared key.
* b) Using as input keying material to HKDF to generate a variety of subkeys
* for encryption etc.
*
* If |max_out_key_key| is smaller than the amount of key material generated
* then the key is silently truncated. If you want to ensure that no truncation
* occurs then |max_out_key| should be at least |SPAKE2_MAX_KEY_SIZE|.
*
* You must call |SPAKE2_generate_msg| on a given |SPAKE2_CTX| before calling
* this function. On successful return, |ctx| is complete and calling
* |SPAKE2_CTX_free| is the only acceptable operation on it.
*
* Returns one on success or zero on error. */
// SPAKE2_process_msg completes the SPAKE2 exchange given the peer's message in
// |their_msg|, writes at most |max_out_key_len| bytes to |out_key| and sets
// |*out_key_len| to the number of bytes written.
//
// The resulting keying material is suitable for:
// a) Using directly in a key-confirmation step: i.e. each side could
// transmit a hash of their role, a channel-binding value and the key
// material to prove to the other side that they know the shared key.
// b) Using as input keying material to HKDF to generate a variety of subkeys
// for encryption etc.
//
// If |max_out_key_key| is smaller than the amount of key material generated
// then the key is silently truncated. If you want to ensure that no truncation
// occurs then |max_out_key| should be at least |SPAKE2_MAX_KEY_SIZE|.
//
// You must call |SPAKE2_generate_msg| on a given |SPAKE2_CTX| before calling
// this function. On successful return, |ctx| is complete and calling
// |SPAKE2_CTX_free| is the only acceptable operation on it.
//
// Returns one on success or zero on error.
OPENSSL_EXPORT int SPAKE2_process_msg(SPAKE2_CTX *ctx, uint8_t *out_key,
size_t *out_key_len,
size_t max_out_key_len,
@ -184,7 +184,7 @@ OPENSSL_EXPORT int SPAKE2_process_msg(SPAKE2_CTX *ctx, uint8_t *out_key,
#if defined(__cplusplus)
} /* extern C */
} // extern C
extern "C++" {
@ -194,8 +194,8 @@ BORINGSSL_MAKE_DELETER(SPAKE2_CTX, SPAKE2_CTX_free)
} // namespace bssl
} /* extern C++ */
} // extern C++
#endif
#endif /* OPENSSL_HEADER_CURVE25519_H */
#endif // OPENSSL_HEADER_CURVE25519_H

View File

@ -64,7 +64,7 @@ extern "C" {
#endif
/* DES. */
// DES.
typedef struct DES_cblock_st {
@ -85,30 +85,30 @@ typedef struct DES_ks {
#define DES_CBC_MODE 0
#define DES_PCBC_MODE 1
/* DES_set_key performs a key schedule and initialises |schedule| with |key|. */
// DES_set_key performs a key schedule and initialises |schedule| with |key|.
OPENSSL_EXPORT void DES_set_key(const DES_cblock *key,
DES_key_schedule *schedule);
/* DES_set_odd_parity sets the parity bits (the least-significant bits in each
* byte) of |key| given the other bits in each byte. */
// DES_set_odd_parity sets the parity bits (the least-significant bits in each
// byte) of |key| given the other bits in each byte.
OPENSSL_EXPORT void DES_set_odd_parity(DES_cblock *key);
/* DES_ecb_encrypt encrypts (or decrypts, if |is_encrypt| is |DES_DECRYPT|) a
* single DES block (8 bytes) from in to out, using the key configured in
* |schedule|. */
// DES_ecb_encrypt encrypts (or decrypts, if |is_encrypt| is |DES_DECRYPT|) a
// single DES block (8 bytes) from in to out, using the key configured in
// |schedule|.
OPENSSL_EXPORT void DES_ecb_encrypt(const DES_cblock *in, DES_cblock *out,
const DES_key_schedule *schedule,
int is_encrypt);
/* DES_ncbc_encrypt encrypts (or decrypts, if |enc| is |DES_DECRYPT|) |len|
* bytes from |in| to |out| with DES in CBC mode. */
// DES_ncbc_encrypt encrypts (or decrypts, if |enc| is |DES_DECRYPT|) |len|
// bytes from |in| to |out| with DES in CBC mode.
OPENSSL_EXPORT void DES_ncbc_encrypt(const uint8_t *in, uint8_t *out,
size_t len,
const DES_key_schedule *schedule,
DES_cblock *ivec, int enc);
/* DES_ecb3_encrypt encrypts (or decrypts, if |enc| is |DES_DECRYPT|) a single
* block (8 bytes) of data from |input| to |output| using 3DES. */
// DES_ecb3_encrypt encrypts (or decrypts, if |enc| is |DES_DECRYPT|) a single
// block (8 bytes) of data from |input| to |output| using 3DES.
OPENSSL_EXPORT void DES_ecb3_encrypt(const DES_cblock *input,
DES_cblock *output,
const DES_key_schedule *ks1,
@ -116,9 +116,9 @@ OPENSSL_EXPORT void DES_ecb3_encrypt(const DES_cblock *input,
const DES_key_schedule *ks3,
int enc);
/* DES_ede3_cbc_encrypt encrypts (or decrypts, if |enc| is |DES_DECRYPT|) |len|
* bytes from |in| to |out| with 3DES in CBC mode. 3DES uses three keys, thus
* the function takes three different |DES_key_schedule|s. */
// DES_ede3_cbc_encrypt encrypts (or decrypts, if |enc| is |DES_DECRYPT|) |len|
// bytes from |in| to |out| with 3DES in CBC mode. 3DES uses three keys, thus
// the function takes three different |DES_key_schedule|s.
OPENSSL_EXPORT void DES_ede3_cbc_encrypt(const uint8_t *in, uint8_t *out,
size_t len,
const DES_key_schedule *ks1,
@ -126,10 +126,10 @@ OPENSSL_EXPORT void DES_ede3_cbc_encrypt(const uint8_t *in, uint8_t *out,
const DES_key_schedule *ks3,
DES_cblock *ivec, int enc);
/* DES_ede2_cbc_encrypt encrypts (or decrypts, if |enc| is |DES_DECRYPT|) |len|
* bytes from |in| to |out| with 3DES in CBC mode. With this keying option, the
* first and third 3DES keys are identical. Thus, this function takes only two
* different |DES_key_schedule|s. */
// DES_ede2_cbc_encrypt encrypts (or decrypts, if |enc| is |DES_DECRYPT|) |len|
// bytes from |in| to |out| with 3DES in CBC mode. With this keying option, the
// first and third 3DES keys are identical. Thus, this function takes only two
// different |DES_key_schedule|s.
OPENSSL_EXPORT void DES_ede2_cbc_encrypt(const uint8_t *in, uint8_t *out,
size_t len,
const DES_key_schedule *ks1,
@ -137,9 +137,9 @@ OPENSSL_EXPORT void DES_ede2_cbc_encrypt(const uint8_t *in, uint8_t *out,
DES_cblock *ivec, int enc);
/* Deprecated functions. */
// Deprecated functions.
/* DES_set_key_unchecked calls |DES_set_key|. */
// DES_set_key_unchecked calls |DES_set_key|.
OPENSSL_EXPORT void DES_set_key_unchecked(const DES_cblock *key,
DES_key_schedule *schedule);
@ -157,9 +157,9 @@ OPENSSL_EXPORT void DES_ede3_cfb_encrypt(const uint8_t *in, uint8_t *out,
DES_cblock *ivec, int enc);
/* Private functions.
*
* These functions are only exported for use in |decrepit|. */
// Private functions.
//
// These functions are only exported for use in |decrepit|.
OPENSSL_EXPORT void DES_decrypt3(uint32_t *data, const DES_key_schedule *ks1,
const DES_key_schedule *ks2,
@ -171,7 +171,7 @@ OPENSSL_EXPORT void DES_encrypt3(uint32_t *data, const DES_key_schedule *ks1,
#if defined(__cplusplus)
} /* extern C */
} // extern C
#endif
#endif /* OPENSSL_HEADER_DES_H */
#endif // OPENSSL_HEADER_DES_H

View File

@ -67,83 +67,83 @@ extern "C" {
#endif
/* DH contains functions for performing Diffie-Hellman key agreement in
* multiplicative groups. */
// DH contains functions for performing Diffie-Hellman key agreement in
// multiplicative groups.
/* Allocation and destruction. */
// Allocation and destruction.
/* DH_new returns a new, empty DH object or NULL on error. */
// DH_new returns a new, empty DH object or NULL on error.
OPENSSL_EXPORT DH *DH_new(void);
/* DH_free decrements the reference count of |dh| and frees it if the reference
* count drops to zero. */
// DH_free decrements the reference count of |dh| and frees it if the reference
// count drops to zero.
OPENSSL_EXPORT void DH_free(DH *dh);
/* DH_up_ref increments the reference count of |dh| and returns one. */
// DH_up_ref increments the reference count of |dh| and returns one.
OPENSSL_EXPORT int DH_up_ref(DH *dh);
/* Properties. */
// Properties.
/* DH_get0_key sets |*out_pub_key| and |*out_priv_key|, if non-NULL, to |dh|'s
* public and private key, respectively. If |dh| is a public key, the private
* key will be set to NULL. */
// DH_get0_key sets |*out_pub_key| and |*out_priv_key|, if non-NULL, to |dh|'s
// public and private key, respectively. If |dh| is a public key, the private
// key will be set to NULL.
OPENSSL_EXPORT void DH_get0_key(const DH *dh, const BIGNUM **out_pub_key,
const BIGNUM **out_priv_key);
/* DH_get0_pqg sets |*out_p|, |*out_q|, and |*out_g|, if non-NULL, to |dh|'s p,
* q, and g parameters, respectively. */
// DH_get0_pqg sets |*out_p|, |*out_q|, and |*out_g|, if non-NULL, to |dh|'s p,
// q, and g parameters, respectively.
OPENSSL_EXPORT void DH_get0_pqg(const DH *dh, const BIGNUM **out_p,
const BIGNUM **out_q, const BIGNUM **out_g);
/* Standard parameters. */
// Standard parameters.
/* BN_get_rfc3526_prime_1536 sets |*ret| to the 1536-bit MODP group from RFC
* 3526 and returns |ret|. If |ret| is NULL then a fresh |BIGNUM| is allocated
* and returned. It returns NULL on allocation failure. */
// BN_get_rfc3526_prime_1536 sets |*ret| to the 1536-bit MODP group from RFC
// 3526 and returns |ret|. If |ret| is NULL then a fresh |BIGNUM| is allocated
// and returned. It returns NULL on allocation failure.
OPENSSL_EXPORT BIGNUM *BN_get_rfc3526_prime_1536(BIGNUM *ret);
/* Parameter generation. */
// Parameter generation.
#define DH_GENERATOR_2 2
#define DH_GENERATOR_5 5
/* DH_generate_parameters_ex generates a suitable Diffie-Hellman group with a
* prime that is |prime_bits| long and stores it in |dh|. The generator of the
* group will be |generator|, which should be |DH_GENERATOR_2| unless there's a
* good reason to use a different value. The |cb| argument contains a callback
* function that will be called during the generation. See the documentation in
* |bn.h| about this. In addition to the callback invocations from |BN|, |cb|
* will also be called with |event| equal to three when the generation is
* complete. */
// DH_generate_parameters_ex generates a suitable Diffie-Hellman group with a
// prime that is |prime_bits| long and stores it in |dh|. The generator of the
// group will be |generator|, which should be |DH_GENERATOR_2| unless there's a
// good reason to use a different value. The |cb| argument contains a callback
// function that will be called during the generation. See the documentation in
// |bn.h| about this. In addition to the callback invocations from |BN|, |cb|
// will also be called with |event| equal to three when the generation is
// complete.
OPENSSL_EXPORT int DH_generate_parameters_ex(DH *dh, int prime_bits,
int generator, BN_GENCB *cb);
/* Diffie-Hellman operations. */
// Diffie-Hellman operations.
/* DH_generate_key generates a new, random, private key and stores it in
* |dh|. It returns one on success and zero on error. */
// DH_generate_key generates a new, random, private key and stores it in
// |dh|. It returns one on success and zero on error.
OPENSSL_EXPORT int DH_generate_key(DH *dh);
/* DH_compute_key calculates the shared key between |dh| and |peers_key| and
* writes it as a big-endian integer into |out|, which must have |DH_size|
* bytes of space. It returns the number of bytes written, or a negative number
* on error. */
// DH_compute_key calculates the shared key between |dh| and |peers_key| and
// writes it as a big-endian integer into |out|, which must have |DH_size|
// bytes of space. It returns the number of bytes written, or a negative number
// on error.
OPENSSL_EXPORT int DH_compute_key(uint8_t *out, const BIGNUM *peers_key,
DH *dh);
/* Utility functions. */
// Utility functions.
/* DH_size returns the number of bytes in the DH group's prime. */
// DH_size returns the number of bytes in the DH group's prime.
OPENSSL_EXPORT int DH_size(const DH *dh);
/* DH_num_bits returns the minimum number of bits needed to represent the
* absolute value of the DH group's prime. */
// DH_num_bits returns the minimum number of bits needed to represent the
// absolute value of the DH group's prime.
OPENSSL_EXPORT unsigned DH_num_bits(const DH *dh);
#define DH_CHECK_P_NOT_PRIME 0x01
@ -154,49 +154,49 @@ OPENSSL_EXPORT unsigned DH_num_bits(const DH *dh);
#define DH_CHECK_INVALID_Q_VALUE 0x20
#define DH_CHECK_INVALID_J_VALUE 0x40
/* These are compatibility defines. */
// These are compatibility defines.
#define DH_NOT_SUITABLE_GENERATOR DH_CHECK_NOT_SUITABLE_GENERATOR
#define DH_UNABLE_TO_CHECK_GENERATOR DH_CHECK_UNABLE_TO_CHECK_GENERATOR
/* DH_check checks the suitability of |dh| as a Diffie-Hellman group. and sets
* |DH_CHECK_*| flags in |*out_flags| if it finds any errors. It returns one if
* |*out_flags| was successfully set and zero on error.
*
* Note: these checks may be quite computationally expensive. */
// DH_check checks the suitability of |dh| as a Diffie-Hellman group. and sets
// |DH_CHECK_*| flags in |*out_flags| if it finds any errors. It returns one if
// |*out_flags| was successfully set and zero on error.
//
// Note: these checks may be quite computationally expensive.
OPENSSL_EXPORT int DH_check(const DH *dh, int *out_flags);
#define DH_CHECK_PUBKEY_TOO_SMALL 0x1
#define DH_CHECK_PUBKEY_TOO_LARGE 0x2
#define DH_CHECK_PUBKEY_INVALID 0x4
/* DH_check_pub_key checks the suitability of |pub_key| as a public key for the
* DH group in |dh| and sets |DH_CHECK_PUBKEY_*| flags in |*out_flags| if it
* finds any errors. It returns one if |*out_flags| was successfully set and
* zero on error. */
// DH_check_pub_key checks the suitability of |pub_key| as a public key for the
// DH group in |dh| and sets |DH_CHECK_PUBKEY_*| flags in |*out_flags| if it
// finds any errors. It returns one if |*out_flags| was successfully set and
// zero on error.
OPENSSL_EXPORT int DH_check_pub_key(const DH *dh, const BIGNUM *pub_key,
int *out_flags);
/* DHparams_dup allocates a fresh |DH| and copies the parameters from |dh| into
* it. It returns the new |DH| or NULL on error. */
// DHparams_dup allocates a fresh |DH| and copies the parameters from |dh| into
// it. It returns the new |DH| or NULL on error.
OPENSSL_EXPORT DH *DHparams_dup(const DH *dh);
/* ASN.1 functions. */
// ASN.1 functions.
/* DH_parse_parameters decodes a DER-encoded DHParameter structure (PKCS #3)
* from |cbs| and advances |cbs|. It returns a newly-allocated |DH| or NULL on
* error. */
// DH_parse_parameters decodes a DER-encoded DHParameter structure (PKCS #3)
// from |cbs| and advances |cbs|. It returns a newly-allocated |DH| or NULL on
// error.
OPENSSL_EXPORT DH *DH_parse_parameters(CBS *cbs);
/* DH_marshal_parameters marshals |dh| as a DER-encoded DHParameter structure
* (PKCS #3) and appends the result to |cbb|. It returns one on success and zero
* on error. */
// DH_marshal_parameters marshals |dh| as a DER-encoded DHParameter structure
// (PKCS #3) and appends the result to |cbb|. It returns one on success and zero
// on error.
OPENSSL_EXPORT int DH_marshal_parameters(CBB *cbb, const DH *dh);
/* ex_data functions.
*
* See |ex_data.h| for details. */
// ex_data functions.
//
// See |ex_data.h| for details.
OPENSSL_EXPORT int DH_get_ex_new_index(long argl, void *argp,
CRYPTO_EX_unused *unused,
@ -206,50 +206,50 @@ OPENSSL_EXPORT int DH_set_ex_data(DH *d, int idx, void *arg);
OPENSSL_EXPORT void *DH_get_ex_data(DH *d, int idx);
/* Deprecated functions. */
// Deprecated functions.
/* DH_generate_parameters behaves like |DH_generate_parameters_ex|, which is
* what you should use instead. It returns NULL on error, or a newly-allocated
* |DH| on success. This function is provided for compatibility only. */
// DH_generate_parameters behaves like |DH_generate_parameters_ex|, which is
// what you should use instead. It returns NULL on error, or a newly-allocated
// |DH| on success. This function is provided for compatibility only.
OPENSSL_EXPORT DH *DH_generate_parameters(int prime_len, int generator,
void (*callback)(int, int, void *),
void *cb_arg);
/* d2i_DHparams parses an ASN.1, DER encoded Diffie-Hellman parameters structure
* from |len| bytes at |*inp|. If |ret| is not NULL then, on exit, a pointer to
* the result is in |*ret|. Note that, even if |*ret| is already non-NULL on
* entry, it will not be written to. Rather, a fresh |DH| is allocated and the
* previous one is freed.
*
* On successful exit, |*inp| is advanced past the DER structure. It
* returns the result or NULL on error.
*
* Use |DH_parse_parameters| instead. */
// d2i_DHparams parses an ASN.1, DER encoded Diffie-Hellman parameters structure
// from |len| bytes at |*inp|. If |ret| is not NULL then, on exit, a pointer to
// the result is in |*ret|. Note that, even if |*ret| is already non-NULL on
// entry, it will not be written to. Rather, a fresh |DH| is allocated and the
// previous one is freed.
//
// On successful exit, |*inp| is advanced past the DER structure. It
// returns the result or NULL on error.
//
// Use |DH_parse_parameters| instead.
OPENSSL_EXPORT DH *d2i_DHparams(DH **ret, const unsigned char **inp, long len);
/* i2d_DHparams marshals |in| to an ASN.1, DER structure. If |outp| is not NULL
* then the result is written to |*outp| and |*outp| is advanced just past the
* output. It returns the number of bytes in the result, whether written or
* not, or a negative value on error.
*
* Use |DH_marshal_parameters| instead. */
// i2d_DHparams marshals |in| to an ASN.1, DER structure. If |outp| is not NULL
// then the result is written to |*outp| and |*outp| is advanced just past the
// output. It returns the number of bytes in the result, whether written or
// not, or a negative value on error.
//
// Use |DH_marshal_parameters| instead.
OPENSSL_EXPORT int i2d_DHparams(const DH *in, unsigned char **outp);
struct dh_st {
BIGNUM *p;
BIGNUM *g;
BIGNUM *pub_key; /* g^x mod p */
BIGNUM *priv_key; /* x */
BIGNUM *pub_key; // g^x mod p
BIGNUM *priv_key; // x
/* priv_length contains the length, in bits, of the private value. If zero,
* the private value will be the same length as |p|. */
// priv_length contains the length, in bits, of the private value. If zero,
// the private value will be the same length as |p|.
unsigned priv_length;
CRYPTO_MUTEX method_mont_p_lock;
BN_MONT_CTX *method_mont_p;
/* Place holders if we want to do X9.42 DH */
// Place holders if we want to do X9.42 DH
BIGNUM *q;
BIGNUM *j;
unsigned char *seed;
@ -263,7 +263,7 @@ struct dh_st {
#if defined(__cplusplus)
} /* extern C */
} // extern C
extern "C++" {
@ -273,7 +273,7 @@ BORINGSSL_MAKE_DELETER(DH, DH_free)
} // namespace bssl
} /* extern C++ */
} // extern C++
#endif
@ -284,4 +284,4 @@ BORINGSSL_MAKE_DELETER(DH, DH_free)
#define DH_R_DECODE_ERROR 104
#define DH_R_ENCODE_ERROR 105
#endif /* OPENSSL_HEADER_DH_H */
#endif // OPENSSL_HEADER_DH_H

View File

@ -64,17 +64,17 @@ extern "C" {
#endif
/* Digest functions.
*
* An EVP_MD abstracts the details of a specific hash function allowing code to
* deal with the concept of a "hash function" without needing to know exactly
* which hash function it is. */
// Digest functions.
//
// An EVP_MD abstracts the details of a specific hash function allowing code to
// deal with the concept of a "hash function" without needing to know exactly
// which hash function it is.
/* Hash algorithms.
*
* The following functions return |EVP_MD| objects that implement the named hash
* function. */
// Hash algorithms.
//
// The following functions return |EVP_MD| objects that implement the named hash
// function.
OPENSSL_EXPORT const EVP_MD *EVP_md4(void);
OPENSSL_EXPORT const EVP_MD *EVP_md5(void);
@ -84,185 +84,185 @@ OPENSSL_EXPORT const EVP_MD *EVP_sha256(void);
OPENSSL_EXPORT const EVP_MD *EVP_sha384(void);
OPENSSL_EXPORT const EVP_MD *EVP_sha512(void);
/* EVP_md5_sha1 is a TLS-specific |EVP_MD| which computes the concatenation of
* MD5 and SHA-1, as used in TLS 1.1 and below. */
// EVP_md5_sha1 is a TLS-specific |EVP_MD| which computes the concatenation of
// MD5 and SHA-1, as used in TLS 1.1 and below.
OPENSSL_EXPORT const EVP_MD *EVP_md5_sha1(void);
/* EVP_get_digestbynid returns an |EVP_MD| for the given NID, or NULL if no
* such digest is known. */
// EVP_get_digestbynid returns an |EVP_MD| for the given NID, or NULL if no
// such digest is known.
OPENSSL_EXPORT const EVP_MD *EVP_get_digestbynid(int nid);
/* EVP_get_digestbyobj returns an |EVP_MD| for the given |ASN1_OBJECT|, or NULL
* if no such digest is known. */
// EVP_get_digestbyobj returns an |EVP_MD| for the given |ASN1_OBJECT|, or NULL
// if no such digest is known.
OPENSSL_EXPORT const EVP_MD *EVP_get_digestbyobj(const ASN1_OBJECT *obj);
/* Digest contexts.
*
* An EVP_MD_CTX represents the state of a specific digest operation in
* progress. */
// Digest contexts.
//
// An EVP_MD_CTX represents the state of a specific digest operation in
// progress.
/* EVP_MD_CTX_init initialises an, already allocated, |EVP_MD_CTX|. This is the
* same as setting the structure to zero. */
// EVP_MD_CTX_init initialises an, already allocated, |EVP_MD_CTX|. This is the
// same as setting the structure to zero.
OPENSSL_EXPORT void EVP_MD_CTX_init(EVP_MD_CTX *ctx);
/* EVP_MD_CTX_create allocates and initialises a fresh |EVP_MD_CTX| and returns
* it, or NULL on allocation failure. */
// EVP_MD_CTX_create allocates and initialises a fresh |EVP_MD_CTX| and returns
// it, or NULL on allocation failure.
OPENSSL_EXPORT EVP_MD_CTX *EVP_MD_CTX_create(void);
/* EVP_MD_CTX_cleanup frees any resources owned by |ctx| and resets it to a
* freshly initialised state. It does not free |ctx| itself. It returns one. */
// EVP_MD_CTX_cleanup frees any resources owned by |ctx| and resets it to a
// freshly initialised state. It does not free |ctx| itself. It returns one.
OPENSSL_EXPORT int EVP_MD_CTX_cleanup(EVP_MD_CTX *ctx);
/* EVP_MD_CTX_destroy calls |EVP_MD_CTX_cleanup| and then frees |ctx| itself. */
// EVP_MD_CTX_destroy calls |EVP_MD_CTX_cleanup| and then frees |ctx| itself.
OPENSSL_EXPORT void EVP_MD_CTX_destroy(EVP_MD_CTX *ctx);
/* EVP_MD_CTX_copy_ex sets |out|, which must already be initialised, to be a
* copy of |in|. It returns one on success and zero on error. */
// EVP_MD_CTX_copy_ex sets |out|, which must already be initialised, to be a
// copy of |in|. It returns one on success and zero on error.
OPENSSL_EXPORT int EVP_MD_CTX_copy_ex(EVP_MD_CTX *out, const EVP_MD_CTX *in);
/* Digest operations. */
// Digest operations.
/* EVP_DigestInit_ex configures |ctx|, which must already have been
* initialised, for a fresh hashing operation using |type|. It returns one on
* success and zero otherwise. */
// EVP_DigestInit_ex configures |ctx|, which must already have been
// initialised, for a fresh hashing operation using |type|. It returns one on
// success and zero otherwise.
OPENSSL_EXPORT int EVP_DigestInit_ex(EVP_MD_CTX *ctx, const EVP_MD *type,
ENGINE *engine);
/* EVP_DigestInit acts like |EVP_DigestInit_ex| except that |ctx| is
* initialised before use. */
// EVP_DigestInit acts like |EVP_DigestInit_ex| except that |ctx| is
// initialised before use.
OPENSSL_EXPORT int EVP_DigestInit(EVP_MD_CTX *ctx, const EVP_MD *type);
/* EVP_DigestUpdate hashes |len| bytes from |data| into the hashing operation
* in |ctx|. It returns one. */
// EVP_DigestUpdate hashes |len| bytes from |data| into the hashing operation
// in |ctx|. It returns one.
OPENSSL_EXPORT int EVP_DigestUpdate(EVP_MD_CTX *ctx, const void *data,
size_t len);
/* EVP_MAX_MD_SIZE is the largest digest size supported, in bytes.
* Functions that output a digest generally require the buffer have
* at least this much space. */
#define EVP_MAX_MD_SIZE 64 /* SHA-512 is the longest so far. */
// EVP_MAX_MD_SIZE is the largest digest size supported, in bytes.
// Functions that output a digest generally require the buffer have
// at least this much space.
#define EVP_MAX_MD_SIZE 64 // SHA-512 is the longest so far.
/* EVP_MAX_MD_BLOCK_SIZE is the largest digest block size supported, in
* bytes. */
#define EVP_MAX_MD_BLOCK_SIZE 128 /* SHA-512 is the longest so far. */
// EVP_MAX_MD_BLOCK_SIZE is the largest digest block size supported, in
// bytes.
#define EVP_MAX_MD_BLOCK_SIZE 128 // SHA-512 is the longest so far.
/* EVP_DigestFinal_ex finishes the digest in |ctx| and writes the output to
* |md_out|. |EVP_MD_CTX_size| bytes are written, which is at most
* |EVP_MAX_MD_SIZE|. If |out_size| is not NULL then |*out_size| is set to the
* number of bytes written. It returns one. After this call, the hash cannot be
* updated or finished again until |EVP_DigestInit_ex| is called to start
* another hashing operation. */
// EVP_DigestFinal_ex finishes the digest in |ctx| and writes the output to
// |md_out|. |EVP_MD_CTX_size| bytes are written, which is at most
// |EVP_MAX_MD_SIZE|. If |out_size| is not NULL then |*out_size| is set to the
// number of bytes written. It returns one. After this call, the hash cannot be
// updated or finished again until |EVP_DigestInit_ex| is called to start
// another hashing operation.
OPENSSL_EXPORT int EVP_DigestFinal_ex(EVP_MD_CTX *ctx, uint8_t *md_out,
unsigned int *out_size);
/* EVP_DigestFinal acts like |EVP_DigestFinal_ex| except that
* |EVP_MD_CTX_cleanup| is called on |ctx| before returning. */
// EVP_DigestFinal acts like |EVP_DigestFinal_ex| except that
// |EVP_MD_CTX_cleanup| is called on |ctx| before returning.
OPENSSL_EXPORT int EVP_DigestFinal(EVP_MD_CTX *ctx, uint8_t *md_out,
unsigned int *out_size);
/* EVP_Digest performs a complete hashing operation in one call. It hashes |len|
* bytes from |data| and writes the digest to |md_out|. |EVP_MD_CTX_size| bytes
* are written, which is at most |EVP_MAX_MD_SIZE|. If |out_size| is not NULL
* then |*out_size| is set to the number of bytes written. It returns one on
* success and zero otherwise. */
// EVP_Digest performs a complete hashing operation in one call. It hashes |len|
// bytes from |data| and writes the digest to |md_out|. |EVP_MD_CTX_size| bytes
// are written, which is at most |EVP_MAX_MD_SIZE|. If |out_size| is not NULL
// then |*out_size| is set to the number of bytes written. It returns one on
// success and zero otherwise.
OPENSSL_EXPORT int EVP_Digest(const void *data, size_t len, uint8_t *md_out,
unsigned int *md_out_size, const EVP_MD *type,
ENGINE *impl);
/* Digest function accessors.
*
* These functions allow code to learn details about an abstract hash
* function. */
// Digest function accessors.
//
// These functions allow code to learn details about an abstract hash
// function.
/* EVP_MD_type returns a NID identifying |md|. (For example, |NID_sha256|.) */
// EVP_MD_type returns a NID identifying |md|. (For example, |NID_sha256|.)
OPENSSL_EXPORT int EVP_MD_type(const EVP_MD *md);
/* EVP_MD_flags returns the flags for |md|, which is a set of |EVP_MD_FLAG_*|
* values, ORed together. */
// EVP_MD_flags returns the flags for |md|, which is a set of |EVP_MD_FLAG_*|
// values, ORed together.
OPENSSL_EXPORT uint32_t EVP_MD_flags(const EVP_MD *md);
/* EVP_MD_size returns the digest size of |md|, in bytes. */
// EVP_MD_size returns the digest size of |md|, in bytes.
OPENSSL_EXPORT size_t EVP_MD_size(const EVP_MD *md);
/* EVP_MD_block_size returns the native block-size of |md|, in bytes. */
// EVP_MD_block_size returns the native block-size of |md|, in bytes.
OPENSSL_EXPORT size_t EVP_MD_block_size(const EVP_MD *md);
/* EVP_MD_FLAG_PKEY_DIGEST indicates the the digest function is used with a
* specific public key in order to verify signatures. (For example,
* EVP_dss1.) */
// EVP_MD_FLAG_PKEY_DIGEST indicates the the digest function is used with a
// specific public key in order to verify signatures. (For example,
// EVP_dss1.)
#define EVP_MD_FLAG_PKEY_DIGEST 1
/* EVP_MD_FLAG_DIGALGID_ABSENT indicates that the parameter type in an X.509
* DigestAlgorithmIdentifier representing this digest function should be
* undefined rather than NULL. */
// EVP_MD_FLAG_DIGALGID_ABSENT indicates that the parameter type in an X.509
// DigestAlgorithmIdentifier representing this digest function should be
// undefined rather than NULL.
#define EVP_MD_FLAG_DIGALGID_ABSENT 2
/* Deprecated functions. */
// Deprecated functions.
/* EVP_MD_CTX_copy sets |out|, which must /not/ be initialised, to be a copy of
* |in|. It returns one on success and zero on error. */
// EVP_MD_CTX_copy sets |out|, which must /not/ be initialised, to be a copy of
// |in|. It returns one on success and zero on error.
OPENSSL_EXPORT int EVP_MD_CTX_copy(EVP_MD_CTX *out, const EVP_MD_CTX *in);
/* EVP_add_digest does nothing and returns one. It exists only for
* compatibility with OpenSSL. */
// EVP_add_digest does nothing and returns one. It exists only for
// compatibility with OpenSSL.
OPENSSL_EXPORT int EVP_add_digest(const EVP_MD *digest);
/* EVP_get_digestbyname returns an |EVP_MD| given a human readable name in
* |name|, or NULL if the name is unknown. */
// EVP_get_digestbyname returns an |EVP_MD| given a human readable name in
// |name|, or NULL if the name is unknown.
OPENSSL_EXPORT const EVP_MD *EVP_get_digestbyname(const char *);
/* EVP_dss1 returns the value of EVP_sha1(). This was provided by OpenSSL to
* specifiy the original DSA signatures, which were fixed to use SHA-1. Note,
* however, that attempting to sign or verify DSA signatures with the EVP
* interface will always fail. */
// EVP_dss1 returns the value of EVP_sha1(). This was provided by OpenSSL to
// specifiy the original DSA signatures, which were fixed to use SHA-1. Note,
// however, that attempting to sign or verify DSA signatures with the EVP
// interface will always fail.
OPENSSL_EXPORT const EVP_MD *EVP_dss1(void);
/* Digest operation accessors. */
// Digest operation accessors.
/* EVP_MD_CTX_md returns the underlying digest function, or NULL if one has not
* been set. */
// EVP_MD_CTX_md returns the underlying digest function, or NULL if one has not
// been set.
OPENSSL_EXPORT const EVP_MD *EVP_MD_CTX_md(const EVP_MD_CTX *ctx);
/* EVP_MD_CTX_size returns the digest size of |ctx|, in bytes. It
* will crash if a digest hasn't been set on |ctx|. */
// EVP_MD_CTX_size returns the digest size of |ctx|, in bytes. It
// will crash if a digest hasn't been set on |ctx|.
OPENSSL_EXPORT size_t EVP_MD_CTX_size(const EVP_MD_CTX *ctx);
/* EVP_MD_CTX_block_size returns the block size of the digest function used by
* |ctx|, in bytes. It will crash if a digest hasn't been set on |ctx|. */
// EVP_MD_CTX_block_size returns the block size of the digest function used by
// |ctx|, in bytes. It will crash if a digest hasn't been set on |ctx|.
OPENSSL_EXPORT size_t EVP_MD_CTX_block_size(const EVP_MD_CTX *ctx);
/* EVP_MD_CTX_type returns a NID describing the digest function used by |ctx|.
* (For example, |NID_sha256|.) It will crash if a digest hasn't been set on
* |ctx|. */
// EVP_MD_CTX_type returns a NID describing the digest function used by |ctx|.
// (For example, |NID_sha256|.) It will crash if a digest hasn't been set on
// |ctx|.
OPENSSL_EXPORT int EVP_MD_CTX_type(const EVP_MD_CTX *ctx);
struct evp_md_pctx_ops;
struct env_md_ctx_st {
/* digest is the underlying digest function, or NULL if not set. */
// digest is the underlying digest function, or NULL if not set.
const EVP_MD *digest;
/* md_data points to a block of memory that contains the hash-specific
* context. */
// md_data points to a block of memory that contains the hash-specific
// context.
void *md_data;
/* pctx is an opaque (at this layer) pointer to additional context that
* EVP_PKEY functions may store in this object. */
// pctx is an opaque (at this layer) pointer to additional context that
// EVP_PKEY functions may store in this object.
EVP_PKEY_CTX *pctx;
/* pctx_ops, if not NULL, points to a vtable that contains functions to
* manipulate |pctx|. */
// pctx_ops, if not NULL, points to a vtable that contains functions to
// manipulate |pctx|.
const struct evp_md_pctx_ops *pctx_ops;
} /* EVP_MD_CTX */;
#if defined(__cplusplus)
} /* extern C */
} // extern C
#if !defined(BORINGSSL_NO_CXX)
extern "C++" {
@ -286,4 +286,4 @@ using ScopedEVP_MD_CTX =
#define DIGEST_R_DECODE_ERROR 101
#define DIGEST_R_UNKNOWN_HASH 102
#endif /* OPENSSL_HEADER_DIGEST_H */
#endif // OPENSSL_HEADER_DIGEST_H

View File

@ -71,228 +71,228 @@ extern "C" {
#endif
/* DSA contains functions for signing and verifying with the Digital Signature
* Algorithm. */
// DSA contains functions for signing and verifying with the Digital Signature
// Algorithm.
/* Allocation and destruction. */
// Allocation and destruction.
/* DSA_new returns a new, empty DSA object or NULL on error. */
// DSA_new returns a new, empty DSA object or NULL on error.
OPENSSL_EXPORT DSA *DSA_new(void);
/* DSA_free decrements the reference count of |dsa| and frees it if the
* reference count drops to zero. */
// DSA_free decrements the reference count of |dsa| and frees it if the
// reference count drops to zero.
OPENSSL_EXPORT void DSA_free(DSA *dsa);
/* DSA_up_ref increments the reference count of |dsa| and returns one. */
// DSA_up_ref increments the reference count of |dsa| and returns one.
OPENSSL_EXPORT int DSA_up_ref(DSA *dsa);
/* Properties. */
// Properties.
/* DSA_get0_key sets |*out_pub_key| and |*out_priv_key|, if non-NULL, to |dsa|'s
* public and private key, respectively. If |dsa| is a public key, the private
* key will be set to NULL. */
// DSA_get0_key sets |*out_pub_key| and |*out_priv_key|, if non-NULL, to |dsa|'s
// public and private key, respectively. If |dsa| is a public key, the private
// key will be set to NULL.
OPENSSL_EXPORT void DSA_get0_key(const DSA *dsa, const BIGNUM **out_pub_key,
const BIGNUM **out_priv_key);
/* DSA_get0_pqg sets |*out_p|, |*out_q|, and |*out_g|, if non-NULL, to |dsa|'s
* p, q, and g parameters, respectively. */
// DSA_get0_pqg sets |*out_p|, |*out_q|, and |*out_g|, if non-NULL, to |dsa|'s
// p, q, and g parameters, respectively.
OPENSSL_EXPORT void DSA_get0_pqg(const DSA *dsa, const BIGNUM **out_p,
const BIGNUM **out_q, const BIGNUM **out_g);
/* Parameter generation. */
// Parameter generation.
/* DSA_generate_parameters_ex generates a set of DSA parameters by following
* the procedure given in FIPS 186-4, appendix A.
* (http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf)
*
* The larger prime will have a length of |bits| (e.g. 2048). The |seed| value
* allows others to generate and verify the same parameters and should be
* random input which is kept for reference. If |out_counter| or |out_h| are
* not NULL then the counter and h value used in the generation are written to
* them.
*
* The |cb| argument is passed to |BN_generate_prime_ex| and is thus called
* during the generation process in order to indicate progress. See the
* comments for that function for details. In addition to the calls made by
* |BN_generate_prime_ex|, |DSA_generate_parameters_ex| will call it with
* |event| equal to 2 and 3 at different stages of the process.
*
* It returns one on success and zero otherwise. */
// DSA_generate_parameters_ex generates a set of DSA parameters by following
// the procedure given in FIPS 186-4, appendix A.
// (http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf)
//
// The larger prime will have a length of |bits| (e.g. 2048). The |seed| value
// allows others to generate and verify the same parameters and should be
// random input which is kept for reference. If |out_counter| or |out_h| are
// not NULL then the counter and h value used in the generation are written to
// them.
//
// The |cb| argument is passed to |BN_generate_prime_ex| and is thus called
// during the generation process in order to indicate progress. See the
// comments for that function for details. In addition to the calls made by
// |BN_generate_prime_ex|, |DSA_generate_parameters_ex| will call it with
// |event| equal to 2 and 3 at different stages of the process.
//
// It returns one on success and zero otherwise.
OPENSSL_EXPORT int DSA_generate_parameters_ex(DSA *dsa, unsigned bits,
const uint8_t *seed,
size_t seed_len, int *out_counter,
unsigned long *out_h,
BN_GENCB *cb);
/* DSAparams_dup returns a freshly allocated |DSA| that contains a copy of the
* parameters from |dsa|. It returns NULL on error. */
// DSAparams_dup returns a freshly allocated |DSA| that contains a copy of the
// parameters from |dsa|. It returns NULL on error.
OPENSSL_EXPORT DSA *DSAparams_dup(const DSA *dsa);
/* Key generation. */
// Key generation.
/* DSA_generate_key generates a public/private key pair in |dsa|, which must
* already have parameters setup. It returns one on success and zero on
* error. */
// DSA_generate_key generates a public/private key pair in |dsa|, which must
// already have parameters setup. It returns one on success and zero on
// error.
OPENSSL_EXPORT int DSA_generate_key(DSA *dsa);
/* Signatures. */
// Signatures.
/* DSA_SIG_st (aka |DSA_SIG|) contains a DSA signature as a pair of integers. */
// DSA_SIG_st (aka |DSA_SIG|) contains a DSA signature as a pair of integers.
struct DSA_SIG_st {
BIGNUM *r, *s;
};
/* DSA_SIG_new returns a freshly allocated, DIG_SIG structure or NULL on error.
* Both |r| and |s| in the signature will be NULL. */
// DSA_SIG_new returns a freshly allocated, DIG_SIG structure or NULL on error.
// Both |r| and |s| in the signature will be NULL.
OPENSSL_EXPORT DSA_SIG *DSA_SIG_new(void);
/* DSA_SIG_free frees the contents of |sig| and then frees |sig| itself. */
// DSA_SIG_free frees the contents of |sig| and then frees |sig| itself.
OPENSSL_EXPORT void DSA_SIG_free(DSA_SIG *sig);
/* DSA_do_sign returns a signature of the hash in |digest| by the key in |dsa|
* and returns an allocated, DSA_SIG structure, or NULL on error. */
// DSA_do_sign returns a signature of the hash in |digest| by the key in |dsa|
// and returns an allocated, DSA_SIG structure, or NULL on error.
OPENSSL_EXPORT DSA_SIG *DSA_do_sign(const uint8_t *digest, size_t digest_len,
DSA *dsa);
/* DSA_do_verify verifies that |sig| is a valid signature, by the public key in
* |dsa|, of the hash in |digest|. It returns one if so, zero if invalid and -1
* on error.
*
* WARNING: do not use. This function returns -1 for error, 0 for invalid and 1
* for valid. However, this is dangerously different to the usual OpenSSL
* convention and could be a disaster if a user did |if (DSA_do_verify(...))|.
* Because of this, |DSA_check_signature| is a safer version of this.
*
* TODO(fork): deprecate. */
// DSA_do_verify verifies that |sig| is a valid signature, by the public key in
// |dsa|, of the hash in |digest|. It returns one if so, zero if invalid and -1
// on error.
//
// WARNING: do not use. This function returns -1 for error, 0 for invalid and 1
// for valid. However, this is dangerously different to the usual OpenSSL
// convention and could be a disaster if a user did |if (DSA_do_verify(...))|.
// Because of this, |DSA_check_signature| is a safer version of this.
//
// TODO(fork): deprecate.
OPENSSL_EXPORT int DSA_do_verify(const uint8_t *digest, size_t digest_len,
DSA_SIG *sig, const DSA *dsa);
/* DSA_do_check_signature sets |*out_valid| to zero. Then it verifies that |sig|
* is a valid signature, by the public key in |dsa| of the hash in |digest|
* and, if so, it sets |*out_valid| to one.
*
* It returns one if it was able to verify the signature as valid or invalid,
* and zero on error. */
// DSA_do_check_signature sets |*out_valid| to zero. Then it verifies that |sig|
// is a valid signature, by the public key in |dsa| of the hash in |digest|
// and, if so, it sets |*out_valid| to one.
//
// It returns one if it was able to verify the signature as valid or invalid,
// and zero on error.
OPENSSL_EXPORT int DSA_do_check_signature(int *out_valid, const uint8_t *digest,
size_t digest_len, DSA_SIG *sig,
const DSA *dsa);
/* ASN.1 signatures.
*
* These functions also perform DSA signature operations, but deal with ASN.1
* encoded signatures as opposed to raw |BIGNUM|s. If you don't know what
* encoding a DSA signature is in, it's probably ASN.1. */
// ASN.1 signatures.
//
// These functions also perform DSA signature operations, but deal with ASN.1
// encoded signatures as opposed to raw |BIGNUM|s. If you don't know what
// encoding a DSA signature is in, it's probably ASN.1.
/* DSA_sign signs |digest| with the key in |dsa| and writes the resulting
* signature, in ASN.1 form, to |out_sig| and the length of the signature to
* |*out_siglen|. There must be, at least, |DSA_size(dsa)| bytes of space in
* |out_sig|. It returns one on success and zero otherwise.
*
* (The |type| argument is ignored.) */
// DSA_sign signs |digest| with the key in |dsa| and writes the resulting
// signature, in ASN.1 form, to |out_sig| and the length of the signature to
// |*out_siglen|. There must be, at least, |DSA_size(dsa)| bytes of space in
// |out_sig|. It returns one on success and zero otherwise.
//
// (The |type| argument is ignored.)
OPENSSL_EXPORT int DSA_sign(int type, const uint8_t *digest, size_t digest_len,
uint8_t *out_sig, unsigned int *out_siglen,
DSA *dsa);
/* DSA_verify verifies that |sig| is a valid, ASN.1 signature, by the public
* key in |dsa|, of the hash in |digest|. It returns one if so, zero if invalid
* and -1 on error.
*
* (The |type| argument is ignored.)
*
* WARNING: do not use. This function returns -1 for error, 0 for invalid and 1
* for valid. However, this is dangerously different to the usual OpenSSL
* convention and could be a disaster if a user did |if (DSA_do_verify(...))|.
* Because of this, |DSA_check_signature| is a safer version of this.
*
* TODO(fork): deprecate. */
// DSA_verify verifies that |sig| is a valid, ASN.1 signature, by the public
// key in |dsa|, of the hash in |digest|. It returns one if so, zero if invalid
// and -1 on error.
//
// (The |type| argument is ignored.)
//
// WARNING: do not use. This function returns -1 for error, 0 for invalid and 1
// for valid. However, this is dangerously different to the usual OpenSSL
// convention and could be a disaster if a user did |if (DSA_do_verify(...))|.
// Because of this, |DSA_check_signature| is a safer version of this.
//
// TODO(fork): deprecate.
OPENSSL_EXPORT int DSA_verify(int type, const uint8_t *digest,
size_t digest_len, const uint8_t *sig,
size_t sig_len, const DSA *dsa);
/* DSA_check_signature sets |*out_valid| to zero. Then it verifies that |sig|
* is a valid, ASN.1 signature, by the public key in |dsa|, of the hash in
* |digest|. If so, it sets |*out_valid| to one.
*
* It returns one if it was able to verify the signature as valid or invalid,
* and zero on error. */
// DSA_check_signature sets |*out_valid| to zero. Then it verifies that |sig|
// is a valid, ASN.1 signature, by the public key in |dsa|, of the hash in
// |digest|. If so, it sets |*out_valid| to one.
//
// It returns one if it was able to verify the signature as valid or invalid,
// and zero on error.
OPENSSL_EXPORT int DSA_check_signature(int *out_valid, const uint8_t *digest,
size_t digest_len, const uint8_t *sig,
size_t sig_len, const DSA *dsa);
/* DSA_size returns the size, in bytes, of an ASN.1 encoded, DSA signature
* generated by |dsa|. Parameters must already have been setup in |dsa|. */
// DSA_size returns the size, in bytes, of an ASN.1 encoded, DSA signature
// generated by |dsa|. Parameters must already have been setup in |dsa|.
OPENSSL_EXPORT int DSA_size(const DSA *dsa);
/* ASN.1 encoding. */
// ASN.1 encoding.
/* DSA_SIG_parse parses a DER-encoded DSA-Sig-Value structure from |cbs| and
* advances |cbs|. It returns a newly-allocated |DSA_SIG| or NULL on error. */
// DSA_SIG_parse parses a DER-encoded DSA-Sig-Value structure from |cbs| and
// advances |cbs|. It returns a newly-allocated |DSA_SIG| or NULL on error.
OPENSSL_EXPORT DSA_SIG *DSA_SIG_parse(CBS *cbs);
/* DSA_SIG_marshal marshals |sig| as a DER-encoded DSA-Sig-Value and appends the
* result to |cbb|. It returns one on success and zero on error. */
// DSA_SIG_marshal marshals |sig| as a DER-encoded DSA-Sig-Value and appends the
// result to |cbb|. It returns one on success and zero on error.
OPENSSL_EXPORT int DSA_SIG_marshal(CBB *cbb, const DSA_SIG *sig);
/* DSA_parse_public_key parses a DER-encoded DSA public key from |cbs| and
* advances |cbs|. It returns a newly-allocated |DSA| or NULL on error. */
// DSA_parse_public_key parses a DER-encoded DSA public key from |cbs| and
// advances |cbs|. It returns a newly-allocated |DSA| or NULL on error.
OPENSSL_EXPORT DSA *DSA_parse_public_key(CBS *cbs);
/* DSA_marshal_public_key marshals |dsa| as a DER-encoded DSA public key and
* appends the result to |cbb|. It returns one on success and zero on
* failure. */
// DSA_marshal_public_key marshals |dsa| as a DER-encoded DSA public key and
// appends the result to |cbb|. It returns one on success and zero on
// failure.
OPENSSL_EXPORT int DSA_marshal_public_key(CBB *cbb, const DSA *dsa);
/* DSA_parse_private_key parses a DER-encoded DSA private key from |cbs| and
* advances |cbs|. It returns a newly-allocated |DSA| or NULL on error. */
// DSA_parse_private_key parses a DER-encoded DSA private key from |cbs| and
// advances |cbs|. It returns a newly-allocated |DSA| or NULL on error.
OPENSSL_EXPORT DSA *DSA_parse_private_key(CBS *cbs);
/* DSA_marshal_private_key marshals |dsa| as a DER-encoded DSA private key and
* appends the result to |cbb|. It returns one on success and zero on
* failure. */
// DSA_marshal_private_key marshals |dsa| as a DER-encoded DSA private key and
// appends the result to |cbb|. It returns one on success and zero on
// failure.
OPENSSL_EXPORT int DSA_marshal_private_key(CBB *cbb, const DSA *dsa);
/* DSA_parse_parameters parses a DER-encoded Dss-Parms structure (RFC 3279)
* from |cbs| and advances |cbs|. It returns a newly-allocated |DSA| or NULL on
* error. */
// DSA_parse_parameters parses a DER-encoded Dss-Parms structure (RFC 3279)
// from |cbs| and advances |cbs|. It returns a newly-allocated |DSA| or NULL on
// error.
OPENSSL_EXPORT DSA *DSA_parse_parameters(CBS *cbs);
/* DSA_marshal_parameters marshals |dsa| as a DER-encoded Dss-Parms structure
* (RFC 3447) and appends the result to |cbb|. It returns one on success and
* zero on failure. */
// DSA_marshal_parameters marshals |dsa| as a DER-encoded Dss-Parms structure
// (RFC 3447) and appends the result to |cbb|. It returns one on success and
// zero on failure.
OPENSSL_EXPORT int DSA_marshal_parameters(CBB *cbb, const DSA *dsa);
/* Precomputation. */
// Precomputation.
/* DSA_sign_setup precomputes the message independent part of the DSA signature
* and writes them to |*out_kinv| and |*out_r|. Returns one on success, zero on
* error.
*
* TODO(fork): decide what to do with this. Since making DSA* opaque there's no
* way for the user to install them. Also, it forces the DSA* not to be const
* when passing to the signing function. */
// DSA_sign_setup precomputes the message independent part of the DSA signature
// and writes them to |*out_kinv| and |*out_r|. Returns one on success, zero on
// error.
//
// TODO(fork): decide what to do with this. Since making DSA* opaque there's no
// way for the user to install them. Also, it forces the DSA* not to be const
// when passing to the signing function.
OPENSSL_EXPORT int DSA_sign_setup(const DSA *dsa, BN_CTX *ctx,
BIGNUM **out_kinv, BIGNUM **out_r);
/* Conversion. */
// Conversion.
/* DSA_dup_DH returns a |DH| constructed from the parameters of |dsa|. This is
* sometimes needed when Diffie-Hellman parameters are stored in the form of
* DSA parameters. It returns an allocated |DH| on success or NULL on error. */
// DSA_dup_DH returns a |DH| constructed from the parameters of |dsa|. This is
// sometimes needed when Diffie-Hellman parameters are stored in the form of
// DSA parameters. It returns an allocated |DH| on success or NULL on error.
OPENSSL_EXPORT DH *DSA_dup_DH(const DSA *dsa);
/* ex_data functions.
*
* See |ex_data.h| for details. */
// ex_data functions.
//
// See |ex_data.h| for details.
OPENSSL_EXPORT int DSA_get_ex_new_index(long argl, void *argp,
CRYPTO_EX_unused *unused,
@ -302,84 +302,84 @@ OPENSSL_EXPORT int DSA_set_ex_data(DSA *dsa, int idx, void *arg);
OPENSSL_EXPORT void *DSA_get_ex_data(const DSA *dsa, int idx);
/* Deprecated functions. */
// Deprecated functions.
/* d2i_DSA_SIG parses an ASN.1, DER-encoded, DSA signature from |len| bytes at
* |*inp|. If |out_sig| is not NULL then, on exit, a pointer to the result is
* in |*out_sig|. Note that, even if |*out_sig| is already non-NULL on entry, it
* will not be written to. Rather, a fresh |DSA_SIG| is allocated and the
* previous one is freed. On successful exit, |*inp| is advanced past the DER
* structure. It returns the result or NULL on error.
*
* Use |DSA_SIG_parse| instead. */
// d2i_DSA_SIG parses an ASN.1, DER-encoded, DSA signature from |len| bytes at
// |*inp|. If |out_sig| is not NULL then, on exit, a pointer to the result is
// in |*out_sig|. Note that, even if |*out_sig| is already non-NULL on entry, it
// will not be written to. Rather, a fresh |DSA_SIG| is allocated and the
// previous one is freed. On successful exit, |*inp| is advanced past the DER
// structure. It returns the result or NULL on error.
//
// Use |DSA_SIG_parse| instead.
OPENSSL_EXPORT DSA_SIG *d2i_DSA_SIG(DSA_SIG **out_sig, const uint8_t **inp,
long len);
/* i2d_DSA_SIG marshals |in| to an ASN.1, DER structure. If |outp| is not NULL
* then the result is written to |*outp| and |*outp| is advanced just past the
* output. It returns the number of bytes in the result, whether written or not,
* or a negative value on error.
*
* Use |DSA_SIG_marshal| instead. */
// i2d_DSA_SIG marshals |in| to an ASN.1, DER structure. If |outp| is not NULL
// then the result is written to |*outp| and |*outp| is advanced just past the
// output. It returns the number of bytes in the result, whether written or not,
// or a negative value on error.
//
// Use |DSA_SIG_marshal| instead.
OPENSSL_EXPORT int i2d_DSA_SIG(const DSA_SIG *in, uint8_t **outp);
/* d2i_DSAPublicKey parses an ASN.1, DER-encoded, DSA public key from |len|
* bytes at |*inp|. If |out| is not NULL then, on exit, a pointer to the result
* is in |*out|. Note that, even if |*ou| is already non-NULL on entry, it will
* not be written to. Rather, a fresh |DSA| is allocated and the previous one is
* freed. On successful exit, |*inp| is advanced past the DER structure. It
* returns the result or NULL on error.
*
* Use |DSA_parse_public_key| instead. */
// d2i_DSAPublicKey parses an ASN.1, DER-encoded, DSA public key from |len|
// bytes at |*inp|. If |out| is not NULL then, on exit, a pointer to the result
// is in |*out|. Note that, even if |*ou| is already non-NULL on entry, it will
// not be written to. Rather, a fresh |DSA| is allocated and the previous one is
// freed. On successful exit, |*inp| is advanced past the DER structure. It
// returns the result or NULL on error.
//
// Use |DSA_parse_public_key| instead.
OPENSSL_EXPORT DSA *d2i_DSAPublicKey(DSA **out, const uint8_t **inp, long len);
/* i2d_DSAPublicKey marshals a public key from |in| to an ASN.1, DER structure.
* If |outp| is not NULL then the result is written to |*outp| and |*outp| is
* advanced just past the output. It returns the number of bytes in the result,
* whether written or not, or a negative value on error.
*
* Use |DSA_marshal_public_key| instead. */
// i2d_DSAPublicKey marshals a public key from |in| to an ASN.1, DER structure.
// If |outp| is not NULL then the result is written to |*outp| and |*outp| is
// advanced just past the output. It returns the number of bytes in the result,
// whether written or not, or a negative value on error.
//
// Use |DSA_marshal_public_key| instead.
OPENSSL_EXPORT int i2d_DSAPublicKey(const DSA *in, uint8_t **outp);
/* d2i_DSAPrivateKey parses an ASN.1, DER-encoded, DSA private key from |len|
* bytes at |*inp|. If |out| is not NULL then, on exit, a pointer to the result
* is in |*out|. Note that, even if |*out| is already non-NULL on entry, it will
* not be written to. Rather, a fresh |DSA| is allocated and the previous one is
* freed. On successful exit, |*inp| is advanced past the DER structure. It
* returns the result or NULL on error.
*
* Use |DSA_parse_private_key| instead. */
// d2i_DSAPrivateKey parses an ASN.1, DER-encoded, DSA private key from |len|
// bytes at |*inp|. If |out| is not NULL then, on exit, a pointer to the result
// is in |*out|. Note that, even if |*out| is already non-NULL on entry, it will
// not be written to. Rather, a fresh |DSA| is allocated and the previous one is
// freed. On successful exit, |*inp| is advanced past the DER structure. It
// returns the result or NULL on error.
//
// Use |DSA_parse_private_key| instead.
OPENSSL_EXPORT DSA *d2i_DSAPrivateKey(DSA **out, const uint8_t **inp, long len);
/* i2d_DSAPrivateKey marshals a private key from |in| to an ASN.1, DER
* structure. If |outp| is not NULL then the result is written to |*outp| and
* |*outp| is advanced just past the output. It returns the number of bytes in
* the result, whether written or not, or a negative value on error.
*
* Use |DSA_marshal_private_key| instead. */
// i2d_DSAPrivateKey marshals a private key from |in| to an ASN.1, DER
// structure. If |outp| is not NULL then the result is written to |*outp| and
// |*outp| is advanced just past the output. It returns the number of bytes in
// the result, whether written or not, or a negative value on error.
//
// Use |DSA_marshal_private_key| instead.
OPENSSL_EXPORT int i2d_DSAPrivateKey(const DSA *in, uint8_t **outp);
/* d2i_DSAparams parses ASN.1, DER-encoded, DSA parameters from |len| bytes at
* |*inp|. If |out| is not NULL then, on exit, a pointer to the result is in
* |*out|. Note that, even if |*out| is already non-NULL on entry, it will not
* be written to. Rather, a fresh |DSA| is allocated and the previous one is
* freed. On successful exit, |*inp| is advanced past the DER structure. It
* returns the result or NULL on error.
*
* Use |DSA_parse_parameters| instead. */
// d2i_DSAparams parses ASN.1, DER-encoded, DSA parameters from |len| bytes at
// |*inp|. If |out| is not NULL then, on exit, a pointer to the result is in
// |*out|. Note that, even if |*out| is already non-NULL on entry, it will not
// be written to. Rather, a fresh |DSA| is allocated and the previous one is
// freed. On successful exit, |*inp| is advanced past the DER structure. It
// returns the result or NULL on error.
//
// Use |DSA_parse_parameters| instead.
OPENSSL_EXPORT DSA *d2i_DSAparams(DSA **out, const uint8_t **inp, long len);
/* i2d_DSAparams marshals DSA parameters from |in| to an ASN.1, DER structure.
* If |outp| is not NULL then the result is written to |*outp| and |*outp| is
* advanced just past the output. It returns the number of bytes in the result,
* whether written or not, or a negative value on error.
*
* Use |DSA_marshal_parameters| instead. */
// i2d_DSAparams marshals DSA parameters from |in| to an ASN.1, DER structure.
// If |outp| is not NULL then the result is written to |*outp| and |*outp| is
// advanced just past the output. It returns the number of bytes in the result,
// whether written or not, or a negative value on error.
//
// Use |DSA_marshal_parameters| instead.
OPENSSL_EXPORT int i2d_DSAparams(const DSA *in, uint8_t **outp);
/* DSA_generate_parameters is a deprecated version of
* |DSA_generate_parameters_ex| that creates and returns a |DSA*|. Don't use
* it. */
// DSA_generate_parameters is a deprecated version of
// |DSA_generate_parameters_ex| that creates and returns a |DSA*|. Don't use
// it.
OPENSSL_EXPORT DSA *DSA_generate_parameters(int bits, unsigned char *seed,
int seed_len, int *counter_ret,
unsigned long *h_ret,
@ -390,17 +390,17 @@ OPENSSL_EXPORT DSA *DSA_generate_parameters(int bits, unsigned char *seed,
struct dsa_st {
long version;
BIGNUM *p;
BIGNUM *q; /* == 20 */
BIGNUM *q; // == 20
BIGNUM *g;
BIGNUM *pub_key; /* y public key */
BIGNUM *priv_key; /* x private key */
BIGNUM *pub_key; // y public key
BIGNUM *priv_key; // x private key
BIGNUM *kinv; /* Signing pre-calc */
BIGNUM *r; /* Signing pre-calc */
BIGNUM *kinv; // Signing pre-calc
BIGNUM *r; // Signing pre-calc
int flags;
/* Normally used to cache montgomery values */
// Normally used to cache montgomery values
CRYPTO_MUTEX method_mont_lock;
BN_MONT_CTX *method_mont_p;
BN_MONT_CTX *method_mont_q;
@ -410,7 +410,7 @@ struct dsa_st {
#if defined(__cplusplus)
} /* extern C */
} // extern C
extern "C++" {
@ -421,7 +421,7 @@ BORINGSSL_MAKE_DELETER(DSA_SIG, DSA_SIG_free)
} // namespace bssl
} /* extern C++ */
} // extern C++
#endif
@ -433,4 +433,4 @@ BORINGSSL_MAKE_DELETER(DSA_SIG, DSA_SIG_free)
#define DSA_R_DECODE_ERROR 105
#define DSA_R_ENCODE_ERROR 106
#endif /* OPENSSL_HEADER_DSA_H */
#endif // OPENSSL_HEADER_DSA_H

View File

@ -75,287 +75,287 @@ extern "C" {
#endif
/* Low-level operations on elliptic curves. */
// Low-level operations on elliptic curves.
/* point_conversion_form_t enumerates forms, as defined in X9.62 (ECDSA), for
* the encoding of a elliptic curve point (x,y) */
// point_conversion_form_t enumerates forms, as defined in X9.62 (ECDSA), for
// the encoding of a elliptic curve point (x,y)
typedef enum {
/* POINT_CONVERSION_COMPRESSED indicates that the point is encoded as z||x,
* where the octet z specifies which solution of the quadratic equation y
* is. */
// POINT_CONVERSION_COMPRESSED indicates that the point is encoded as z||x,
// where the octet z specifies which solution of the quadratic equation y
// is.
POINT_CONVERSION_COMPRESSED = 2,
/* POINT_CONVERSION_UNCOMPRESSED indicates that the point is encoded as
* z||x||y, where z is the octet 0x04. */
// POINT_CONVERSION_UNCOMPRESSED indicates that the point is encoded as
// z||x||y, where z is the octet 0x04.
POINT_CONVERSION_UNCOMPRESSED = 4,
/* POINT_CONVERSION_HYBRID indicates that the point is encoded as z||x||y,
* where z specifies which solution of the quadratic equation y is. This is
* not supported by the code and has never been observed in use.
*
* TODO(agl): remove once node.js no longer references this. */
// POINT_CONVERSION_HYBRID indicates that the point is encoded as z||x||y,
// where z specifies which solution of the quadratic equation y is. This is
// not supported by the code and has never been observed in use.
//
// TODO(agl): remove once node.js no longer references this.
POINT_CONVERSION_HYBRID = 6,
} point_conversion_form_t;
/* Elliptic curve groups. */
// Elliptic curve groups.
/* EC_GROUP_new_by_curve_name returns a fresh EC_GROUP object for the elliptic
* curve specified by |nid|, or NULL on error.
*
* The supported NIDs are:
* NID_secp224r1,
* NID_X9_62_prime256v1,
* NID_secp384r1,
* NID_secp521r1 */
// EC_GROUP_new_by_curve_name returns a fresh EC_GROUP object for the elliptic
// curve specified by |nid|, or NULL on error.
//
// The supported NIDs are:
// NID_secp224r1,
// NID_X9_62_prime256v1,
// NID_secp384r1,
// NID_secp521r1
OPENSSL_EXPORT EC_GROUP *EC_GROUP_new_by_curve_name(int nid);
/* EC_GROUP_free frees |group| and the data that it points to. */
// EC_GROUP_free frees |group| and the data that it points to.
OPENSSL_EXPORT void EC_GROUP_free(EC_GROUP *group);
/* EC_GROUP_dup returns a fresh |EC_GROUP| which is equal to |a| or NULL on
* error. */
// EC_GROUP_dup returns a fresh |EC_GROUP| which is equal to |a| or NULL on
// error.
OPENSSL_EXPORT EC_GROUP *EC_GROUP_dup(const EC_GROUP *a);
/* EC_GROUP_cmp returns zero if |a| and |b| are the same group and non-zero
* otherwise. */
// EC_GROUP_cmp returns zero if |a| and |b| are the same group and non-zero
// otherwise.
OPENSSL_EXPORT int EC_GROUP_cmp(const EC_GROUP *a, const EC_GROUP *b,
BN_CTX *ignored);
/* EC_GROUP_get0_generator returns a pointer to the internal |EC_POINT| object
* in |group| that specifies the generator for the group. */
// EC_GROUP_get0_generator returns a pointer to the internal |EC_POINT| object
// in |group| that specifies the generator for the group.
OPENSSL_EXPORT const EC_POINT *EC_GROUP_get0_generator(const EC_GROUP *group);
/* EC_GROUP_get0_order returns a pointer to the internal |BIGNUM| object in
* |group| that specifies the order of the group. */
// EC_GROUP_get0_order returns a pointer to the internal |BIGNUM| object in
// |group| that specifies the order of the group.
OPENSSL_EXPORT const BIGNUM *EC_GROUP_get0_order(const EC_GROUP *group);
/* EC_GROUP_get_cofactor sets |*cofactor| to the cofactor of |group| using
* |ctx|, if it's not NULL. It returns one on success and zero otherwise. */
// EC_GROUP_get_cofactor sets |*cofactor| to the cofactor of |group| using
// |ctx|, if it's not NULL. It returns one on success and zero otherwise.
OPENSSL_EXPORT int EC_GROUP_get_cofactor(const EC_GROUP *group,
BIGNUM *cofactor, BN_CTX *ctx);
/* EC_GROUP_get_curve_GFp gets various parameters about a group. It sets
* |*out_p| to the order of the coordinate field and |*out_a| and |*out_b| to
* the parameters of the curve when expressed as y² = x³ + ax + b. Any of the
* output parameters can be NULL. It returns one on success and zero on
* error. */
// EC_GROUP_get_curve_GFp gets various parameters about a group. It sets
// |*out_p| to the order of the coordinate field and |*out_a| and |*out_b| to
// the parameters of the curve when expressed as y² = x³ + ax + b. Any of the
// output parameters can be NULL. It returns one on success and zero on
// error.
OPENSSL_EXPORT int EC_GROUP_get_curve_GFp(const EC_GROUP *group, BIGNUM *out_p,
BIGNUM *out_a, BIGNUM *out_b,
BN_CTX *ctx);
/* EC_GROUP_get_curve_name returns a NID that identifies |group|. */
// EC_GROUP_get_curve_name returns a NID that identifies |group|.
OPENSSL_EXPORT int EC_GROUP_get_curve_name(const EC_GROUP *group);
/* EC_GROUP_get_degree returns the number of bits needed to represent an
* element of the field underlying |group|. */
// EC_GROUP_get_degree returns the number of bits needed to represent an
// element of the field underlying |group|.
OPENSSL_EXPORT unsigned EC_GROUP_get_degree(const EC_GROUP *group);
/* Points on elliptic curves. */
// Points on elliptic curves.
/* EC_POINT_new returns a fresh |EC_POINT| object in the given group, or NULL
* on error. */
// EC_POINT_new returns a fresh |EC_POINT| object in the given group, or NULL
// on error.
OPENSSL_EXPORT EC_POINT *EC_POINT_new(const EC_GROUP *group);
/* EC_POINT_free frees |point| and the data that it points to. */
// EC_POINT_free frees |point| and the data that it points to.
OPENSSL_EXPORT void EC_POINT_free(EC_POINT *point);
/* EC_POINT_clear_free clears the data that |point| points to, frees it and
* then frees |point| itself. */
// EC_POINT_clear_free clears the data that |point| points to, frees it and
// then frees |point| itself.
OPENSSL_EXPORT void EC_POINT_clear_free(EC_POINT *point);
/* EC_POINT_copy sets |*dest| equal to |*src|. It returns one on success and
* zero otherwise. */
// EC_POINT_copy sets |*dest| equal to |*src|. It returns one on success and
// zero otherwise.
OPENSSL_EXPORT int EC_POINT_copy(EC_POINT *dest, const EC_POINT *src);
/* EC_POINT_dup returns a fresh |EC_POINT| that contains the same values as
* |src|, or NULL on error. */
// EC_POINT_dup returns a fresh |EC_POINT| that contains the same values as
// |src|, or NULL on error.
OPENSSL_EXPORT EC_POINT *EC_POINT_dup(const EC_POINT *src,
const EC_GROUP *group);
/* EC_POINT_set_to_infinity sets |point| to be the "point at infinity" for the
* given group. */
// EC_POINT_set_to_infinity sets |point| to be the "point at infinity" for the
// given group.
OPENSSL_EXPORT int EC_POINT_set_to_infinity(const EC_GROUP *group,
EC_POINT *point);
/* EC_POINT_is_at_infinity returns one iff |point| is the point at infinity and
* zero otherwise. */
// EC_POINT_is_at_infinity returns one iff |point| is the point at infinity and
// zero otherwise.
OPENSSL_EXPORT int EC_POINT_is_at_infinity(const EC_GROUP *group,
const EC_POINT *point);
/* EC_POINT_is_on_curve returns one if |point| is an element of |group| and
* and zero otherwise or when an error occurs. This is different from OpenSSL,
* which returns -1 on error. If |ctx| is non-NULL, it may be used. */
// EC_POINT_is_on_curve returns one if |point| is an element of |group| and
// and zero otherwise or when an error occurs. This is different from OpenSSL,
// which returns -1 on error. If |ctx| is non-NULL, it may be used.
OPENSSL_EXPORT int EC_POINT_is_on_curve(const EC_GROUP *group,
const EC_POINT *point, BN_CTX *ctx);
/* EC_POINT_cmp returns zero if |a| is equal to |b|, greater than zero if
* not equal and -1 on error. If |ctx| is not NULL, it may be used. */
// EC_POINT_cmp returns zero if |a| is equal to |b|, greater than zero if
// not equal and -1 on error. If |ctx| is not NULL, it may be used.
OPENSSL_EXPORT int EC_POINT_cmp(const EC_GROUP *group, const EC_POINT *a,
const EC_POINT *b, BN_CTX *ctx);
/* EC_POINT_make_affine converts |point| to affine form, internally. It returns
* one on success and zero otherwise. If |ctx| is not NULL, it may be used. */
// EC_POINT_make_affine converts |point| to affine form, internally. It returns
// one on success and zero otherwise. If |ctx| is not NULL, it may be used.
OPENSSL_EXPORT int EC_POINT_make_affine(const EC_GROUP *group, EC_POINT *point,
BN_CTX *ctx);
/* EC_POINTs_make_affine converts |num| points from |points| to affine form,
* internally. It returns one on success and zero otherwise. If |ctx| is not
* NULL, it may be used. */
// EC_POINTs_make_affine converts |num| points from |points| to affine form,
// internally. It returns one on success and zero otherwise. If |ctx| is not
// NULL, it may be used.
OPENSSL_EXPORT int EC_POINTs_make_affine(const EC_GROUP *group, size_t num,
EC_POINT *points[], BN_CTX *ctx);
/* Point conversion. */
// Point conversion.
/* EC_POINT_get_affine_coordinates_GFp sets |x| and |y| to the affine value of
* |point| using |ctx|, if it's not NULL. It returns one on success and zero
* otherwise. */
// EC_POINT_get_affine_coordinates_GFp sets |x| and |y| to the affine value of
// |point| using |ctx|, if it's not NULL. It returns one on success and zero
// otherwise.
OPENSSL_EXPORT int EC_POINT_get_affine_coordinates_GFp(const EC_GROUP *group,
const EC_POINT *point,
BIGNUM *x, BIGNUM *y,
BN_CTX *ctx);
/* EC_POINT_set_affine_coordinates_GFp sets the value of |point| to be
* (|x|, |y|). The |ctx| argument may be used if not NULL. It returns one
* on success or zero on error. Note that, unlike with OpenSSL, it's
* considered an error if the point is not on the curve. */
// EC_POINT_set_affine_coordinates_GFp sets the value of |point| to be
// (|x|, |y|). The |ctx| argument may be used if not NULL. It returns one
// on success or zero on error. Note that, unlike with OpenSSL, it's
// considered an error if the point is not on the curve.
OPENSSL_EXPORT int EC_POINT_set_affine_coordinates_GFp(const EC_GROUP *group,
EC_POINT *point,
const BIGNUM *x,
const BIGNUM *y,
BN_CTX *ctx);
/* EC_POINT_point2oct serialises |point| into the X9.62 form given by |form|
* into, at most, |len| bytes at |buf|. It returns the number of bytes written
* or zero on error if |buf| is non-NULL, else the number of bytes needed. The
* |ctx| argument may be used if not NULL. */
// EC_POINT_point2oct serialises |point| into the X9.62 form given by |form|
// into, at most, |len| bytes at |buf|. It returns the number of bytes written
// or zero on error if |buf| is non-NULL, else the number of bytes needed. The
// |ctx| argument may be used if not NULL.
OPENSSL_EXPORT size_t EC_POINT_point2oct(const EC_GROUP *group,
const EC_POINT *point,
point_conversion_form_t form,
uint8_t *buf, size_t len, BN_CTX *ctx);
/* EC_POINT_point2cbb behaves like |EC_POINT_point2oct| but appends the
* serialised point to |cbb|. It returns one on success and zero on error. */
// EC_POINT_point2cbb behaves like |EC_POINT_point2oct| but appends the
// serialised point to |cbb|. It returns one on success and zero on error.
OPENSSL_EXPORT int EC_POINT_point2cbb(CBB *out, const EC_GROUP *group,
const EC_POINT *point,
point_conversion_form_t form,
BN_CTX *ctx);
/* EC_POINT_oct2point sets |point| from |len| bytes of X9.62 format
* serialisation in |buf|. It returns one on success and zero otherwise. The
* |ctx| argument may be used if not NULL. */
// EC_POINT_oct2point sets |point| from |len| bytes of X9.62 format
// serialisation in |buf|. It returns one on success and zero otherwise. The
// |ctx| argument may be used if not NULL.
OPENSSL_EXPORT int EC_POINT_oct2point(const EC_GROUP *group, EC_POINT *point,
const uint8_t *buf, size_t len,
BN_CTX *ctx);
/* EC_POINT_set_compressed_coordinates_GFp sets |point| to equal the point with
* the given |x| coordinate and the y coordinate specified by |y_bit| (see
* X9.62). It returns one on success and zero otherwise. */
// EC_POINT_set_compressed_coordinates_GFp sets |point| to equal the point with
// the given |x| coordinate and the y coordinate specified by |y_bit| (see
// X9.62). It returns one on success and zero otherwise.
OPENSSL_EXPORT int EC_POINT_set_compressed_coordinates_GFp(
const EC_GROUP *group, EC_POINT *point, const BIGNUM *x, int y_bit,
BN_CTX *ctx);
/* Group operations. */
// Group operations.
/* EC_POINT_add sets |r| equal to |a| plus |b|. It returns one on success and
* zero otherwise. If |ctx| is not NULL, it may be used. */
// EC_POINT_add sets |r| equal to |a| plus |b|. It returns one on success and
// zero otherwise. If |ctx| is not NULL, it may be used.
OPENSSL_EXPORT int EC_POINT_add(const EC_GROUP *group, EC_POINT *r,
const EC_POINT *a, const EC_POINT *b,
BN_CTX *ctx);
/* EC_POINT_dbl sets |r| equal to |a| plus |a|. It returns one on success and
* zero otherwise. If |ctx| is not NULL, it may be used. */
// EC_POINT_dbl sets |r| equal to |a| plus |a|. It returns one on success and
// zero otherwise. If |ctx| is not NULL, it may be used.
OPENSSL_EXPORT int EC_POINT_dbl(const EC_GROUP *group, EC_POINT *r,
const EC_POINT *a, BN_CTX *ctx);
/* EC_POINT_invert sets |a| equal to minus |a|. It returns one on success and
* zero otherwise. If |ctx| is not NULL, it may be used. */
// EC_POINT_invert sets |a| equal to minus |a|. It returns one on success and
// zero otherwise. If |ctx| is not NULL, it may be used.
OPENSSL_EXPORT int EC_POINT_invert(const EC_GROUP *group, EC_POINT *a,
BN_CTX *ctx);
/* EC_POINT_mul sets r = generator*n + q*m. It returns one on success and zero
* otherwise. If |ctx| is not NULL, it may be used. */
// EC_POINT_mul sets r = generator*n + q*m. It returns one on success and zero
// otherwise. If |ctx| is not NULL, it may be used.
OPENSSL_EXPORT int EC_POINT_mul(const EC_GROUP *group, EC_POINT *r,
const BIGNUM *n, const EC_POINT *q,
const BIGNUM *m, BN_CTX *ctx);
/* Deprecated functions. */
// Deprecated functions.
/* EC_GROUP_new_curve_GFp creates a new, arbitrary elliptic curve group based
* on the equation y² = x³ + a·x + b. It returns the new group or NULL on
* error.
*
* This new group has no generator. It is an error to use a generator-less group
* with any functions except for |EC_GROUP_free|, |EC_POINT_new|,
* |EC_POINT_set_affine_coordinates_GFp|, and |EC_GROUP_set_generator|.
*
* |EC_GROUP|s returned by this function will always compare as unequal via
* |EC_GROUP_cmp| (even to themselves). |EC_GROUP_get_curve_name| will always
* return |NID_undef|.
*
* Avoid using arbitrary curves and use |EC_GROUP_new_by_curve_name| instead. */
// EC_GROUP_new_curve_GFp creates a new, arbitrary elliptic curve group based
// on the equation y² = x³ + a·x + b. It returns the new group or NULL on
// error.
//
// This new group has no generator. It is an error to use a generator-less group
// with any functions except for |EC_GROUP_free|, |EC_POINT_new|,
// |EC_POINT_set_affine_coordinates_GFp|, and |EC_GROUP_set_generator|.
//
// |EC_GROUP|s returned by this function will always compare as unequal via
// |EC_GROUP_cmp| (even to themselves). |EC_GROUP_get_curve_name| will always
// return |NID_undef|.
//
// Avoid using arbitrary curves and use |EC_GROUP_new_by_curve_name| instead.
OPENSSL_EXPORT EC_GROUP *EC_GROUP_new_curve_GFp(const BIGNUM *p,
const BIGNUM *a,
const BIGNUM *b, BN_CTX *ctx);
/* EC_GROUP_set_generator sets the generator for |group| to |generator|, which
* must have the given order and cofactor. It may only be used with |EC_GROUP|
* objects returned by |EC_GROUP_new_curve_GFp| and may only be used once on
* each group. */
// EC_GROUP_set_generator sets the generator for |group| to |generator|, which
// must have the given order and cofactor. It may only be used with |EC_GROUP|
// objects returned by |EC_GROUP_new_curve_GFp| and may only be used once on
// each group.
OPENSSL_EXPORT int EC_GROUP_set_generator(EC_GROUP *group,
const EC_POINT *generator,
const BIGNUM *order,
const BIGNUM *cofactor);
/* EC_GROUP_get_order sets |*order| to the order of |group|, if it's not
* NULL. It returns one on success and zero otherwise. |ctx| is ignored. Use
* |EC_GROUP_get0_order| instead. */
// EC_GROUP_get_order sets |*order| to the order of |group|, if it's not
// NULL. It returns one on success and zero otherwise. |ctx| is ignored. Use
// |EC_GROUP_get0_order| instead.
OPENSSL_EXPORT int EC_GROUP_get_order(const EC_GROUP *group, BIGNUM *order,
BN_CTX *ctx);
/* EC_GROUP_set_asn1_flag does nothing. */
// EC_GROUP_set_asn1_flag does nothing.
OPENSSL_EXPORT void EC_GROUP_set_asn1_flag(EC_GROUP *group, int flag);
#define OPENSSL_EC_NAMED_CURVE 0
typedef struct ec_method_st EC_METHOD;
/* EC_GROUP_method_of returns NULL. */
// EC_GROUP_method_of returns NULL.
OPENSSL_EXPORT const EC_METHOD *EC_GROUP_method_of(const EC_GROUP *group);
/* EC_METHOD_get_field_type returns NID_X9_62_prime_field. */
// EC_METHOD_get_field_type returns NID_X9_62_prime_field.
OPENSSL_EXPORT int EC_METHOD_get_field_type(const EC_METHOD *meth);
/* EC_GROUP_set_point_conversion_form aborts the process if |form| is not
* |POINT_CONVERSION_UNCOMPRESSED| and otherwise does nothing. */
// EC_GROUP_set_point_conversion_form aborts the process if |form| is not
// |POINT_CONVERSION_UNCOMPRESSED| and otherwise does nothing.
OPENSSL_EXPORT void EC_GROUP_set_point_conversion_form(
EC_GROUP *group, point_conversion_form_t form);
/* EC_builtin_curve describes a supported elliptic curve. */
// EC_builtin_curve describes a supported elliptic curve.
typedef struct {
int nid;
const char *comment;
} EC_builtin_curve;
/* EC_get_builtin_curves writes at most |max_num_curves| elements to
* |out_curves| and returns the total number that it would have written, had
* |max_num_curves| been large enough.
*
* The |EC_builtin_curve| items describe the supported elliptic curves. */
// EC_get_builtin_curves writes at most |max_num_curves| elements to
// |out_curves| and returns the total number that it would have written, had
// |max_num_curves| been large enough.
//
// The |EC_builtin_curve| items describe the supported elliptic curves.
OPENSSL_EXPORT size_t EC_get_builtin_curves(EC_builtin_curve *out_curves,
size_t max_num_curves);
/* Old code expects to get EC_KEY from ec.h. */
// Old code expects to get EC_KEY from ec.h.
#include <openssl/ec_key.h>
#if defined(__cplusplus)
} /* extern C */
} // extern C
extern "C++" {
@ -366,7 +366,7 @@ BORINGSSL_MAKE_DELETER(EC_GROUP, EC_GROUP_free)
} // namespace bssl
} /* extern C++ */
} // extern C++
#endif
@ -404,4 +404,4 @@ BORINGSSL_MAKE_DELETER(EC_GROUP, EC_GROUP_free)
#define EC_R_INVALID_COFACTOR 131
#define EC_R_PUBLIC_KEY_VALIDATION_FAILED 132
#endif /* OPENSSL_HEADER_EC_H */
#endif // OPENSSL_HEADER_EC_H

View File

@ -79,147 +79,147 @@ extern "C" {
#endif
/* ec_key.h contains functions that handle elliptic-curve points that are
* public/private keys. */
// ec_key.h contains functions that handle elliptic-curve points that are
// public/private keys.
/* EC key objects. */
// EC key objects.
/* EC_KEY_new returns a fresh |EC_KEY| object or NULL on error. */
// EC_KEY_new returns a fresh |EC_KEY| object or NULL on error.
OPENSSL_EXPORT EC_KEY *EC_KEY_new(void);
/* EC_KEY_new_method acts the same as |EC_KEY_new|, but takes an explicit
* |ENGINE|. */
// EC_KEY_new_method acts the same as |EC_KEY_new|, but takes an explicit
// |ENGINE|.
OPENSSL_EXPORT EC_KEY *EC_KEY_new_method(const ENGINE *engine);
/* EC_KEY_new_by_curve_name returns a fresh EC_KEY for group specified by |nid|
* or NULL on error. */
// EC_KEY_new_by_curve_name returns a fresh EC_KEY for group specified by |nid|
// or NULL on error.
OPENSSL_EXPORT EC_KEY *EC_KEY_new_by_curve_name(int nid);
/* EC_KEY_free frees all the data owned by |key| and |key| itself. */
// EC_KEY_free frees all the data owned by |key| and |key| itself.
OPENSSL_EXPORT void EC_KEY_free(EC_KEY *key);
/* EC_KEY_copy sets |dst| equal to |src| and returns |dst| or NULL on error. */
// EC_KEY_copy sets |dst| equal to |src| and returns |dst| or NULL on error.
OPENSSL_EXPORT EC_KEY *EC_KEY_copy(EC_KEY *dst, const EC_KEY *src);
/* EC_KEY_dup returns a fresh copy of |src| or NULL on error. */
// EC_KEY_dup returns a fresh copy of |src| or NULL on error.
OPENSSL_EXPORT EC_KEY *EC_KEY_dup(const EC_KEY *src);
/* EC_KEY_up_ref increases the reference count of |key| and returns one. */
// EC_KEY_up_ref increases the reference count of |key| and returns one.
OPENSSL_EXPORT int EC_KEY_up_ref(EC_KEY *key);
/* EC_KEY_is_opaque returns one if |key| is opaque and doesn't expose its key
* material. Otherwise it return zero. */
// EC_KEY_is_opaque returns one if |key| is opaque and doesn't expose its key
// material. Otherwise it return zero.
OPENSSL_EXPORT int EC_KEY_is_opaque(const EC_KEY *key);
/* EC_KEY_get0_group returns a pointer to the |EC_GROUP| object inside |key|. */
// EC_KEY_get0_group returns a pointer to the |EC_GROUP| object inside |key|.
OPENSSL_EXPORT const EC_GROUP *EC_KEY_get0_group(const EC_KEY *key);
/* EC_KEY_set_group sets the |EC_GROUP| object that |key| will use to |group|.
* It returns one on success and zero otherwise. */
// EC_KEY_set_group sets the |EC_GROUP| object that |key| will use to |group|.
// It returns one on success and zero otherwise.
OPENSSL_EXPORT int EC_KEY_set_group(EC_KEY *key, const EC_GROUP *group);
/* EC_KEY_get0_private_key returns a pointer to the private key inside |key|. */
// EC_KEY_get0_private_key returns a pointer to the private key inside |key|.
OPENSSL_EXPORT const BIGNUM *EC_KEY_get0_private_key(const EC_KEY *key);
/* EC_KEY_set_private_key sets the private key of |key| to |priv|. It returns
* one on success and zero otherwise. */
// EC_KEY_set_private_key sets the private key of |key| to |priv|. It returns
// one on success and zero otherwise.
OPENSSL_EXPORT int EC_KEY_set_private_key(EC_KEY *key, const BIGNUM *prv);
/* EC_KEY_get0_public_key returns a pointer to the public key point inside
* |key|. */
// EC_KEY_get0_public_key returns a pointer to the public key point inside
// |key|.
OPENSSL_EXPORT const EC_POINT *EC_KEY_get0_public_key(const EC_KEY *key);
/* EC_KEY_set_public_key sets the public key of |key| to |pub|, by copying it.
* It returns one on success and zero otherwise. */
// EC_KEY_set_public_key sets the public key of |key| to |pub|, by copying it.
// It returns one on success and zero otherwise.
OPENSSL_EXPORT int EC_KEY_set_public_key(EC_KEY *key, const EC_POINT *pub);
#define EC_PKEY_NO_PARAMETERS 0x001
#define EC_PKEY_NO_PUBKEY 0x002
/* EC_KEY_get_enc_flags returns the encoding flags for |key|, which is a
* bitwise-OR of |EC_PKEY_*| values. */
// EC_KEY_get_enc_flags returns the encoding flags for |key|, which is a
// bitwise-OR of |EC_PKEY_*| values.
OPENSSL_EXPORT unsigned EC_KEY_get_enc_flags(const EC_KEY *key);
/* EC_KEY_set_enc_flags sets the encoding flags for |key|, which is a
* bitwise-OR of |EC_PKEY_*| values. */
// EC_KEY_set_enc_flags sets the encoding flags for |key|, which is a
// bitwise-OR of |EC_PKEY_*| values.
OPENSSL_EXPORT void EC_KEY_set_enc_flags(EC_KEY *key, unsigned flags);
/* EC_KEY_get_conv_form returns the conversation form that will be used by
* |key|. */
// EC_KEY_get_conv_form returns the conversation form that will be used by
// |key|.
OPENSSL_EXPORT point_conversion_form_t EC_KEY_get_conv_form(const EC_KEY *key);
/* EC_KEY_set_conv_form sets the conversion form to be used by |key|. */
// EC_KEY_set_conv_form sets the conversion form to be used by |key|.
OPENSSL_EXPORT void EC_KEY_set_conv_form(EC_KEY *key,
point_conversion_form_t cform);
/* EC_KEY_check_key performs several checks on |key| (possibly including an
* expensive check that the public key is in the primary subgroup). It returns
* one if all checks pass and zero otherwise. If it returns zero then detail
* about the problem can be found on the error stack. */
// EC_KEY_check_key performs several checks on |key| (possibly including an
// expensive check that the public key is in the primary subgroup). It returns
// one if all checks pass and zero otherwise. If it returns zero then detail
// about the problem can be found on the error stack.
OPENSSL_EXPORT int EC_KEY_check_key(const EC_KEY *key);
/* EC_KEY_check_fips performs a signing pairwise consistency test (FIPS 140-2
* 4.9.2). It returns one if it passes and zero otherwise. */
// EC_KEY_check_fips performs a signing pairwise consistency test (FIPS 140-2
// 4.9.2). It returns one if it passes and zero otherwise.
OPENSSL_EXPORT int EC_KEY_check_fips(const EC_KEY *key);
/* EC_KEY_set_public_key_affine_coordinates sets the public key in |key| to
* (|x|, |y|). It returns one on success and zero otherwise. */
// EC_KEY_set_public_key_affine_coordinates sets the public key in |key| to
// (|x|, |y|). It returns one on success and zero otherwise.
OPENSSL_EXPORT int EC_KEY_set_public_key_affine_coordinates(EC_KEY *key,
BIGNUM *x,
BIGNUM *y);
/* Key generation. */
// Key generation.
/* EC_KEY_generate_key generates a random, private key, calculates the
* corresponding public key and stores both in |key|. It returns one on success
* or zero otherwise. */
// EC_KEY_generate_key generates a random, private key, calculates the
// corresponding public key and stores both in |key|. It returns one on success
// or zero otherwise.
OPENSSL_EXPORT int EC_KEY_generate_key(EC_KEY *key);
/* EC_KEY_generate_key_fips behaves like |EC_KEY_generate_key| but performs
* additional checks for FIPS compliance. */
// EC_KEY_generate_key_fips behaves like |EC_KEY_generate_key| but performs
// additional checks for FIPS compliance.
OPENSSL_EXPORT int EC_KEY_generate_key_fips(EC_KEY *key);
/* Serialisation. */
// Serialisation.
/* EC_KEY_parse_private_key parses a DER-encoded ECPrivateKey structure (RFC
* 5915) from |cbs| and advances |cbs|. It returns a newly-allocated |EC_KEY| or
* NULL on error. If |group| is non-null, the parameters field of the
* ECPrivateKey may be omitted (but must match |group| if present). Otherwise,
* the parameters field is required. */
// EC_KEY_parse_private_key parses a DER-encoded ECPrivateKey structure (RFC
// 5915) from |cbs| and advances |cbs|. It returns a newly-allocated |EC_KEY| or
// NULL on error. If |group| is non-null, the parameters field of the
// ECPrivateKey may be omitted (but must match |group| if present). Otherwise,
// the parameters field is required.
OPENSSL_EXPORT EC_KEY *EC_KEY_parse_private_key(CBS *cbs,
const EC_GROUP *group);
/* EC_KEY_marshal_private_key marshals |key| as a DER-encoded ECPrivateKey
* structure (RFC 5915) and appends the result to |cbb|. It returns one on
* success and zero on failure. |enc_flags| is a combination of |EC_PKEY_*|
* values and controls whether corresponding fields are omitted. */
// EC_KEY_marshal_private_key marshals |key| as a DER-encoded ECPrivateKey
// structure (RFC 5915) and appends the result to |cbb|. It returns one on
// success and zero on failure. |enc_flags| is a combination of |EC_PKEY_*|
// values and controls whether corresponding fields are omitted.
OPENSSL_EXPORT int EC_KEY_marshal_private_key(CBB *cbb, const EC_KEY *key,
unsigned enc_flags);
/* EC_KEY_parse_curve_name parses a DER-encoded OBJECT IDENTIFIER as a curve
* name from |cbs| and advances |cbs|. It returns a newly-allocated |EC_GROUP|
* or NULL on error. */
// EC_KEY_parse_curve_name parses a DER-encoded OBJECT IDENTIFIER as a curve
// name from |cbs| and advances |cbs|. It returns a newly-allocated |EC_GROUP|
// or NULL on error.
OPENSSL_EXPORT EC_GROUP *EC_KEY_parse_curve_name(CBS *cbs);
/* EC_KEY_marshal_curve_name marshals |group| as a DER-encoded OBJECT IDENTIFIER
* and appends the result to |cbb|. It returns one on success and zero on
* failure. */
// EC_KEY_marshal_curve_name marshals |group| as a DER-encoded OBJECT IDENTIFIER
// and appends the result to |cbb|. It returns one on success and zero on
// failure.
OPENSSL_EXPORT int EC_KEY_marshal_curve_name(CBB *cbb, const EC_GROUP *group);
/* EC_KEY_parse_parameters parses a DER-encoded ECParameters structure (RFC
* 5480) from |cbs| and advances |cbs|. It returns a newly-allocated |EC_GROUP|
* or NULL on error. It supports the namedCurve and specifiedCurve options, but
* use of specifiedCurve is deprecated. Use |EC_KEY_parse_curve_name|
* instead. */
// EC_KEY_parse_parameters parses a DER-encoded ECParameters structure (RFC
// 5480) from |cbs| and advances |cbs|. It returns a newly-allocated |EC_GROUP|
// or NULL on error. It supports the namedCurve and specifiedCurve options, but
// use of specifiedCurve is deprecated. Use |EC_KEY_parse_curve_name|
// instead.
OPENSSL_EXPORT EC_GROUP *EC_KEY_parse_parameters(CBS *cbs);
/* ex_data functions.
*
* These functions are wrappers. See |ex_data.h| for details. */
// ex_data functions.
//
// These functions are wrappers. See |ex_data.h| for details.
OPENSSL_EXPORT int EC_KEY_get_ex_new_index(long argl, void *argp,
CRYPTO_EX_unused *unused,
@ -229,15 +229,15 @@ OPENSSL_EXPORT int EC_KEY_set_ex_data(EC_KEY *r, int idx, void *arg);
OPENSSL_EXPORT void *EC_KEY_get_ex_data(const EC_KEY *r, int idx);
/* ECDSA method. */
// ECDSA method.
/* ECDSA_FLAG_OPAQUE specifies that this ECDSA_METHOD does not expose its key
* material. This may be set if, for instance, it is wrapping some other crypto
* API, like a platform key store. */
// ECDSA_FLAG_OPAQUE specifies that this ECDSA_METHOD does not expose its key
// material. This may be set if, for instance, it is wrapping some other crypto
// API, like a platform key store.
#define ECDSA_FLAG_OPAQUE 1
/* ecdsa_method_st is a structure of function pointers for implementing ECDSA.
* See engine.h. */
// ecdsa_method_st is a structure of function pointers for implementing ECDSA.
// See engine.h.
struct ecdsa_method_st {
struct openssl_method_common_st common;
@ -246,12 +246,12 @@ struct ecdsa_method_st {
int (*init)(EC_KEY *key);
int (*finish)(EC_KEY *key);
/* group_order_size returns the number of bytes needed to represent the order
* of the group. This is used to calculate the maximum size of an ECDSA
* signature in |ECDSA_size|. */
// group_order_size returns the number of bytes needed to represent the order
// of the group. This is used to calculate the maximum size of an ECDSA
// signature in |ECDSA_size|.
size_t (*group_order_size)(const EC_KEY *key);
/* sign matches the arguments and behaviour of |ECDSA_sign|. */
// sign matches the arguments and behaviour of |ECDSA_sign|.
int (*sign)(const uint8_t *digest, size_t digest_len, uint8_t *sig,
unsigned int *sig_len, EC_KEY *eckey);
@ -259,72 +259,72 @@ struct ecdsa_method_st {
};
/* Deprecated functions. */
// Deprecated functions.
/* EC_KEY_set_asn1_flag does nothing. */
// EC_KEY_set_asn1_flag does nothing.
OPENSSL_EXPORT void EC_KEY_set_asn1_flag(EC_KEY *key, int flag);
/* d2i_ECPrivateKey parses an ASN.1, DER-encoded, private key from |len| bytes
* at |*inp|. If |out_key| is not NULL then, on exit, a pointer to the result
* is in |*out_key|. Note that, even if |*out_key| is already non-NULL on entry,
* it * will not be written to. Rather, a fresh |EC_KEY| is allocated and the
* previous * one is freed. On successful exit, |*inp| is advanced past the DER
* structure. It returns the result or NULL on error.
*
* On input, if |*out_key| is non-NULL and has a group configured, the
* parameters field may be omitted but must match that group if present.
*
* Use |EC_KEY_parse_private_key| instead. */
// d2i_ECPrivateKey parses an ASN.1, DER-encoded, private key from |len| bytes
// at |*inp|. If |out_key| is not NULL then, on exit, a pointer to the result
// is in |*out_key|. Note that, even if |*out_key| is already non-NULL on entry,
// it * will not be written to. Rather, a fresh |EC_KEY| is allocated and the
// previous * one is freed. On successful exit, |*inp| is advanced past the DER
// structure. It returns the result or NULL on error.
//
// On input, if |*out_key| is non-NULL and has a group configured, the
// parameters field may be omitted but must match that group if present.
//
// Use |EC_KEY_parse_private_key| instead.
OPENSSL_EXPORT EC_KEY *d2i_ECPrivateKey(EC_KEY **out_key, const uint8_t **inp,
long len);
/* i2d_ECPrivateKey marshals an EC private key from |key| to an ASN.1, DER
* structure. If |outp| is not NULL then the result is written to |*outp| and
* |*outp| is advanced just past the output. It returns the number of bytes in
* the result, whether written or not, or a negative value on error.
*
* Use |EC_KEY_marshal_private_key| instead. */
// i2d_ECPrivateKey marshals an EC private key from |key| to an ASN.1, DER
// structure. If |outp| is not NULL then the result is written to |*outp| and
// |*outp| is advanced just past the output. It returns the number of bytes in
// the result, whether written or not, or a negative value on error.
//
// Use |EC_KEY_marshal_private_key| instead.
OPENSSL_EXPORT int i2d_ECPrivateKey(const EC_KEY *key, uint8_t **outp);
/* d2i_ECParameters parses an ASN.1, DER-encoded, set of EC parameters from
* |len| bytes at |*inp|. If |out_key| is not NULL then, on exit, a pointer to
* the result is in |*out_key|. Note that, even if |*out_key| is already
* non-NULL on entry, it will not be written to. Rather, a fresh |EC_KEY| is
* allocated and the previous one is freed. On successful exit, |*inp| is
* advanced past the DER structure. It returns the result or NULL on error.
*
* Use |EC_KEY_parse_parameters| or |EC_KEY_parse_curve_name| instead. */
// d2i_ECParameters parses an ASN.1, DER-encoded, set of EC parameters from
// |len| bytes at |*inp|. If |out_key| is not NULL then, on exit, a pointer to
// the result is in |*out_key|. Note that, even if |*out_key| is already
// non-NULL on entry, it will not be written to. Rather, a fresh |EC_KEY| is
// allocated and the previous one is freed. On successful exit, |*inp| is
// advanced past the DER structure. It returns the result or NULL on error.
//
// Use |EC_KEY_parse_parameters| or |EC_KEY_parse_curve_name| instead.
OPENSSL_EXPORT EC_KEY *d2i_ECParameters(EC_KEY **out_key, const uint8_t **inp,
long len);
/* i2d_ECParameters marshals EC parameters from |key| to an ASN.1, DER
* structure. If |outp| is not NULL then the result is written to |*outp| and
* |*outp| is advanced just past the output. It returns the number of bytes in
* the result, whether written or not, or a negative value on error.
*
* Use |EC_KEY_marshal_curve_name| instead. */
// i2d_ECParameters marshals EC parameters from |key| to an ASN.1, DER
// structure. If |outp| is not NULL then the result is written to |*outp| and
// |*outp| is advanced just past the output. It returns the number of bytes in
// the result, whether written or not, or a negative value on error.
//
// Use |EC_KEY_marshal_curve_name| instead.
OPENSSL_EXPORT int i2d_ECParameters(const EC_KEY *key, uint8_t **outp);
/* o2i_ECPublicKey parses an EC point from |len| bytes at |*inp| into
* |*out_key|. Note that this differs from the d2i format in that |*out_key|
* must be non-NULL with a group set. On successful exit, |*inp| is advanced by
* |len| bytes. It returns |*out_key| or NULL on error.
*
* Use |EC_POINT_oct2point| instead. */
// o2i_ECPublicKey parses an EC point from |len| bytes at |*inp| into
// |*out_key|. Note that this differs from the d2i format in that |*out_key|
// must be non-NULL with a group set. On successful exit, |*inp| is advanced by
// |len| bytes. It returns |*out_key| or NULL on error.
//
// Use |EC_POINT_oct2point| instead.
OPENSSL_EXPORT EC_KEY *o2i_ECPublicKey(EC_KEY **out_key, const uint8_t **inp,
long len);
/* i2o_ECPublicKey marshals an EC point from |key|. If |outp| is not NULL then
* the result is written to |*outp| and |*outp| is advanced just past the
* output. It returns the number of bytes in the result, whether written or
* not, or a negative value on error.
*
* Use |EC_POINT_point2cbb| instead. */
// i2o_ECPublicKey marshals an EC point from |key|. If |outp| is not NULL then
// the result is written to |*outp| and |*outp| is advanced just past the
// output. It returns the number of bytes in the result, whether written or
// not, or a negative value on error.
//
// Use |EC_POINT_point2cbb| instead.
OPENSSL_EXPORT int i2o_ECPublicKey(const EC_KEY *key, unsigned char **outp);
#if defined(__cplusplus)
} /* extern C */
} // extern C
extern "C++" {
@ -334,8 +334,8 @@ BORINGSSL_MAKE_DELETER(EC_KEY, EC_KEY_free)
} // namespace bssl
} /* extern C++ */
} // extern C++
#endif
#endif /* OPENSSL_HEADER_EC_KEY_H */
#endif // OPENSSL_HEADER_EC_KEY_H

View File

@ -76,26 +76,26 @@ extern "C" {
#endif
/* Elliptic curve Diffie-Hellman. */
// Elliptic curve Diffie-Hellman.
/* ECDH_compute_key calculates the shared key between |pub_key| and |priv_key|.
* If |kdf| is not NULL, then it is called with the bytes of the shared key and
* the parameter |out|. When |kdf| returns, the value of |*outlen| becomes the
* return value. Otherwise, as many bytes of the shared key as will fit are
* copied directly to, at most, |outlen| bytes at |out|. It returns the number
* of bytes written to |out|, or -1 on error. */
// ECDH_compute_key calculates the shared key between |pub_key| and |priv_key|.
// If |kdf| is not NULL, then it is called with the bytes of the shared key and
// the parameter |out|. When |kdf| returns, the value of |*outlen| becomes the
// return value. Otherwise, as many bytes of the shared key as will fit are
// copied directly to, at most, |outlen| bytes at |out|. It returns the number
// of bytes written to |out|, or -1 on error.
OPENSSL_EXPORT int ECDH_compute_key(
void *out, size_t outlen, const EC_POINT *pub_key, const EC_KEY *priv_key,
void *(*kdf)(const void *in, size_t inlen, void *out, size_t *outlen));
#if defined(__cplusplus)
} /* extern C */
} // extern C
#endif
#define ECDH_R_KDF_FAILED 100
#define ECDH_R_NO_PRIVATE_VALUE 101
#define ECDH_R_POINT_ARITHMETIC_FAILURE 102
#endif /* OPENSSL_HEADER_ECDH_H */
#endif // OPENSSL_HEADER_ECDH_H

View File

@ -62,138 +62,138 @@ extern "C" {
#endif
/* ECDSA contains functions for signing and verifying with the Digital Signature
* Algorithm over elliptic curves. */
// ECDSA contains functions for signing and verifying with the Digital Signature
// Algorithm over elliptic curves.
/* Signing and verifying. */
// Signing and verifying.
/* ECDSA_sign signs |digest_len| bytes from |digest| with |key| and writes the
* resulting signature to |sig|, which must have |ECDSA_size(key)| bytes of
* space. On successful exit, |*sig_len| is set to the actual number of bytes
* written. The |type| argument should be zero. It returns one on success and
* zero otherwise. */
// ECDSA_sign signs |digest_len| bytes from |digest| with |key| and writes the
// resulting signature to |sig|, which must have |ECDSA_size(key)| bytes of
// space. On successful exit, |*sig_len| is set to the actual number of bytes
// written. The |type| argument should be zero. It returns one on success and
// zero otherwise.
OPENSSL_EXPORT int ECDSA_sign(int type, const uint8_t *digest,
size_t digest_len, uint8_t *sig,
unsigned int *sig_len, const EC_KEY *key);
/* ECDSA_verify verifies that |sig_len| bytes from |sig| constitute a valid
* signature by |key| of |digest|. (The |type| argument should be zero.) It
* returns one on success or zero if the signature is invalid or an error
* occurred. */
// ECDSA_verify verifies that |sig_len| bytes from |sig| constitute a valid
// signature by |key| of |digest|. (The |type| argument should be zero.) It
// returns one on success or zero if the signature is invalid or an error
// occurred.
OPENSSL_EXPORT int ECDSA_verify(int type, const uint8_t *digest,
size_t digest_len, const uint8_t *sig,
size_t sig_len, const EC_KEY *key);
/* ECDSA_size returns the maximum size of an ECDSA signature using |key|. It
* returns zero on error. */
// ECDSA_size returns the maximum size of an ECDSA signature using |key|. It
// returns zero on error.
OPENSSL_EXPORT size_t ECDSA_size(const EC_KEY *key);
/* Low-level signing and verification.
*
* Low-level functions handle signatures as |ECDSA_SIG| structures which allow
* the two values in an ECDSA signature to be handled separately. */
// Low-level signing and verification.
//
// Low-level functions handle signatures as |ECDSA_SIG| structures which allow
// the two values in an ECDSA signature to be handled separately.
struct ecdsa_sig_st {
BIGNUM *r;
BIGNUM *s;
};
/* ECDSA_SIG_new returns a fresh |ECDSA_SIG| structure or NULL on error. */
// ECDSA_SIG_new returns a fresh |ECDSA_SIG| structure or NULL on error.
OPENSSL_EXPORT ECDSA_SIG *ECDSA_SIG_new(void);
/* ECDSA_SIG_free frees |sig| its member |BIGNUM|s. */
// ECDSA_SIG_free frees |sig| its member |BIGNUM|s.
OPENSSL_EXPORT void ECDSA_SIG_free(ECDSA_SIG *sig);
/* ECDSA_do_sign signs |digest_len| bytes from |digest| with |key| and returns
* the resulting signature structure, or NULL on error. */
// ECDSA_do_sign signs |digest_len| bytes from |digest| with |key| and returns
// the resulting signature structure, or NULL on error.
OPENSSL_EXPORT ECDSA_SIG *ECDSA_do_sign(const uint8_t *digest,
size_t digest_len, const EC_KEY *key);
/* ECDSA_do_verify verifies that |sig| constitutes a valid signature by |key|
* of |digest|. It returns one on success or zero if the signature is invalid
* or on error. */
// ECDSA_do_verify verifies that |sig| constitutes a valid signature by |key|
// of |digest|. It returns one on success or zero if the signature is invalid
// or on error.
OPENSSL_EXPORT int ECDSA_do_verify(const uint8_t *digest, size_t digest_len,
const ECDSA_SIG *sig, const EC_KEY *key);
/* Signing with precomputation.
*
* Parts of the ECDSA signature can be independent of the message to be signed
* thus it's possible to precompute them and reduce the signing latency.
*
* TODO(fork): remove support for this as it cannot support safe-randomness. */
// Signing with precomputation.
//
// Parts of the ECDSA signature can be independent of the message to be signed
// thus it's possible to precompute them and reduce the signing latency.
//
// TODO(fork): remove support for this as it cannot support safe-randomness.
/* ECDSA_sign_setup precomputes parts of an ECDSA signing operation. It sets
* |*kinv| and |*rp| to the precomputed values and uses the |ctx| argument, if
* not NULL. It returns one on success and zero otherwise. */
// ECDSA_sign_setup precomputes parts of an ECDSA signing operation. It sets
// |*kinv| and |*rp| to the precomputed values and uses the |ctx| argument, if
// not NULL. It returns one on success and zero otherwise.
OPENSSL_EXPORT int ECDSA_sign_setup(const EC_KEY *eckey, BN_CTX *ctx,
BIGNUM **kinv, BIGNUM **rp);
/* ECDSA_do_sign_ex is the same as |ECDSA_do_sign| but takes precomputed values
* as generated by |ECDSA_sign_setup|. */
// ECDSA_do_sign_ex is the same as |ECDSA_do_sign| but takes precomputed values
// as generated by |ECDSA_sign_setup|.
OPENSSL_EXPORT ECDSA_SIG *ECDSA_do_sign_ex(const uint8_t *digest,
size_t digest_len,
const BIGNUM *kinv, const BIGNUM *rp,
const EC_KEY *eckey);
/* ECDSA_sign_ex is the same as |ECDSA_sign| but takes precomputed values as
* generated by |ECDSA_sign_setup|. */
// ECDSA_sign_ex is the same as |ECDSA_sign| but takes precomputed values as
// generated by |ECDSA_sign_setup|.
OPENSSL_EXPORT int ECDSA_sign_ex(int type, const uint8_t *digest,
size_t digest_len, uint8_t *sig,
unsigned int *sig_len, const BIGNUM *kinv,
const BIGNUM *rp, const EC_KEY *eckey);
/* ASN.1 functions. */
// ASN.1 functions.
/* ECDSA_SIG_parse parses a DER-encoded ECDSA-Sig-Value structure from |cbs| and
* advances |cbs|. It returns a newly-allocated |ECDSA_SIG| or NULL on error. */
// ECDSA_SIG_parse parses a DER-encoded ECDSA-Sig-Value structure from |cbs| and
// advances |cbs|. It returns a newly-allocated |ECDSA_SIG| or NULL on error.
OPENSSL_EXPORT ECDSA_SIG *ECDSA_SIG_parse(CBS *cbs);
/* ECDSA_SIG_from_bytes parses |in| as a DER-encoded ECDSA-Sig-Value structure.
* It returns a newly-allocated |ECDSA_SIG| structure or NULL on error. */
// ECDSA_SIG_from_bytes parses |in| as a DER-encoded ECDSA-Sig-Value structure.
// It returns a newly-allocated |ECDSA_SIG| structure or NULL on error.
OPENSSL_EXPORT ECDSA_SIG *ECDSA_SIG_from_bytes(const uint8_t *in,
size_t in_len);
/* ECDSA_SIG_marshal marshals |sig| as a DER-encoded ECDSA-Sig-Value and appends
* the result to |cbb|. It returns one on success and zero on error. */
// ECDSA_SIG_marshal marshals |sig| as a DER-encoded ECDSA-Sig-Value and appends
// the result to |cbb|. It returns one on success and zero on error.
OPENSSL_EXPORT int ECDSA_SIG_marshal(CBB *cbb, const ECDSA_SIG *sig);
/* ECDSA_SIG_to_bytes marshals |sig| as a DER-encoded ECDSA-Sig-Value and, on
* success, sets |*out_bytes| to a newly allocated buffer containing the result
* and returns one. Otherwise, it returns zero. The result should be freed with
* |OPENSSL_free|. */
// ECDSA_SIG_to_bytes marshals |sig| as a DER-encoded ECDSA-Sig-Value and, on
// success, sets |*out_bytes| to a newly allocated buffer containing the result
// and returns one. Otherwise, it returns zero. The result should be freed with
// |OPENSSL_free|.
OPENSSL_EXPORT int ECDSA_SIG_to_bytes(uint8_t **out_bytes, size_t *out_len,
const ECDSA_SIG *sig);
/* ECDSA_SIG_max_len returns the maximum length of a DER-encoded ECDSA-Sig-Value
* structure for a group whose order is represented in |order_len| bytes, or
* zero on overflow. */
// ECDSA_SIG_max_len returns the maximum length of a DER-encoded ECDSA-Sig-Value
// structure for a group whose order is represented in |order_len| bytes, or
// zero on overflow.
OPENSSL_EXPORT size_t ECDSA_SIG_max_len(size_t order_len);
/* Deprecated functions. */
// Deprecated functions.
/* d2i_ECDSA_SIG parses an ASN.1, DER-encoded, signature from |len| bytes at
* |*inp|. If |out| is not NULL then, on exit, a pointer to the result is in
* |*out|. Note that, even if |*out| is already non-NULL on entry, it will not
* be written to. Rather, a fresh |ECDSA_SIG| is allocated and the previous one
* is freed. On successful exit, |*inp| is advanced past the DER structure. It
* returns the result or NULL on error. */
// d2i_ECDSA_SIG parses an ASN.1, DER-encoded, signature from |len| bytes at
// |*inp|. If |out| is not NULL then, on exit, a pointer to the result is in
// |*out|. Note that, even if |*out| is already non-NULL on entry, it will not
// be written to. Rather, a fresh |ECDSA_SIG| is allocated and the previous one
// is freed. On successful exit, |*inp| is advanced past the DER structure. It
// returns the result or NULL on error.
OPENSSL_EXPORT ECDSA_SIG *d2i_ECDSA_SIG(ECDSA_SIG **out, const uint8_t **inp,
long len);
/* i2d_ECDSA_SIG marshals a signature from |sig| to an ASN.1, DER
* structure. If |outp| is not NULL then the result is written to |*outp| and
* |*outp| is advanced just past the output. It returns the number of bytes in
* the result, whether written or not, or a negative value on error. */
// i2d_ECDSA_SIG marshals a signature from |sig| to an ASN.1, DER
// structure. If |outp| is not NULL then the result is written to |*outp| and
// |*outp| is advanced just past the output. It returns the number of bytes in
// the result, whether written or not, or a negative value on error.
OPENSSL_EXPORT int i2d_ECDSA_SIG(const ECDSA_SIG *sig, uint8_t **outp);
#if defined(__cplusplus)
} /* extern C */
} // extern C
extern "C++" {
@ -203,7 +203,7 @@ BORINGSSL_MAKE_DELETER(ECDSA_SIG, ECDSA_SIG_free)
} // namespace bssl
} /* extern C++ */
} // extern C++
#endif
@ -214,4 +214,4 @@ BORINGSSL_MAKE_DELETER(ECDSA_SIG, ECDSA_SIG_free)
#define ECDSA_R_RANDOM_NUMBER_GENERATION_FAILED 104
#define ECDSA_R_ENCODE_ERROR 105
#endif /* OPENSSL_HEADER_ECDSA_H */
#endif // OPENSSL_HEADER_ECDSA_H

View File

@ -22,36 +22,36 @@ extern "C" {
#endif
/* Engines are collections of methods. Methods are tables of function pointers,
* defined for certain algorithms, that allow operations on those algorithms to
* be overridden via a callback. This can be used, for example, to implement an
* RSA* that forwards operations to a hardware module.
*
* Methods are reference counted but |ENGINE|s are not. When creating a method,
* you should zero the whole structure and fill in the function pointers that
* you wish before setting it on an |ENGINE|. Any functions pointers that
* are NULL indicate that the default behaviour should be used. */
// Engines are collections of methods. Methods are tables of function pointers,
// defined for certain algorithms, that allow operations on those algorithms to
// be overridden via a callback. This can be used, for example, to implement an
// RSA* that forwards operations to a hardware module.
//
// Methods are reference counted but |ENGINE|s are not. When creating a method,
// you should zero the whole structure and fill in the function pointers that
// you wish before setting it on an |ENGINE|. Any functions pointers that
// are NULL indicate that the default behaviour should be used.
/* Allocation and destruction. */
// Allocation and destruction.
/* ENGINE_new returns an empty ENGINE that uses the default method for all
* algorithms. */
// ENGINE_new returns an empty ENGINE that uses the default method for all
// algorithms.
OPENSSL_EXPORT ENGINE *ENGINE_new(void);
/* ENGINE_free decrements the reference counts for all methods linked from
* |engine| and frees |engine| itself. */
// ENGINE_free decrements the reference counts for all methods linked from
// |engine| and frees |engine| itself.
OPENSSL_EXPORT void ENGINE_free(ENGINE *engine);
/* Method accessors.
*
* Method accessors take a method pointer and the size of the structure. The
* size allows for ABI compatibility in the case that the method structure is
* extended with extra elements at the end. Methods are always copied by the
* set functions.
*
* Set functions return one on success and zero on allocation failure. */
// Method accessors.
//
// Method accessors take a method pointer and the size of the structure. The
// size allows for ABI compatibility in the case that the method structure is
// extended with extra elements at the end. Methods are always copied by the
// set functions.
//
// Set functions return one on success and zero on allocation failure.
OPENSSL_EXPORT int ENGINE_set_RSA_method(ENGINE *engine,
const RSA_METHOD *method,
@ -64,33 +64,33 @@ OPENSSL_EXPORT int ENGINE_set_ECDSA_method(ENGINE *engine,
OPENSSL_EXPORT ECDSA_METHOD *ENGINE_get_ECDSA_method(const ENGINE *engine);
/* Generic method functions.
*
* These functions take a void* type but actually operate on all method
* structures. */
// Generic method functions.
//
// These functions take a void* type but actually operate on all method
// structures.
/* METHOD_ref increments the reference count of |method|. This is a no-op for
* now because all methods are currently static. */
// METHOD_ref increments the reference count of |method|. This is a no-op for
// now because all methods are currently static.
void METHOD_ref(void *method);
/* METHOD_unref decrements the reference count of |method| and frees it if the
* reference count drops to zero. This is a no-op for now because all methods
* are currently static. */
// METHOD_unref decrements the reference count of |method| and frees it if the
// reference count drops to zero. This is a no-op for now because all methods
// are currently static.
void METHOD_unref(void *method);
/* Private functions. */
// Private functions.
/* openssl_method_common_st contains the common part of all method structures.
* This must be the first member of all method structures. */
// openssl_method_common_st contains the common part of all method structures.
// This must be the first member of all method structures.
struct openssl_method_common_st {
int references; /* dummy not used. */
int references; // dummy not used.
char is_static;
};
#if defined(__cplusplus)
} /* extern C */
} // extern C
extern "C++" {
@ -100,10 +100,10 @@ BORINGSSL_MAKE_DELETER(ENGINE, ENGINE_free)
} // namespace bssl
} /* extern C++ */
} // extern C++
#endif
#define ENGINE_R_OPERATION_NOT_SUPPORTED 100
#endif /* OPENSSL_HEADER_ENGINE_H */
#endif // OPENSSL_HEADER_ENGINE_H

View File

@ -118,73 +118,73 @@ extern "C" {
#endif
/* Error queue handling functions.
*
* Errors in OpenSSL are generally signaled by the return value of a function.
* When a function fails it may add an entry to a per-thread error queue,
* which is managed by the functions in this header.
*
* Each error contains:
* 1) The library (i.e. ec, pem, rsa) which created it.
* 2) The file and line number of the call that added the error.
* 3) A pointer to some error specific data, which may be NULL.
*
* The library identifier and reason code are packed in a uint32_t and there
* exist various functions for unpacking it.
*
* The typical behaviour is that an error will occur deep in a call queue and
* that code will push an error onto the error queue. As the error queue
* unwinds, other functions will push their own errors. Thus, the "least
* recent" error is the most specific and the other errors will provide a
* backtrace of sorts. */
// Error queue handling functions.
//
// Errors in OpenSSL are generally signaled by the return value of a function.
// When a function fails it may add an entry to a per-thread error queue,
// which is managed by the functions in this header.
//
// Each error contains:
// 1) The library (i.e. ec, pem, rsa) which created it.
// 2) The file and line number of the call that added the error.
// 3) A pointer to some error specific data, which may be NULL.
//
// The library identifier and reason code are packed in a uint32_t and there
// exist various functions for unpacking it.
//
// The typical behaviour is that an error will occur deep in a call queue and
// that code will push an error onto the error queue. As the error queue
// unwinds, other functions will push their own errors. Thus, the "least
// recent" error is the most specific and the other errors will provide a
// backtrace of sorts.
/* Startup and shutdown. */
// Startup and shutdown.
/* ERR_load_BIO_strings does nothing.
*
* TODO(fork): remove. libjingle calls this. */
// ERR_load_BIO_strings does nothing.
//
// TODO(fork): remove. libjingle calls this.
OPENSSL_EXPORT void ERR_load_BIO_strings(void);
/* ERR_load_ERR_strings does nothing. */
// ERR_load_ERR_strings does nothing.
OPENSSL_EXPORT void ERR_load_ERR_strings(void);
/* ERR_load_crypto_strings does nothing. */
// ERR_load_crypto_strings does nothing.
OPENSSL_EXPORT void ERR_load_crypto_strings(void);
/* ERR_free_strings does nothing. */
// ERR_free_strings does nothing.
OPENSSL_EXPORT void ERR_free_strings(void);
/* Reading and formatting errors. */
// Reading and formatting errors.
/* ERR_get_error gets the packed error code for the least recent error and
* removes that error from the queue. If there are no errors in the queue then
* it returns zero. */
// ERR_get_error gets the packed error code for the least recent error and
// removes that error from the queue. If there are no errors in the queue then
// it returns zero.
OPENSSL_EXPORT uint32_t ERR_get_error(void);
/* ERR_get_error_line acts like |ERR_get_error|, except that the file and line
* number of the call that added the error are also returned. */
// ERR_get_error_line acts like |ERR_get_error|, except that the file and line
// number of the call that added the error are also returned.
OPENSSL_EXPORT uint32_t ERR_get_error_line(const char **file, int *line);
/* ERR_get_error_line_data acts like |ERR_get_error_line|, but also returns the
* error-specific data pointer and flags. The flags are a bitwise-OR of
* |ERR_FLAG_*| values. The error-specific data is owned by the error queue
* and the pointer becomes invalid after the next call that affects the same
* thread's error queue. If |*flags| contains |ERR_FLAG_STRING| then |*data| is
* human-readable. */
// ERR_get_error_line_data acts like |ERR_get_error_line|, but also returns the
// error-specific data pointer and flags. The flags are a bitwise-OR of
// |ERR_FLAG_*| values. The error-specific data is owned by the error queue
// and the pointer becomes invalid after the next call that affects the same
// thread's error queue. If |*flags| contains |ERR_FLAG_STRING| then |*data| is
// human-readable.
OPENSSL_EXPORT uint32_t ERR_get_error_line_data(const char **file, int *line,
const char **data, int *flags);
/* The "peek" functions act like the |ERR_get_error| functions, above, but they
* do not remove the error from the queue. */
// The "peek" functions act like the |ERR_get_error| functions, above, but they
// do not remove the error from the queue.
OPENSSL_EXPORT uint32_t ERR_peek_error(void);
OPENSSL_EXPORT uint32_t ERR_peek_error_line(const char **file, int *line);
OPENSSL_EXPORT uint32_t ERR_peek_error_line_data(const char **file, int *line,
const char **data, int *flags);
/* The "peek last" functions act like the "peek" functions, above, except that
* they return the most recent error. */
// The "peek last" functions act like the "peek" functions, above, except that
// they return the most recent error.
OPENSSL_EXPORT uint32_t ERR_peek_last_error(void);
OPENSSL_EXPORT uint32_t ERR_peek_last_error_line(const char **file, int *line);
OPENSSL_EXPORT uint32_t ERR_peek_last_error_line_data(const char **file,
@ -192,196 +192,196 @@ OPENSSL_EXPORT uint32_t ERR_peek_last_error_line_data(const char **file,
const char **data,
int *flags);
/* ERR_error_string_n generates a human-readable string representing
* |packed_error| and places it at |buf|. It writes at most |len| bytes
* (including the terminating NUL) and truncates the string if necessary. If
* |len| is greater than zero then |buf| is always NUL terminated.
*
* The string will have the following format:
*
* error:[error code]:[library name]:OPENSSL_internal:[reason string]
*
* error code is an 8 digit hexadecimal number; library name and reason string
* are ASCII text. */
// ERR_error_string_n generates a human-readable string representing
// |packed_error| and places it at |buf|. It writes at most |len| bytes
// (including the terminating NUL) and truncates the string if necessary. If
// |len| is greater than zero then |buf| is always NUL terminated.
//
// The string will have the following format:
//
// error:[error code]:[library name]:OPENSSL_internal:[reason string]
//
// error code is an 8 digit hexadecimal number; library name and reason string
// are ASCII text.
OPENSSL_EXPORT void ERR_error_string_n(uint32_t packed_error, char *buf,
size_t len);
/* ERR_lib_error_string returns a string representation of the library that
* generated |packed_error|. */
// ERR_lib_error_string returns a string representation of the library that
// generated |packed_error|.
OPENSSL_EXPORT const char *ERR_lib_error_string(uint32_t packed_error);
/* ERR_reason_error_string returns a string representation of the reason for
* |packed_error|. */
// ERR_reason_error_string returns a string representation of the reason for
// |packed_error|.
OPENSSL_EXPORT const char *ERR_reason_error_string(uint32_t packed_error);
/* ERR_print_errors_callback_t is the type of a function used by
* |ERR_print_errors_cb|. It takes a pointer to a human readable string (and
* its length) that describes an entry in the error queue. The |ctx| argument
* is an opaque pointer given to |ERR_print_errors_cb|.
*
* It should return one on success or zero on error, which will stop the
* iteration over the error queue. */
// ERR_print_errors_callback_t is the type of a function used by
// |ERR_print_errors_cb|. It takes a pointer to a human readable string (and
// its length) that describes an entry in the error queue. The |ctx| argument
// is an opaque pointer given to |ERR_print_errors_cb|.
//
// It should return one on success or zero on error, which will stop the
// iteration over the error queue.
typedef int (*ERR_print_errors_callback_t)(const char *str, size_t len,
void *ctx);
/* ERR_print_errors_cb calls |callback| with a string representation of each
* error in the current thread's error queue, from the least recent to the most
* recent error.
*
* The string will have the following format (which differs from
* |ERR_error_string|):
*
* [thread id]:error:[error code]:[library name]:OPENSSL_internal:
* [reason string]:[file]:[line number]:[optional string data]
*
* (All in one line.)
*
* The callback can return one to continue the iteration or zero to stop it.
* The |ctx| argument is an opaque value that is passed through to the
* callback. */
// ERR_print_errors_cb calls |callback| with a string representation of each
// error in the current thread's error queue, from the least recent to the most
// recent error.
//
// The string will have the following format (which differs from
// |ERR_error_string|):
//
// [thread id]:error:[error code]:[library name]:OPENSSL_internal:
// [reason string]:[file]:[line number]:[optional string data]
//
// (All in one line.)
//
// The callback can return one to continue the iteration or zero to stop it.
// The |ctx| argument is an opaque value that is passed through to the
// callback.
OPENSSL_EXPORT void ERR_print_errors_cb(ERR_print_errors_callback_t callback,
void *ctx);
/* ERR_print_errors_fp prints the current contents of the error stack to |file|
* using human readable strings where possible. */
// ERR_print_errors_fp prints the current contents of the error stack to |file|
// using human readable strings where possible.
OPENSSL_EXPORT void ERR_print_errors_fp(FILE *file);
/* Clearing errors. */
// Clearing errors.
/* ERR_clear_error clears the error queue for the current thread. */
// ERR_clear_error clears the error queue for the current thread.
OPENSSL_EXPORT void ERR_clear_error(void);
/* ERR_remove_thread_state clears the error queue for the current thread if
* |tid| is NULL. Otherwise it calls |assert(0)|, because it's no longer
* possible to delete the error queue for other threads.
*
* Error queues are thread-local data and are deleted automatically. You do not
* need to call this function. Use |ERR_clear_error|. */
// ERR_remove_thread_state clears the error queue for the current thread if
// |tid| is NULL. Otherwise it calls |assert(0)|, because it's no longer
// possible to delete the error queue for other threads.
//
// Error queues are thread-local data and are deleted automatically. You do not
// need to call this function. Use |ERR_clear_error|.
OPENSSL_EXPORT void ERR_remove_thread_state(const CRYPTO_THREADID *tid);
/* Custom errors. */
// Custom errors.
/* ERR_get_next_error_library returns a value suitable for passing as the
* |library| argument to |ERR_put_error|. This is intended for code that wishes
* to push its own, non-standard errors to the error queue. */
// ERR_get_next_error_library returns a value suitable for passing as the
// |library| argument to |ERR_put_error|. This is intended for code that wishes
// to push its own, non-standard errors to the error queue.
OPENSSL_EXPORT int ERR_get_next_error_library(void);
/* Deprecated functions. */
// Deprecated functions.
/* ERR_remove_state calls |ERR_clear_error|. */
// ERR_remove_state calls |ERR_clear_error|.
OPENSSL_EXPORT void ERR_remove_state(unsigned long pid);
/* ERR_func_error_string returns the string "OPENSSL_internal". */
// ERR_func_error_string returns the string "OPENSSL_internal".
OPENSSL_EXPORT const char *ERR_func_error_string(uint32_t packed_error);
/* ERR_error_string behaves like |ERR_error_string_n| but |len| is implicitly
* |ERR_ERROR_STRING_BUF_LEN| and it returns |buf|. If |buf| is NULL, the error
* string is placed in a static buffer which is returned. (The static buffer may
* be overridden by concurrent calls in other threads so this form should not be
* used.)
*
* Use |ERR_error_string_n| instead.
*
* TODO(fork): remove this function. */
// ERR_error_string behaves like |ERR_error_string_n| but |len| is implicitly
// |ERR_ERROR_STRING_BUF_LEN| and it returns |buf|. If |buf| is NULL, the error
// string is placed in a static buffer which is returned. (The static buffer may
// be overridden by concurrent calls in other threads so this form should not be
// used.)
//
// Use |ERR_error_string_n| instead.
//
// TODO(fork): remove this function.
OPENSSL_EXPORT char *ERR_error_string(uint32_t packed_error, char *buf);
#define ERR_ERROR_STRING_BUF_LEN 256
/* Private functions. */
// Private functions.
/* ERR_clear_system_error clears the system's error value (i.e. errno). */
// ERR_clear_system_error clears the system's error value (i.e. errno).
OPENSSL_EXPORT void ERR_clear_system_error(void);
/* OPENSSL_PUT_ERROR is used by OpenSSL code to add an error to the error
* queue. */
// OPENSSL_PUT_ERROR is used by OpenSSL code to add an error to the error
// queue.
#define OPENSSL_PUT_ERROR(library, reason) \
ERR_put_error(ERR_LIB_##library, 0, reason, __FILE__, __LINE__)
/* OPENSSL_PUT_SYSTEM_ERROR is used by OpenSSL code to add an error from the
* operating system to the error queue.
* TODO(fork): include errno. */
// OPENSSL_PUT_SYSTEM_ERROR is used by OpenSSL code to add an error from the
// operating system to the error queue.
// TODO(fork): include errno.
#define OPENSSL_PUT_SYSTEM_ERROR() \
ERR_put_error(ERR_LIB_SYS, 0, 0, __FILE__, __LINE__);
/* ERR_put_error adds an error to the error queue, dropping the least recent
* error if necessary for space reasons. */
// ERR_put_error adds an error to the error queue, dropping the least recent
// error if necessary for space reasons.
OPENSSL_EXPORT void ERR_put_error(int library, int unused, int reason,
const char *file, unsigned line);
/* ERR_add_error_data takes a variable number (|count|) of const char*
* pointers, concatenates them and sets the result as the data on the most
* recent error. */
// ERR_add_error_data takes a variable number (|count|) of const char*
// pointers, concatenates them and sets the result as the data on the most
// recent error.
OPENSSL_EXPORT void ERR_add_error_data(unsigned count, ...);
/* ERR_add_error_dataf takes a printf-style format and arguments, and sets the
* result as the data on the most recent error. */
// ERR_add_error_dataf takes a printf-style format and arguments, and sets the
// result as the data on the most recent error.
OPENSSL_EXPORT void ERR_add_error_dataf(const char *format, ...)
OPENSSL_PRINTF_FORMAT_FUNC(1, 2);
/* ERR_set_mark "marks" the most recent error for use with |ERR_pop_to_mark|.
* It returns one if an error was marked and zero if there are no errors. */
// ERR_set_mark "marks" the most recent error for use with |ERR_pop_to_mark|.
// It returns one if an error was marked and zero if there are no errors.
OPENSSL_EXPORT int ERR_set_mark(void);
/* ERR_pop_to_mark removes errors from the most recent to the least recent
* until (and not including) a "marked" error. It returns zero if no marked
* error was found (and thus all errors were removed) and one otherwise. Errors
* are marked using |ERR_set_mark|. */
// ERR_pop_to_mark removes errors from the most recent to the least recent
// until (and not including) a "marked" error. It returns zero if no marked
// error was found (and thus all errors were removed) and one otherwise. Errors
// are marked using |ERR_set_mark|.
OPENSSL_EXPORT int ERR_pop_to_mark(void);
struct err_error_st {
/* file contains the filename where the error occurred. */
// file contains the filename where the error occurred.
const char *file;
/* data contains optional data. It must be freed with |OPENSSL_free| if
* |flags&ERR_FLAG_MALLOCED|. */
// data contains optional data. It must be freed with |OPENSSL_free| if
// |flags&ERR_FLAG_MALLOCED|.
char *data;
/* packed contains the error library and reason, as packed by ERR_PACK. */
// packed contains the error library and reason, as packed by ERR_PACK.
uint32_t packed;
/* line contains the line number where the error occurred. */
// line contains the line number where the error occurred.
uint16_t line;
/* flags contains a bitwise-OR of ERR_FLAG_* values. */
// flags contains a bitwise-OR of ERR_FLAG_* values.
uint8_t flags;
};
/* ERR_FLAG_STRING means that the |data| member is a NUL-terminated string that
* can be printed. */
// ERR_FLAG_STRING means that the |data| member is a NUL-terminated string that
// can be printed.
#define ERR_FLAG_STRING 1
/* ERR_TXT_STRING is provided for compatibility with code that assumes that
* it's using OpenSSL. */
// ERR_TXT_STRING is provided for compatibility with code that assumes that
// it's using OpenSSL.
#define ERR_TXT_STRING ERR_FLAG_STRING
/* ERR_FLAG_PUBLIC_MASK is applied to the flags field before it is returned
* from functions like |ERR_get_error_line_data|. */
// ERR_FLAG_PUBLIC_MASK is applied to the flags field before it is returned
// from functions like |ERR_get_error_line_data|.
#define ERR_FLAG_PUBLIC_MASK 0xf
/* The following flag values are internal and are masked when flags are
* returned from functions like |ERR_get_error_line_data|. */
// The following flag values are internal and are masked when flags are
// returned from functions like |ERR_get_error_line_data|.
/* ERR_FLAG_MALLOCED means the the |data| member must be freed when no longer
* needed. */
// ERR_FLAG_MALLOCED means the the |data| member must be freed when no longer
// needed.
#define ERR_FLAG_MALLOCED 16
/* ERR_FLAG_MARK is used to indicate a reversion point in the queue. See
* |ERR_pop_to_mark|. */
// ERR_FLAG_MARK is used to indicate a reversion point in the queue. See
// |ERR_pop_to_mark|.
#define ERR_FLAG_MARK 32
/* ERR_NUM_ERRORS is the limit of the number of errors in the queue. */
// ERR_NUM_ERRORS is the limit of the number of errors in the queue.
#define ERR_NUM_ERRORS 16
/* err_state_st (aka |ERR_STATE|) contains the per-thread, error queue. */
// err_state_st (aka |ERR_STATE|) contains the per-thread, error queue.
typedef struct err_state_st {
/* errors contains the ERR_NUM_ERRORS most recent errors, organised as a ring
* buffer. */
// errors contains the ERR_NUM_ERRORS most recent errors, organised as a ring
// buffer.
struct err_error_st errors[ERR_NUM_ERRORS];
/* top contains the index one past the most recent error. If |top| equals
* |bottom| then the queue is empty. */
// top contains the index one past the most recent error. If |top| equals
// |bottom| then the queue is empty.
unsigned top;
/* bottom contains the index of the last error in the queue. */
// bottom contains the index of the last error in the queue.
unsigned bottom;
/* to_free, if not NULL, contains a pointer owned by this structure that was
* previously a |data| pointer of one of the elements of |errors|. */
// to_free, if not NULL, contains a pointer owned by this structure that was
// previously a |data| pointer of one of the elements of |errors|.
void *to_free;
} ERR_STATE;
@ -459,7 +459,7 @@ enum {
#define ERR_R_CIPHER_LIB ERR_LIB_CIPHER
#define ERR_R_HKDF_LIB ERR_LIB_HKDF
/* Global reasons. */
// Global reasons.
#define ERR_R_FATAL 64
#define ERR_R_MALLOC_FAILURE (1 | ERR_R_FATAL)
#define ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED (2 | ERR_R_FATAL)
@ -474,16 +474,16 @@ enum {
#define ERR_GET_FUNC(packed_error) 0
#define ERR_GET_REASON(packed_error) ((int)((packed_error) & 0xfff))
/* OPENSSL_DECLARE_ERROR_REASON is used by util/make_errors.h (which generates
* the error defines) to recognise that an additional reason value is needed.
* This is needed when the reason value is used outside of an
* |OPENSSL_PUT_ERROR| macro. The resulting define will be
* ${lib}_R_${reason}. */
// OPENSSL_DECLARE_ERROR_REASON is used by util/make_errors.h (which generates
// the error defines) to recognise that an additional reason value is needed.
// This is needed when the reason value is used outside of an
// |OPENSSL_PUT_ERROR| macro. The resulting define will be
// ${lib}_R_${reason}.
#define OPENSSL_DECLARE_ERROR_REASON(lib, reason)
#if defined(__cplusplus)
} /* extern C */
} // extern C
#endif
#endif /* OPENSSL_HEADER_ERR_H */
#endif // OPENSSL_HEADER_ERR_H

File diff suppressed because it is too large Load Diff

View File

@ -118,77 +118,77 @@ extern "C" {
#endif
/* ex_data is a mechanism for associating arbitrary extra data with objects.
* For each type of object that supports ex_data, different users can be
* assigned indexes in which to store their data. Each index has callback
* functions that are called when an object of that type is freed or
* duplicated. */
// ex_data is a mechanism for associating arbitrary extra data with objects.
// For each type of object that supports ex_data, different users can be
// assigned indexes in which to store their data. Each index has callback
// functions that are called when an object of that type is freed or
// duplicated.
typedef struct crypto_ex_data_st CRYPTO_EX_DATA;
/* Type-specific functions.
*
* Each type that supports ex_data provides three functions: */
// Type-specific functions.
//
// Each type that supports ex_data provides three functions:
#if 0 /* Sample */
#if 0 // Sample
/* TYPE_get_ex_new_index allocates a new index for |TYPE|. An optional
* |free_func| argument may be provided which is called when the owning object
* is destroyed. See |CRYPTO_EX_free| for details. The |argl| and |argp|
* arguments are opaque values that are passed to the callback. It returns the
* new index or a negative number on error. */
// TYPE_get_ex_new_index allocates a new index for |TYPE|. An optional
// |free_func| argument may be provided which is called when the owning object
// is destroyed. See |CRYPTO_EX_free| for details. The |argl| and |argp|
// arguments are opaque values that are passed to the callback. It returns the
// new index or a negative number on error.
OPENSSL_EXPORT int TYPE_get_ex_new_index(long argl, void *argp,
CRYPTO_EX_unused *unused,
CRYPTO_EX_dup *dup_unused,
CRYPTO_EX_free *free_func);
/* TYPE_set_ex_data sets an extra data pointer on |t|. The |index| argument
* should have been returned from a previous call to |TYPE_get_ex_new_index|. */
// TYPE_set_ex_data sets an extra data pointer on |t|. The |index| argument
// should have been returned from a previous call to |TYPE_get_ex_new_index|.
OPENSSL_EXPORT int TYPE_set_ex_data(TYPE *t, int index, void *arg);
/* TYPE_get_ex_data returns an extra data pointer for |t|, or NULL if no such
* pointer exists. The |index| argument should have been returned from a
* previous call to |TYPE_get_ex_new_index|. */
// TYPE_get_ex_data returns an extra data pointer for |t|, or NULL if no such
// pointer exists. The |index| argument should have been returned from a
// previous call to |TYPE_get_ex_new_index|.
OPENSSL_EXPORT void *TYPE_get_ex_data(const TYPE *t, int index);
#endif /* Sample */
#endif // Sample
/* Callback types. */
// Callback types.
/* CRYPTO_EX_free is a callback function that is called when an object of the
* class with extra data pointers is being destroyed. For example, if this
* callback has been passed to |SSL_get_ex_new_index| then it may be called each
* time an |SSL*| is destroyed.
*
* The callback is passed the new object (i.e. the |SSL*|) in |parent|. The
* arguments |argl| and |argp| contain opaque values that were given to
* |CRYPTO_get_ex_new_index|. The callback should return one on success, but
* the value is ignored.
*
* This callback may be called with a NULL value for |ptr| if |parent| has no
* value set for this index. However, the callbacks may also be skipped entirely
* if no extra data pointers are set on |parent| at all. */
// CRYPTO_EX_free is a callback function that is called when an object of the
// class with extra data pointers is being destroyed. For example, if this
// callback has been passed to |SSL_get_ex_new_index| then it may be called each
// time an |SSL*| is destroyed.
//
// The callback is passed the new object (i.e. the |SSL*|) in |parent|. The
// arguments |argl| and |argp| contain opaque values that were given to
// |CRYPTO_get_ex_new_index|. The callback should return one on success, but
// the value is ignored.
//
// This callback may be called with a NULL value for |ptr| if |parent| has no
// value set for this index. However, the callbacks may also be skipped entirely
// if no extra data pointers are set on |parent| at all.
typedef void CRYPTO_EX_free(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
int index, long argl, void *argp);
/* Deprecated functions. */
// Deprecated functions.
/* CRYPTO_cleanup_all_ex_data does nothing. */
// CRYPTO_cleanup_all_ex_data does nothing.
OPENSSL_EXPORT void CRYPTO_cleanup_all_ex_data(void);
/* CRYPTO_EX_dup is a legacy callback function type which is ignored. */
// CRYPTO_EX_dup is a legacy callback function type which is ignored.
typedef int CRYPTO_EX_dup(CRYPTO_EX_DATA *to, const CRYPTO_EX_DATA *from,
void **from_d, int index, long argl, void *argp);
/* Private structures. */
// Private structures.
/* CRYPTO_EX_unused is a placeholder for an unused callback. It is aliased to
* int to ensure non-NULL callers fail to compile rather than fail silently. */
// CRYPTO_EX_unused is a placeholder for an unused callback. It is aliased to
// int to ensure non-NULL callers fail to compile rather than fail silently.
typedef int CRYPTO_EX_unused;
struct crypto_ex_data_st {
@ -197,7 +197,7 @@ struct crypto_ex_data_st {
#if defined(__cplusplus)
} /* extern C */
} // extern C
#endif
#endif /* OPENSSL_HEADER_EX_DATA_H */
#endif // OPENSSL_HEADER_EX_DATA_H

View File

@ -22,33 +22,33 @@ extern "C" {
#endif
/* HKDF. */
// HKDF.
/* HKDF computes HKDF (as specified by RFC 5869) of initial keying material
* |secret| with |salt| and |info| using |digest|, and outputs |out_len| bytes
* to |out_key|. It returns one on success and zero on error.
*
* HKDF is an Extract-and-Expand algorithm. It does not do any key stretching,
* and as such, is not suited to be used alone to generate a key from a
* password. */
// HKDF computes HKDF (as specified by RFC 5869) of initial keying material
// |secret| with |salt| and |info| using |digest|, and outputs |out_len| bytes
// to |out_key|. It returns one on success and zero on error.
//
// HKDF is an Extract-and-Expand algorithm. It does not do any key stretching,
// and as such, is not suited to be used alone to generate a key from a
// password.
OPENSSL_EXPORT int HKDF(uint8_t *out_key, size_t out_len, const EVP_MD *digest,
const uint8_t *secret, size_t secret_len,
const uint8_t *salt, size_t salt_len,
const uint8_t *info, size_t info_len);
/* HKDF_extract computes a HKDF PRK (as specified by RFC 5869) from initial
* keying material |secret| and salt |salt| using |digest|, and outputs
* |out_len| bytes to |out_key|. The maximum output size is |EVP_MAX_MD_SIZE|.
* It returns one on success and zero on error. */
// HKDF_extract computes a HKDF PRK (as specified by RFC 5869) from initial
// keying material |secret| and salt |salt| using |digest|, and outputs
// |out_len| bytes to |out_key|. The maximum output size is |EVP_MAX_MD_SIZE|.
// It returns one on success and zero on error.
OPENSSL_EXPORT int HKDF_extract(uint8_t *out_key, size_t *out_len,
const EVP_MD *digest, const uint8_t *secret,
size_t secret_len, const uint8_t *salt,
size_t salt_len);
/* HKDF_expand computes a HKDF OKM (as specified by RFC 5869) of length
* |out_len| from the PRK |prk| and info |info| using |digest|, and outputs
* the result to |out_key|. It returns one on success and zero on error. */
// HKDF_expand computes a HKDF OKM (as specified by RFC 5869) of length
// |out_len| from the PRK |prk| and info |info| using |digest|, and outputs
// the result to |out_key|. It returns one on success and zero on error.
OPENSSL_EXPORT int HKDF_expand(uint8_t *out_key, size_t out_len,
const EVP_MD *digest, const uint8_t *prk,
size_t prk_len, const uint8_t *info,
@ -56,9 +56,9 @@ OPENSSL_EXPORT int HKDF_expand(uint8_t *out_key, size_t out_len,
#if defined(__cplusplus)
} /* extern C */
} // extern C
#endif
#define HKDF_R_OUTPUT_TOO_LARGE 100
#endif /* OPENSSL_HEADER_HKDF_H */
#endif // OPENSSL_HEADER_HKDF_H

View File

@ -66,84 +66,84 @@ extern "C" {
#endif
/* HMAC contains functions for constructing PRFs from MerkleDamgård hash
* functions using HMAC. */
// HMAC contains functions for constructing PRFs from MerkleDamgård hash
// functions using HMAC.
/* One-shot operation. */
// One-shot operation.
/* HMAC calculates the HMAC of |data_len| bytes of |data|, using the given key
* and hash function, and writes the result to |out|. On entry, |out| must
* contain at least |EVP_MD_size| bytes of space. The actual length of the
* result is written to |*out_len|. An output size of |EVP_MAX_MD_SIZE| will
* always be large enough. It returns |out| or NULL on error. */
// HMAC calculates the HMAC of |data_len| bytes of |data|, using the given key
// and hash function, and writes the result to |out|. On entry, |out| must
// contain at least |EVP_MD_size| bytes of space. The actual length of the
// result is written to |*out_len|. An output size of |EVP_MAX_MD_SIZE| will
// always be large enough. It returns |out| or NULL on error.
OPENSSL_EXPORT uint8_t *HMAC(const EVP_MD *evp_md, const void *key,
size_t key_len, const uint8_t *data,
size_t data_len, uint8_t *out,
unsigned int *out_len);
/* Incremental operation. */
// Incremental operation.
/* HMAC_CTX_init initialises |ctx| for use in an HMAC operation. It's assumed
* that HMAC_CTX objects will be allocated on the stack thus no allocation
* function is provided. If needed, allocate |sizeof(HMAC_CTX)| and call
* |HMAC_CTX_init| on it. */
// HMAC_CTX_init initialises |ctx| for use in an HMAC operation. It's assumed
// that HMAC_CTX objects will be allocated on the stack thus no allocation
// function is provided. If needed, allocate |sizeof(HMAC_CTX)| and call
// |HMAC_CTX_init| on it.
OPENSSL_EXPORT void HMAC_CTX_init(HMAC_CTX *ctx);
/* HMAC_CTX_cleanup frees data owned by |ctx|. */
// HMAC_CTX_cleanup frees data owned by |ctx|.
OPENSSL_EXPORT void HMAC_CTX_cleanup(HMAC_CTX *ctx);
/* HMAC_Init_ex sets up an initialised |HMAC_CTX| to use |md| as the hash
* function and |key| as the key. For a non-initial call, |md| may be NULL, in
* which case the previous hash function will be used. If the hash function has
* not changed and |key| is NULL, |ctx| reuses the previous key. It returns one
* on success or zero otherwise.
*
* WARNING: NULL and empty keys are ambiguous on non-initial calls. Passing NULL
* |key| but repeating the previous |md| reuses the previous key rather than the
* empty key. */
// HMAC_Init_ex sets up an initialised |HMAC_CTX| to use |md| as the hash
// function and |key| as the key. For a non-initial call, |md| may be NULL, in
// which case the previous hash function will be used. If the hash function has
// not changed and |key| is NULL, |ctx| reuses the previous key. It returns one
// on success or zero otherwise.
//
// WARNING: NULL and empty keys are ambiguous on non-initial calls. Passing NULL
// |key| but repeating the previous |md| reuses the previous key rather than the
// empty key.
OPENSSL_EXPORT int HMAC_Init_ex(HMAC_CTX *ctx, const void *key, size_t key_len,
const EVP_MD *md, ENGINE *impl);
/* HMAC_Update hashes |data_len| bytes from |data| into the current HMAC
* operation in |ctx|. It returns one. */
// HMAC_Update hashes |data_len| bytes from |data| into the current HMAC
// operation in |ctx|. It returns one.
OPENSSL_EXPORT int HMAC_Update(HMAC_CTX *ctx, const uint8_t *data,
size_t data_len);
/* HMAC_Final completes the HMAC operation in |ctx| and writes the result to
* |out| and the sets |*out_len| to the length of the result. On entry, |out|
* must contain at least |HMAC_size| bytes of space. An output size of
* |EVP_MAX_MD_SIZE| will always be large enough. It returns one on success or
* zero on error. */
// HMAC_Final completes the HMAC operation in |ctx| and writes the result to
// |out| and the sets |*out_len| to the length of the result. On entry, |out|
// must contain at least |HMAC_size| bytes of space. An output size of
// |EVP_MAX_MD_SIZE| will always be large enough. It returns one on success or
// zero on error.
OPENSSL_EXPORT int HMAC_Final(HMAC_CTX *ctx, uint8_t *out,
unsigned int *out_len);
/* Utility functions. */
// Utility functions.
/* HMAC_size returns the size, in bytes, of the HMAC that will be produced by
* |ctx|. On entry, |ctx| must have been setup with |HMAC_Init_ex|. */
// HMAC_size returns the size, in bytes, of the HMAC that will be produced by
// |ctx|. On entry, |ctx| must have been setup with |HMAC_Init_ex|.
OPENSSL_EXPORT size_t HMAC_size(const HMAC_CTX *ctx);
/* HMAC_CTX_copy_ex sets |dest| equal to |src|. On entry, |dest| must have been
* initialised by calling |HMAC_CTX_init|. It returns one on success and zero
* on error. */
// HMAC_CTX_copy_ex sets |dest| equal to |src|. On entry, |dest| must have been
// initialised by calling |HMAC_CTX_init|. It returns one on success and zero
// on error.
OPENSSL_EXPORT int HMAC_CTX_copy_ex(HMAC_CTX *dest, const HMAC_CTX *src);
/* Deprecated functions. */
// Deprecated functions.
OPENSSL_EXPORT int HMAC_Init(HMAC_CTX *ctx, const void *key, int key_len,
const EVP_MD *md);
/* HMAC_CTX_copy calls |HMAC_CTX_init| on |dest| and then sets it equal to
* |src|. On entry, |dest| must /not/ be initialised for an operation with
* |HMAC_Init_ex|. It returns one on success and zero on error. */
// HMAC_CTX_copy calls |HMAC_CTX_init| on |dest| and then sets it equal to
// |src|. On entry, |dest| must /not/ be initialised for an operation with
// |HMAC_Init_ex|. It returns one on success and zero on error.
OPENSSL_EXPORT int HMAC_CTX_copy(HMAC_CTX *dest, const HMAC_CTX *src);
/* Private functions */
// Private functions
struct hmac_ctx_st {
const EVP_MD *md;
@ -154,7 +154,7 @@ struct hmac_ctx_st {
#if defined(__cplusplus)
} /* extern C */
} // extern C
#if !defined(BORINGSSL_NO_CXX)
extern "C++" {
@ -171,4 +171,4 @@ using ScopedHMAC_CTX =
#endif
#endif /* OPENSSL_HEADER_HMAC_H */
#endif // OPENSSL_HEADER_HMAC_H

View File

@ -12,5 +12,5 @@
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
/* This header is provided in order to catch include path errors in consuming
* BoringSSL. */
// This header is provided in order to catch include path errors in consuming
// BoringSSL.

View File

@ -65,24 +65,24 @@ extern "C" {
#endif
/* lhash is a traditional, chaining hash table that automatically expands and
* contracts as needed. One should not use the lh_* functions directly, rather
* use the type-safe macro wrappers:
*
* A hash table of a specific type of object has type |LHASH_OF(type)|. This
* can be defined (once) with |DEFINE_LHASH_OF(type)| and declared where needed
* with |DECLARE_LHASH_OF(type)|. For example:
*
* struct foo {
* int bar;
* };
*
* DEFINE_LHASH_OF(struct foo);
*
* Although note that the hash table will contain /pointers/ to |foo|.
*
* A macro will be defined for each of the lh_* functions below. For
* LHASH_OF(foo), the macros would be lh_foo_new, lh_foo_num_items etc. */
// lhash is a traditional, chaining hash table that automatically expands and
// contracts as needed. One should not use the lh_* functions directly, rather
// use the type-safe macro wrappers:
//
// A hash table of a specific type of object has type |LHASH_OF(type)|. This
// can be defined (once) with |DEFINE_LHASH_OF(type)| and declared where needed
// with |DECLARE_LHASH_OF(type)|. For example:
//
// struct foo {
// int bar;
// };
//
// DEFINE_LHASH_OF(struct foo);
//
// Although note that the hash table will contain /pointers/ to |foo|.
//
// A macro will be defined for each of the lh_* functions below. For
// LHASH_OF(foo), the macros would be lh_foo_new, lh_foo_num_items etc.
#define LHASH_OF(type) struct lhash_st_##type
@ -91,101 +91,101 @@ extern "C" {
#define DECLARE_LHASH_OF(type) LHASH_OF(type);
/* The make_macros.sh script in this directory parses the following lines and
* generates the lhash_macros.h file that contains macros for the following
* types of stacks:
*
* LHASH_OF:ASN1_OBJECT
* LHASH_OF:CONF_VALUE
* LHASH_OF:CRYPTO_BUFFER
* LHASH_OF:SSL_SESSION */
// The make_macros.sh script in this directory parses the following lines and
// generates the lhash_macros.h file that contains macros for the following
// types of stacks:
//
// LHASH_OF:ASN1_OBJECT
// LHASH_OF:CONF_VALUE
// LHASH_OF:CRYPTO_BUFFER
// LHASH_OF:SSL_SESSION
#define IN_LHASH_H
#include <openssl/lhash_macros.h>
#undef IN_LHASH_H
/* lhash_item_st is an element of a hash chain. It points to the opaque data
* for this element and to the next item in the chain. The linked-list is NULL
* terminated. */
// lhash_item_st is an element of a hash chain. It points to the opaque data
// for this element and to the next item in the chain. The linked-list is NULL
// terminated.
typedef struct lhash_item_st {
void *data;
struct lhash_item_st *next;
/* hash contains the cached, hash value of |data|. */
// hash contains the cached, hash value of |data|.
uint32_t hash;
} LHASH_ITEM;
/* lhash_cmp_func is a comparison function that returns a value equal, or not
* equal, to zero depending on whether |*a| is equal, or not equal to |*b|,
* respectively. Note the difference between this and |stack_cmp_func| in that
* this takes pointers to the objects directly. */
// lhash_cmp_func is a comparison function that returns a value equal, or not
// equal, to zero depending on whether |*a| is equal, or not equal to |*b|,
// respectively. Note the difference between this and |stack_cmp_func| in that
// this takes pointers to the objects directly.
typedef int (*lhash_cmp_func)(const void *a, const void *b);
/* lhash_hash_func is a function that maps an object to a uniformly distributed
* uint32_t. */
// lhash_hash_func is a function that maps an object to a uniformly distributed
// uint32_t.
typedef uint32_t (*lhash_hash_func)(const void *a);
typedef struct lhash_st {
/* num_items contains the total number of items in the hash table. */
// num_items contains the total number of items in the hash table.
size_t num_items;
/* buckets is an array of |num_buckets| pointers. Each points to the head of
* a chain of LHASH_ITEM objects that have the same hash value, mod
* |num_buckets|. */
// buckets is an array of |num_buckets| pointers. Each points to the head of
// a chain of LHASH_ITEM objects that have the same hash value, mod
// |num_buckets|.
LHASH_ITEM **buckets;
/* num_buckets contains the length of |buckets|. This value is always >=
* kMinNumBuckets. */
// num_buckets contains the length of |buckets|. This value is always >=
// kMinNumBuckets.
size_t num_buckets;
/* callback_depth contains the current depth of |lh_doall| or |lh_doall_arg|
* calls. If non-zero then this suppresses resizing of the |buckets| array,
* which would otherwise disrupt the iteration. */
// callback_depth contains the current depth of |lh_doall| or |lh_doall_arg|
// calls. If non-zero then this suppresses resizing of the |buckets| array,
// which would otherwise disrupt the iteration.
unsigned callback_depth;
lhash_cmp_func comp;
lhash_hash_func hash;
} _LHASH;
/* lh_new returns a new, empty hash table or NULL on error. */
// lh_new returns a new, empty hash table or NULL on error.
OPENSSL_EXPORT _LHASH *lh_new(lhash_hash_func hash, lhash_cmp_func comp);
/* lh_free frees the hash table itself but none of the elements. See
* |lh_doall|. */
// lh_free frees the hash table itself but none of the elements. See
// |lh_doall|.
OPENSSL_EXPORT void lh_free(_LHASH *lh);
/* lh_num_items returns the number of items in |lh|. */
// lh_num_items returns the number of items in |lh|.
OPENSSL_EXPORT size_t lh_num_items(const _LHASH *lh);
/* lh_retrieve finds an element equal to |data| in the hash table and returns
* it. If no such element exists, it returns NULL. */
// lh_retrieve finds an element equal to |data| in the hash table and returns
// it. If no such element exists, it returns NULL.
OPENSSL_EXPORT void *lh_retrieve(const _LHASH *lh, const void *data);
/* lh_insert inserts |data| into the hash table. If an existing element is
* equal to |data| (with respect to the comparison function) then |*old_data|
* will be set to that value and it will be replaced. Otherwise, or in the
* event of an error, |*old_data| will be set to NULL. It returns one on
* success or zero in the case of an allocation error. */
// lh_insert inserts |data| into the hash table. If an existing element is
// equal to |data| (with respect to the comparison function) then |*old_data|
// will be set to that value and it will be replaced. Otherwise, or in the
// event of an error, |*old_data| will be set to NULL. It returns one on
// success or zero in the case of an allocation error.
OPENSSL_EXPORT int lh_insert(_LHASH *lh, void **old_data, void *data);
/* lh_delete removes an element equal to |data| from the hash table and returns
* it. If no such element is found, it returns NULL. */
// lh_delete removes an element equal to |data| from the hash table and returns
// it. If no such element is found, it returns NULL.
OPENSSL_EXPORT void *lh_delete(_LHASH *lh, const void *data);
/* lh_doall calls |func| on each element of the hash table.
* TODO(fork): rename this */
// lh_doall calls |func| on each element of the hash table.
// TODO(fork): rename this
OPENSSL_EXPORT void lh_doall(_LHASH *lh, void (*func)(void *));
/* lh_doall_arg calls |func| on each element of the hash table and also passes
* |arg| as the second argument.
* TODO(fork): rename this */
// lh_doall_arg calls |func| on each element of the hash table and also passes
// |arg| as the second argument.
// TODO(fork): rename this
OPENSSL_EXPORT void lh_doall_arg(_LHASH *lh, void (*func)(void *, void *),
void *arg);
/* lh_strhash is the default hash function which processes NUL-terminated
* strings. */
// lh_strhash is the default hash function which processes NUL-terminated
// strings.
OPENSSL_EXPORT uint32_t lh_strhash(const char *c);
#if defined(__cplusplus)
} /* extern C */
} // extern C
#endif
#endif /* OPENSSL_HEADER_LHASH_H */
#endif // OPENSSL_HEADER_LHASH_H

View File

@ -16,7 +16,7 @@
#error "Don't include this file directly. Include lhash.h"
#endif
/* ASN1_OBJECT */
// ASN1_OBJECT
#define lh_ASN1_OBJECT_new(hash, comp) \
((LHASH_OF(ASN1_OBJECT) *)lh_new( \
CHECKED_CAST(lhash_hash_func, uint32_t(*)(const ASN1_OBJECT *), hash), \
@ -56,7 +56,7 @@
arg);
/* CONF_VALUE */
// CONF_VALUE
#define lh_CONF_VALUE_new(hash, comp) \
((LHASH_OF(CONF_VALUE) *)lh_new( \
CHECKED_CAST(lhash_hash_func, uint32_t(*)(const CONF_VALUE *), hash), \
@ -94,7 +94,7 @@
arg);
/* CRYPTO_BUFFER */
// CRYPTO_BUFFER
#define lh_CRYPTO_BUFFER_new(hash, comp) \
((LHASH_OF(CRYPTO_BUFFER) *)lh_new( \
CHECKED_CAST(lhash_hash_func, uint32_t(*)(const CRYPTO_BUFFER *), hash), \
@ -134,7 +134,7 @@
arg);
/* SSL_SESSION */
// SSL_SESSION
#define lh_SSL_SESSION_new(hash, comp) \
((LHASH_OF(SSL_SESSION) *)lh_new( \
CHECKED_CAST(lhash_hash_func, uint32_t(*)(const SSL_SESSION *), hash), \

View File

@ -64,31 +64,31 @@ extern "C" {
#endif
/* MD4. */
// MD4.
/* MD4_CBLOCK is the block size of MD4. */
// MD4_CBLOCK is the block size of MD4.
#define MD4_CBLOCK 64
/* MD4_DIGEST_LENGTH is the length of an MD4 digest. */
// MD4_DIGEST_LENGTH is the length of an MD4 digest.
#define MD4_DIGEST_LENGTH 16
/* MD4_Init initialises |md4| and returns one. */
// MD4_Init initialises |md4| and returns one.
OPENSSL_EXPORT int MD4_Init(MD4_CTX *md4);
/* MD4_Update adds |len| bytes from |data| to |md4| and returns one. */
// MD4_Update adds |len| bytes from |data| to |md4| and returns one.
OPENSSL_EXPORT int MD4_Update(MD4_CTX *md4, const void *data, size_t len);
/* MD4_Final adds the final padding to |md4| and writes the resulting digest to
* |md|, which must have at least |MD4_DIGEST_LENGTH| bytes of space. It
* returns one. */
// MD4_Final adds the final padding to |md4| and writes the resulting digest to
// |md|, which must have at least |MD4_DIGEST_LENGTH| bytes of space. It
// returns one.
OPENSSL_EXPORT int MD4_Final(uint8_t *md, MD4_CTX *md4);
/* MD4 writes the digest of |len| bytes from |data| to |out| and returns |out|.
* There must be at least |MD4_DIGEST_LENGTH| bytes of space in |out|. */
// MD4 writes the digest of |len| bytes from |data| to |out| and returns |out|.
// There must be at least |MD4_DIGEST_LENGTH| bytes of space in |out|.
OPENSSL_EXPORT uint8_t *MD4(const uint8_t *data, size_t len, uint8_t *out);
/* MD4_Transform is a low-level function that performs a single, MD4 block
* transformation using the state from |md4| and 64 bytes from |block|. */
// MD4_Transform is a low-level function that performs a single, MD4 block
// transformation using the state from |md4| and 64 bytes from |block|.
OPENSSL_EXPORT void MD4_Transform(MD4_CTX *md4, const uint8_t *block);
struct md4_state_st {
@ -100,7 +100,7 @@ struct md4_state_st {
#if defined(__cplusplus)
} /* extern C */
} // extern C
#endif
#endif /* OPENSSL_HEADER_MD4_H */
#endif // OPENSSL_HEADER_MD4_H

View File

@ -64,32 +64,32 @@ extern "C" {
#endif
/* MD5. */
// MD5.
/* MD5_CBLOCK is the block size of MD5. */
// MD5_CBLOCK is the block size of MD5.
#define MD5_CBLOCK 64
/* MD5_DIGEST_LENGTH is the length of an MD5 digest. */
// MD5_DIGEST_LENGTH is the length of an MD5 digest.
#define MD5_DIGEST_LENGTH 16
/* MD5_Init initialises |md5| and returns one. */
// MD5_Init initialises |md5| and returns one.
OPENSSL_EXPORT int MD5_Init(MD5_CTX *md5);
/* MD5_Update adds |len| bytes from |data| to |md5| and returns one. */
// MD5_Update adds |len| bytes from |data| to |md5| and returns one.
OPENSSL_EXPORT int MD5_Update(MD5_CTX *md5, const void *data, size_t len);
/* MD5_Final adds the final padding to |md5| and writes the resulting digest to
* |md|, which must have at least |MD5_DIGEST_LENGTH| bytes of space. It
* returns one. */
// MD5_Final adds the final padding to |md5| and writes the resulting digest to
// |md|, which must have at least |MD5_DIGEST_LENGTH| bytes of space. It
// returns one.
OPENSSL_EXPORT int MD5_Final(uint8_t *md, MD5_CTX *md5);
/* MD5 writes the digest of |len| bytes from |data| to |out| and returns |out|.
* There must be at least |MD5_DIGEST_LENGTH| bytes of space in |out|. */
// MD5 writes the digest of |len| bytes from |data| to |out| and returns |out|.
// There must be at least |MD5_DIGEST_LENGTH| bytes of space in |out|.
OPENSSL_EXPORT uint8_t *MD5(const uint8_t *data, size_t len, uint8_t *out);
/* MD5_Transform is a low-level function that performs a single, MD5 block
* transformation using the state from |md5| and 64 bytes from |block|. */
// MD5_Transform is a low-level function that performs a single, MD5 block
// transformation using the state from |md5| and 64 bytes from |block|.
OPENSSL_EXPORT void MD5_Transform(MD5_CTX *md5, const uint8_t *block);
struct md5_state_st {
@ -101,7 +101,7 @@ struct md5_state_st {
#if defined(__cplusplus)
} /* extern C */
} // extern C
#endif
#endif /* OPENSSL_HEADER_MD5_H */
#endif // OPENSSL_HEADER_MD5_H

View File

@ -67,67 +67,67 @@ extern "C" {
#endif
/* Memory and string functions, see also buf.h.
*
* OpenSSL has, historically, had a complex set of malloc debugging options.
* However, that was written in a time before Valgrind and ASAN. Since we now
* have those tools, the OpenSSL allocation functions are simply macros around
* the standard memory functions. */
// Memory and string functions, see also buf.h.
//
// OpenSSL has, historically, had a complex set of malloc debugging options.
// However, that was written in a time before Valgrind and ASAN. Since we now
// have those tools, the OpenSSL allocation functions are simply macros around
// the standard memory functions.
#define OPENSSL_malloc malloc
#define OPENSSL_realloc realloc
#define OPENSSL_free free
/* OPENSSL_realloc_clean acts like |realloc|, but clears the previous memory
* buffer. Because this is implemented as a wrapper around |malloc|, it needs
* to be given the size of the buffer pointed to by |ptr|. */
// OPENSSL_realloc_clean acts like |realloc|, but clears the previous memory
// buffer. Because this is implemented as a wrapper around |malloc|, it needs
// to be given the size of the buffer pointed to by |ptr|.
void *OPENSSL_realloc_clean(void *ptr, size_t old_size, size_t new_size);
/* OPENSSL_cleanse zeros out |len| bytes of memory at |ptr|. This is similar to
* |memset_s| from C11. */
// OPENSSL_cleanse zeros out |len| bytes of memory at |ptr|. This is similar to
// |memset_s| from C11.
OPENSSL_EXPORT void OPENSSL_cleanse(void *ptr, size_t len);
/* CRYPTO_memcmp returns zero iff the |len| bytes at |a| and |b| are equal. It
* takes an amount of time dependent on |len|, but independent of the contents
* of |a| and |b|. Unlike memcmp, it cannot be used to put elements into a
* defined order as the return value when a != b is undefined, other than to be
* non-zero. */
// CRYPTO_memcmp returns zero iff the |len| bytes at |a| and |b| are equal. It
// takes an amount of time dependent on |len|, but independent of the contents
// of |a| and |b|. Unlike memcmp, it cannot be used to put elements into a
// defined order as the return value when a != b is undefined, other than to be
// non-zero.
OPENSSL_EXPORT int CRYPTO_memcmp(const void *a, const void *b, size_t len);
/* OPENSSL_hash32 implements the 32 bit, FNV-1a hash. */
// OPENSSL_hash32 implements the 32 bit, FNV-1a hash.
OPENSSL_EXPORT uint32_t OPENSSL_hash32(const void *ptr, size_t len);
/* OPENSSL_strdup has the same behaviour as strdup(3). */
// OPENSSL_strdup has the same behaviour as strdup(3).
OPENSSL_EXPORT char *OPENSSL_strdup(const char *s);
/* OPENSSL_strnlen has the same behaviour as strnlen(3). */
// OPENSSL_strnlen has the same behaviour as strnlen(3).
OPENSSL_EXPORT size_t OPENSSL_strnlen(const char *s, size_t len);
/* OPENSSL_tolower is a locale-independent version of tolower(3). */
// OPENSSL_tolower is a locale-independent version of tolower(3).
OPENSSL_EXPORT int OPENSSL_tolower(int c);
/* OPENSSL_strcasecmp is a locale-independent version of strcasecmp(3). */
// OPENSSL_strcasecmp is a locale-independent version of strcasecmp(3).
OPENSSL_EXPORT int OPENSSL_strcasecmp(const char *a, const char *b);
/* OPENSSL_strncasecmp is a locale-independent version of strncasecmp(3). */
// OPENSSL_strncasecmp is a locale-independent version of strncasecmp(3).
OPENSSL_EXPORT int OPENSSL_strncasecmp(const char *a, const char *b, size_t n);
/* DECIMAL_SIZE returns an upper bound for the length of the decimal
* representation of the given type. */
// DECIMAL_SIZE returns an upper bound for the length of the decimal
// representation of the given type.
#define DECIMAL_SIZE(type) ((sizeof(type)*8+2)/3+1)
/* BIO_snprintf has the same behavior as snprintf(3). */
// BIO_snprintf has the same behavior as snprintf(3).
OPENSSL_EXPORT int BIO_snprintf(char *buf, size_t n, const char *format, ...)
OPENSSL_PRINTF_FORMAT_FUNC(3, 4);
/* BIO_vsnprintf has the same behavior as vsnprintf(3). */
// BIO_vsnprintf has the same behavior as vsnprintf(3).
OPENSSL_EXPORT int BIO_vsnprintf(char *buf, size_t n, const char *format,
va_list args)
OPENSSL_PRINTF_FORMAT_FUNC(3, 0);
/* Deprecated functions. */
// Deprecated functions.
#define CRYPTO_malloc OPENSSL_malloc
#define CRYPTO_realloc OPENSSL_realloc
@ -135,7 +135,7 @@ OPENSSL_EXPORT int BIO_vsnprintf(char *buf, size_t n, const char *format,
#if defined(__cplusplus)
} /* extern C */
} // extern C
extern "C++" {
@ -146,8 +146,8 @@ BORINGSSL_MAKE_DELETER(uint8_t, OPENSSL_free)
} // namespace bssl
} /* extern C++ */
} // extern C++
#endif
#endif /* OPENSSL_HEADER_MEM_H */
#endif // OPENSSL_HEADER_MEM_H

View File

@ -67,129 +67,129 @@ extern "C" {
#endif
/* The objects library deals with the registration and indexing of ASN.1 object
* identifiers. These values are often written as a dotted sequence of numbers,
* e.g. 1.2.840.113549.1.9.16.3.9.
*
* Internally, OpenSSL likes to deal with these values by numbering them with
* numbers called "nids". OpenSSL has a large, built-in database of common
* object identifiers and also has both short and long names for them.
*
* This library provides functions for translating between object identifiers,
* nids, short names and long names.
*
* The nid values should not be used outside of a single process: they are not
* stable identifiers. */
// The objects library deals with the registration and indexing of ASN.1 object
// identifiers. These values are often written as a dotted sequence of numbers,
// e.g. 1.2.840.113549.1.9.16.3.9.
//
// Internally, OpenSSL likes to deal with these values by numbering them with
// numbers called "nids". OpenSSL has a large, built-in database of common
// object identifiers and also has both short and long names for them.
//
// This library provides functions for translating between object identifiers,
// nids, short names and long names.
//
// The nid values should not be used outside of a single process: they are not
// stable identifiers.
/* Basic operations. */
// Basic operations.
/* OBJ_dup returns a duplicate copy of |obj| or NULL on allocation failure. */
// OBJ_dup returns a duplicate copy of |obj| or NULL on allocation failure.
OPENSSL_EXPORT ASN1_OBJECT *OBJ_dup(const ASN1_OBJECT *obj);
/* OBJ_cmp returns a value less than, equal to or greater than zero if |a| is
* less than, equal to or greater than |b|, respectively. */
// OBJ_cmp returns a value less than, equal to or greater than zero if |a| is
// less than, equal to or greater than |b|, respectively.
OPENSSL_EXPORT int OBJ_cmp(const ASN1_OBJECT *a, const ASN1_OBJECT *b);
/* Looking up nids. */
// Looking up nids.
/* OBJ_obj2nid returns the nid corresponding to |obj|, or |NID_undef| if no
* such object is known. */
// OBJ_obj2nid returns the nid corresponding to |obj|, or |NID_undef| if no
// such object is known.
OPENSSL_EXPORT int OBJ_obj2nid(const ASN1_OBJECT *obj);
/* OBJ_cbs2nid returns the nid corresponding to the DER data in |cbs|, or
* |NID_undef| if no such object is known. */
// OBJ_cbs2nid returns the nid corresponding to the DER data in |cbs|, or
// |NID_undef| if no such object is known.
OPENSSL_EXPORT int OBJ_cbs2nid(const CBS *cbs);
/* OBJ_sn2nid returns the nid corresponding to |short_name|, or |NID_undef| if
* no such short name is known. */
// OBJ_sn2nid returns the nid corresponding to |short_name|, or |NID_undef| if
// no such short name is known.
OPENSSL_EXPORT int OBJ_sn2nid(const char *short_name);
/* OBJ_ln2nid returns the nid corresponding to |long_name|, or |NID_undef| if
* no such long name is known. */
// OBJ_ln2nid returns the nid corresponding to |long_name|, or |NID_undef| if
// no such long name is known.
OPENSSL_EXPORT int OBJ_ln2nid(const char *long_name);
/* OBJ_txt2nid returns the nid corresponding to |s|, which may be a short name,
* long name, or an ASCII string containing a dotted sequence of numbers. It
* returns the nid or NID_undef if unknown. */
// OBJ_txt2nid returns the nid corresponding to |s|, which may be a short name,
// long name, or an ASCII string containing a dotted sequence of numbers. It
// returns the nid or NID_undef if unknown.
OPENSSL_EXPORT int OBJ_txt2nid(const char *s);
/* Getting information about nids. */
// Getting information about nids.
/* OBJ_nid2obj returns the ASN1_OBJECT corresponding to |nid|, or NULL if |nid|
* is unknown. */
// OBJ_nid2obj returns the ASN1_OBJECT corresponding to |nid|, or NULL if |nid|
// is unknown.
OPENSSL_EXPORT const ASN1_OBJECT *OBJ_nid2obj(int nid);
/* OBJ_nid2sn returns the short name for |nid|, or NULL if |nid| is unknown. */
// OBJ_nid2sn returns the short name for |nid|, or NULL if |nid| is unknown.
OPENSSL_EXPORT const char *OBJ_nid2sn(int nid);
/* OBJ_nid2ln returns the long name for |nid|, or NULL if |nid| is unknown. */
// OBJ_nid2ln returns the long name for |nid|, or NULL if |nid| is unknown.
OPENSSL_EXPORT const char *OBJ_nid2ln(int nid);
/* OBJ_nid2cbb writes |nid| as an ASN.1 OBJECT IDENTIFIER to |out|. It returns
* one on success or zero otherwise. */
// OBJ_nid2cbb writes |nid| as an ASN.1 OBJECT IDENTIFIER to |out|. It returns
// one on success or zero otherwise.
OPENSSL_EXPORT int OBJ_nid2cbb(CBB *out, int nid);
/* Dealing with textual representations of object identifiers. */
// Dealing with textual representations of object identifiers.
/* OBJ_txt2obj returns an ASN1_OBJECT for the textual representation in |s|.
* If |dont_search_names| is zero, then |s| will be matched against the long
* and short names of a known objects to find a match. Otherwise |s| must
* contain an ASCII string with a dotted sequence of numbers. The resulting
* object need not be previously known. It returns a freshly allocated
* |ASN1_OBJECT| or NULL on error. */
// OBJ_txt2obj returns an ASN1_OBJECT for the textual representation in |s|.
// If |dont_search_names| is zero, then |s| will be matched against the long
// and short names of a known objects to find a match. Otherwise |s| must
// contain an ASCII string with a dotted sequence of numbers. The resulting
// object need not be previously known. It returns a freshly allocated
// |ASN1_OBJECT| or NULL on error.
OPENSSL_EXPORT ASN1_OBJECT *OBJ_txt2obj(const char *s, int dont_search_names);
/* OBJ_obj2txt converts |obj| to a textual representation. If
* |always_return_oid| is zero then |obj| will be matched against known objects
* and the long (preferably) or short name will be used if found. Otherwise
* |obj| will be converted into a dotted sequence of integers. If |out| is not
* NULL, then at most |out_len| bytes of the textual form will be written
* there. If |out_len| is at least one, then string written to |out| will
* always be NUL terminated. It returns the number of characters that could
* have been written, not including the final NUL, or -1 on error. */
// OBJ_obj2txt converts |obj| to a textual representation. If
// |always_return_oid| is zero then |obj| will be matched against known objects
// and the long (preferably) or short name will be used if found. Otherwise
// |obj| will be converted into a dotted sequence of integers. If |out| is not
// NULL, then at most |out_len| bytes of the textual form will be written
// there. If |out_len| is at least one, then string written to |out| will
// always be NUL terminated. It returns the number of characters that could
// have been written, not including the final NUL, or -1 on error.
OPENSSL_EXPORT int OBJ_obj2txt(char *out, int out_len, const ASN1_OBJECT *obj,
int always_return_oid);
/* Adding objects at runtime. */
// Adding objects at runtime.
/* OBJ_create adds a known object and returns the nid of the new object, or
* NID_undef on error. */
// OBJ_create adds a known object and returns the nid of the new object, or
// NID_undef on error.
OPENSSL_EXPORT int OBJ_create(const char *oid, const char *short_name,
const char *long_name);
/* Handling signature algorithm identifiers.
*
* Some NIDs (e.g. sha256WithRSAEncryption) specify both a digest algorithm and
* a public key algorithm. The following functions map between pairs of digest
* and public-key algorithms and the NIDs that specify their combination.
*
* Sometimes the combination NID leaves the digest unspecified (e.g.
* rsassaPss). In these cases, the digest NID is |NID_undef|. */
// Handling signature algorithm identifiers.
//
// Some NIDs (e.g. sha256WithRSAEncryption) specify both a digest algorithm and
// a public key algorithm. The following functions map between pairs of digest
// and public-key algorithms and the NIDs that specify their combination.
//
// Sometimes the combination NID leaves the digest unspecified (e.g.
// rsassaPss). In these cases, the digest NID is |NID_undef|.
/* OBJ_find_sigid_algs finds the digest and public-key NIDs that correspond to
* the signing algorithm |sign_nid|. If successful, it sets |*out_digest_nid|
* and |*out_pkey_nid| and returns one. Otherwise it returns zero. Any of
* |out_digest_nid| or |out_pkey_nid| can be NULL if the caller doesn't need
* that output value. */
// OBJ_find_sigid_algs finds the digest and public-key NIDs that correspond to
// the signing algorithm |sign_nid|. If successful, it sets |*out_digest_nid|
// and |*out_pkey_nid| and returns one. Otherwise it returns zero. Any of
// |out_digest_nid| or |out_pkey_nid| can be NULL if the caller doesn't need
// that output value.
OPENSSL_EXPORT int OBJ_find_sigid_algs(int sign_nid, int *out_digest_nid,
int *out_pkey_nid);
/* OBJ_find_sigid_by_algs finds the signature NID that corresponds to the
* combination of |digest_nid| and |pkey_nid|. If success, it sets
* |*out_sign_nid| and returns one. Otherwise it returns zero. The
* |out_sign_nid| argument can be NULL if the caller only wishes to learn
* whether the combination is valid. */
// OBJ_find_sigid_by_algs finds the signature NID that corresponds to the
// combination of |digest_nid| and |pkey_nid|. If success, it sets
// |*out_sign_nid| and returns one. Otherwise it returns zero. The
// |out_sign_nid| argument can be NULL if the caller only wishes to learn
// whether the combination is valid.
OPENSSL_EXPORT int OBJ_find_sigid_by_algs(int *out_sign_nid, int digest_nid,
int pkey_nid);
/* Deprecated functions. */
// Deprecated functions.
typedef struct obj_name_st {
int type;
@ -201,26 +201,26 @@ typedef struct obj_name_st {
#define OBJ_NAME_TYPE_MD_METH 1
#define OBJ_NAME_TYPE_CIPHER_METH 2
/* OBJ_NAME_do_all_sorted calls |callback| zero or more times, each time with
* the name of a different primitive. If |type| is |OBJ_NAME_TYPE_MD_METH| then
* the primitives will be hash functions, alternatively if |type| is
* |OBJ_NAME_TYPE_CIPHER_METH| then the primitives will be ciphers or cipher
* modes.
*
* This function is ill-specified and should never be used. */
// OBJ_NAME_do_all_sorted calls |callback| zero or more times, each time with
// the name of a different primitive. If |type| is |OBJ_NAME_TYPE_MD_METH| then
// the primitives will be hash functions, alternatively if |type| is
// |OBJ_NAME_TYPE_CIPHER_METH| then the primitives will be ciphers or cipher
// modes.
//
// This function is ill-specified and should never be used.
OPENSSL_EXPORT void OBJ_NAME_do_all_sorted(
int type, void (*callback)(const OBJ_NAME *, void *arg), void *arg);
/* OBJ_NAME_do_all calls |OBJ_NAME_do_all_sorted|. */
// OBJ_NAME_do_all calls |OBJ_NAME_do_all_sorted|.
OPENSSL_EXPORT void OBJ_NAME_do_all(int type, void (*callback)(const OBJ_NAME *,
void *arg),
void *arg);
#if defined(__cplusplus)
} /* extern C */
} // extern C
#endif
#define OBJ_R_UNKNOWN_NID 100
#endif /* OPENSSL_HEADER_OBJ_H */
#endif // OPENSSL_HEADER_OBJ_H

View File

@ -59,4 +59,4 @@
#define OPENSSL_NO_WHIRLPOOL
#endif /* OPENSSL_HEADER_OPENSSLCONF_H */
#endif // OPENSSL_HEADER_OPENSSLCONF_H

View File

@ -24,54 +24,54 @@ extern "C" {
#endif
/* PKCS#7.
*
* This library contains functions for extracting information from PKCS#7
* structures (RFC 2315). */
// PKCS#7.
//
// This library contains functions for extracting information from PKCS#7
// structures (RFC 2315).
DECLARE_STACK_OF(CRYPTO_BUFFER)
DECLARE_STACK_OF(X509)
DECLARE_STACK_OF(X509_CRL)
/* PKCS7_get_raw_certificates parses a PKCS#7, SignedData structure from |cbs|
* and appends the included certificates to |out_certs|. It returns one on
* success and zero on error. */
// PKCS7_get_raw_certificates parses a PKCS#7, SignedData structure from |cbs|
// and appends the included certificates to |out_certs|. It returns one on
// success and zero on error.
OPENSSL_EXPORT int PKCS7_get_raw_certificates(
STACK_OF(CRYPTO_BUFFER) *out_certs, CBS *cbs, CRYPTO_BUFFER_POOL *pool);
/* PKCS7_get_certificates behaves like |PKCS7_get_raw_certificates| but parses
* them into |X509| objects. */
// PKCS7_get_certificates behaves like |PKCS7_get_raw_certificates| but parses
// them into |X509| objects.
OPENSSL_EXPORT int PKCS7_get_certificates(STACK_OF(X509) *out_certs, CBS *cbs);
/* PKCS7_bundle_certificates appends a PKCS#7, SignedData structure containing
* |certs| to |out|. It returns one on success and zero on error. */
// PKCS7_bundle_certificates appends a PKCS#7, SignedData structure containing
// |certs| to |out|. It returns one on success and zero on error.
OPENSSL_EXPORT int PKCS7_bundle_certificates(
CBB *out, const STACK_OF(X509) *certs);
/* PKCS7_get_CRLs parses a PKCS#7, SignedData structure from |cbs| and appends
* the included CRLs to |out_crls|. It returns one on success and zero on
* error. */
// PKCS7_get_CRLs parses a PKCS#7, SignedData structure from |cbs| and appends
// the included CRLs to |out_crls|. It returns one on success and zero on
// error.
OPENSSL_EXPORT int PKCS7_get_CRLs(STACK_OF(X509_CRL) *out_crls, CBS *cbs);
/* PKCS7_bundle_CRLs appends a PKCS#7, SignedData structure containing
* |crls| to |out|. It returns one on success and zero on error. */
// PKCS7_bundle_CRLs appends a PKCS#7, SignedData structure containing
// |crls| to |out|. It returns one on success and zero on error.
OPENSSL_EXPORT int PKCS7_bundle_CRLs(CBB *out, const STACK_OF(X509_CRL) *crls);
/* PKCS7_get_PEM_certificates reads a PEM-encoded, PKCS#7, SignedData structure
* from |pem_bio| and appends the included certificates to |out_certs|. It
* returns one on success and zero on error. */
// PKCS7_get_PEM_certificates reads a PEM-encoded, PKCS#7, SignedData structure
// from |pem_bio| and appends the included certificates to |out_certs|. It
// returns one on success and zero on error.
OPENSSL_EXPORT int PKCS7_get_PEM_certificates(STACK_OF(X509) *out_certs,
BIO *pem_bio);
/* PKCS7_get_PEM_CRLs reads a PEM-encoded, PKCS#7, SignedData structure from
* |pem_bio| and appends the included CRLs to |out_crls|. It returns one on
* success and zero on error. */
// PKCS7_get_PEM_CRLs reads a PEM-encoded, PKCS#7, SignedData structure from
// |pem_bio| and appends the included CRLs to |out_crls|. It returns one on
// success and zero on error.
OPENSSL_EXPORT int PKCS7_get_PEM_CRLs(STACK_OF(X509_CRL) *out_crls,
BIO *pem_bio);
#if defined(__cplusplus)
} /* extern C */
} // extern C
#endif
#define PKCS7_R_BAD_PKCS7_VERSION 100
@ -79,4 +79,4 @@ OPENSSL_EXPORT int PKCS7_get_PEM_CRLs(STACK_OF(X509_CRL) *out_crls,
#define PKCS7_R_NO_CERTIFICATES_INCLUDED 102
#define PKCS7_R_NO_CRLS_INCLUDED 103
#endif /* OPENSSL_HEADER_PKCS7_H */
#endif // OPENSSL_HEADER_PKCS7_H

View File

@ -66,121 +66,121 @@ extern "C" {
#endif
/* PKCS8_encrypt serializes and encrypts a PKCS8_PRIV_KEY_INFO with PBES1 or
* PBES2 as defined in PKCS #5. Only pbeWithSHAAnd128BitRC4,
* pbeWithSHAAnd3-KeyTripleDES-CBC and pbeWithSHA1And40BitRC2, defined in PKCS
* #12, and PBES2, are supported. PBES2 is selected by setting |cipher| and
* passing -1 for |pbe_nid|. Otherwise, PBES1 is used and |cipher| is ignored.
*
* |pass| is used as the password. If a PBES1 scheme from PKCS #12 is used, this
* will be converted to a raw byte string as specified in B.1 of PKCS #12. If
* |pass| is NULL, it will be encoded as the empty byte string rather than two
* zero bytes, the PKCS #12 encoding of the empty string.
*
* If |salt| is NULL, a random salt of |salt_len| bytes is generated. If
* |salt_len| is zero, a default salt length is used instead.
*
* The resulting structure is stored in an |X509_SIG| which must be freed by the
* caller. */
// PKCS8_encrypt serializes and encrypts a PKCS8_PRIV_KEY_INFO with PBES1 or
// PBES2 as defined in PKCS #5. Only pbeWithSHAAnd128BitRC4,
// pbeWithSHAAnd3-KeyTripleDES-CBC and pbeWithSHA1And40BitRC2, defined in PKCS
// #12, and PBES2, are supported. PBES2 is selected by setting |cipher| and
// passing -1 for |pbe_nid|. Otherwise, PBES1 is used and |cipher| is ignored.
//
// |pass| is used as the password. If a PBES1 scheme from PKCS #12 is used, this
// will be converted to a raw byte string as specified in B.1 of PKCS #12. If
// |pass| is NULL, it will be encoded as the empty byte string rather than two
// zero bytes, the PKCS #12 encoding of the empty string.
//
// If |salt| is NULL, a random salt of |salt_len| bytes is generated. If
// |salt_len| is zero, a default salt length is used instead.
//
// The resulting structure is stored in an |X509_SIG| which must be freed by the
// caller.
OPENSSL_EXPORT X509_SIG *PKCS8_encrypt(int pbe_nid, const EVP_CIPHER *cipher,
const char *pass, int pass_len,
const uint8_t *salt, size_t salt_len,
int iterations,
PKCS8_PRIV_KEY_INFO *p8inf);
/* PKCS8_marshal_encrypted_private_key behaves like |PKCS8_encrypt| but encrypts
* an |EVP_PKEY| and writes the serialized EncryptedPrivateKeyInfo to |out|. It
* returns one on success and zero on error. */
// PKCS8_marshal_encrypted_private_key behaves like |PKCS8_encrypt| but encrypts
// an |EVP_PKEY| and writes the serialized EncryptedPrivateKeyInfo to |out|. It
// returns one on success and zero on error.
OPENSSL_EXPORT int PKCS8_marshal_encrypted_private_key(
CBB *out, int pbe_nid, const EVP_CIPHER *cipher, const char *pass,
size_t pass_len, const uint8_t *salt, size_t salt_len, int iterations,
const EVP_PKEY *pkey);
/* PKCS8_decrypt decrypts and decodes a PKCS8_PRIV_KEY_INFO with PBES1 or PBES2
* as defined in PKCS #5. Only pbeWithSHAAnd128BitRC4,
* pbeWithSHAAnd3-KeyTripleDES-CBC and pbeWithSHA1And40BitRC2, and PBES2,
* defined in PKCS #12, are supported.
*
* |pass| is used as the password. If a PBES1 scheme from PKCS #12 is used, this
* will be converted to a raw byte string as specified in B.1 of PKCS #12. If
* |pass| is NULL, it will be encoded as the empty byte string rather than two
* zero bytes, the PKCS #12 encoding of the empty string.
*
* The resulting structure must be freed by the caller. */
// PKCS8_decrypt decrypts and decodes a PKCS8_PRIV_KEY_INFO with PBES1 or PBES2
// as defined in PKCS #5. Only pbeWithSHAAnd128BitRC4,
// pbeWithSHAAnd3-KeyTripleDES-CBC and pbeWithSHA1And40BitRC2, and PBES2,
// defined in PKCS #12, are supported.
//
// |pass| is used as the password. If a PBES1 scheme from PKCS #12 is used, this
// will be converted to a raw byte string as specified in B.1 of PKCS #12. If
// |pass| is NULL, it will be encoded as the empty byte string rather than two
// zero bytes, the PKCS #12 encoding of the empty string.
//
// The resulting structure must be freed by the caller.
OPENSSL_EXPORT PKCS8_PRIV_KEY_INFO *PKCS8_decrypt(X509_SIG *pkcs8,
const char *pass,
int pass_len);
/* PKCS8_parse_encrypted_private_key behaves like |PKCS8_decrypt| but it parses
* the EncryptedPrivateKeyInfo structure from |cbs| and advances |cbs|. It
* returns a newly-allocated |EVP_PKEY| on success and zero on error. */
// PKCS8_parse_encrypted_private_key behaves like |PKCS8_decrypt| but it parses
// the EncryptedPrivateKeyInfo structure from |cbs| and advances |cbs|. It
// returns a newly-allocated |EVP_PKEY| on success and zero on error.
OPENSSL_EXPORT EVP_PKEY *PKCS8_parse_encrypted_private_key(CBS *cbs,
const char *pass,
size_t pass_len);
/* PKCS12_get_key_and_certs parses a PKCS#12 structure from |in|, authenticates
* and decrypts it using |password|, sets |*out_key| to the included private
* key and appends the included certificates to |out_certs|. It returns one on
* success and zero on error. The caller takes ownership of the outputs. */
// PKCS12_get_key_and_certs parses a PKCS#12 structure from |in|, authenticates
// and decrypts it using |password|, sets |*out_key| to the included private
// key and appends the included certificates to |out_certs|. It returns one on
// success and zero on error. The caller takes ownership of the outputs.
OPENSSL_EXPORT int PKCS12_get_key_and_certs(EVP_PKEY **out_key,
STACK_OF(X509) *out_certs,
CBS *in, const char *password);
/* Deprecated functions. */
// Deprecated functions.
/* PKCS12_PBE_add does nothing. It exists for compatibility with OpenSSL. */
// PKCS12_PBE_add does nothing. It exists for compatibility with OpenSSL.
OPENSSL_EXPORT void PKCS12_PBE_add(void);
/* d2i_PKCS12 is a dummy function that copies |*ber_bytes| into a
* |PKCS12| structure. The |out_p12| argument should be NULL(). On exit,
* |*ber_bytes| will be advanced by |ber_len|. It returns a fresh |PKCS12|
* structure or NULL on error.
*
* Note: unlike other d2i functions, |d2i_PKCS12| will always consume |ber_len|
* bytes.
*
* () If |out_p12| is not NULL and the function is successful, |*out_p12| will
* be freed if not NULL itself and the result will be written to |*out_p12|.
* New code should not depend on this. */
// d2i_PKCS12 is a dummy function that copies |*ber_bytes| into a
// |PKCS12| structure. The |out_p12| argument should be NULL(✝). On exit,
// |*ber_bytes| will be advanced by |ber_len|. It returns a fresh |PKCS12|
// structure or NULL on error.
//
// Note: unlike other d2i functions, |d2i_PKCS12| will always consume |ber_len|
// bytes.
//
// (✝) If |out_p12| is not NULL and the function is successful, |*out_p12| will
// be freed if not NULL itself and the result will be written to |*out_p12|.
// New code should not depend on this.
OPENSSL_EXPORT PKCS12 *d2i_PKCS12(PKCS12 **out_p12, const uint8_t **ber_bytes,
size_t ber_len);
/* d2i_PKCS12_bio acts like |d2i_PKCS12| but reads from a |BIO|. */
// d2i_PKCS12_bio acts like |d2i_PKCS12| but reads from a |BIO|.
OPENSSL_EXPORT PKCS12* d2i_PKCS12_bio(BIO *bio, PKCS12 **out_p12);
/* d2i_PKCS12_fp acts like |d2i_PKCS12| but reads from a |FILE|. */
// d2i_PKCS12_fp acts like |d2i_PKCS12| but reads from a |FILE|.
OPENSSL_EXPORT PKCS12* d2i_PKCS12_fp(FILE *fp, PKCS12 **out_p12);
/* PKCS12_parse calls |PKCS12_get_key_and_certs| on the ASN.1 data stored in
* |p12|. The |out_pkey| and |out_cert| arguments must not be NULL and, on
* successful exit, the private key and first certificate will be stored in
* them. The |out_ca_certs| argument may be NULL but, if not, then any extra
* certificates will be appended to |*out_ca_certs|. If |*out_ca_certs| is NULL
* then it will be set to a freshly allocated stack containing the extra certs.
*
* It returns one on success and zero on error. */
// PKCS12_parse calls |PKCS12_get_key_and_certs| on the ASN.1 data stored in
// |p12|. The |out_pkey| and |out_cert| arguments must not be NULL and, on
// successful exit, the private key and first certificate will be stored in
// them. The |out_ca_certs| argument may be NULL but, if not, then any extra
// certificates will be appended to |*out_ca_certs|. If |*out_ca_certs| is NULL
// then it will be set to a freshly allocated stack containing the extra certs.
//
// It returns one on success and zero on error.
OPENSSL_EXPORT int PKCS12_parse(const PKCS12 *p12, const char *password,
EVP_PKEY **out_pkey, X509 **out_cert,
STACK_OF(X509) **out_ca_certs);
/* PKCS12_verify_mac returns one if |password| is a valid password for |p12|
* and zero otherwise. Since |PKCS12_parse| doesn't take a length parameter,
* it's not actually possible to use a non-NUL-terminated password to actually
* get anything from a |PKCS12|. Thus |password| and |password_len| may be
* |NULL| and zero, respectively, or else |password_len| may be -1, or else
* |password[password_len]| must be zero and no other NUL bytes may appear in
* |password|. If the |password_len| checks fail, zero is returned
* immediately. */
// PKCS12_verify_mac returns one if |password| is a valid password for |p12|
// and zero otherwise. Since |PKCS12_parse| doesn't take a length parameter,
// it's not actually possible to use a non-NUL-terminated password to actually
// get anything from a |PKCS12|. Thus |password| and |password_len| may be
// |NULL| and zero, respectively, or else |password_len| may be -1, or else
// |password[password_len]| must be zero and no other NUL bytes may appear in
// |password|. If the |password_len| checks fail, zero is returned
// immediately.
OPENSSL_EXPORT int PKCS12_verify_mac(const PKCS12 *p12, const char *password,
int password_len);
/* PKCS12_free frees |p12| and its contents. */
// PKCS12_free frees |p12| and its contents.
OPENSSL_EXPORT void PKCS12_free(PKCS12 *p12);
#if defined(__cplusplus)
} /* extern C */
} // extern C
extern "C++" {
@ -191,7 +191,7 @@ BORINGSSL_MAKE_DELETER(PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO_free)
} // namespace bssl
} /* extern C++ */
} // extern C++
#endif
@ -227,4 +227,4 @@ BORINGSSL_MAKE_DELETER(PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO_free)
#define PKCS8_R_BAD_ITERATION_COUNT 129
#define PKCS8_R_UNSUPPORTED_PRF 130
#endif /* OPENSSL_HEADER_PKCS8_H */
#endif // OPENSSL_HEADER_PKCS8_H

View File

@ -24,28 +24,28 @@ extern "C" {
typedef uint8_t poly1305_state[512];
/* CRYPTO_poly1305_init sets up |state| so that it can be used to calculate an
* authentication tag with the one-time key |key|. Note that |key| is a
* one-time key and therefore there is no `reset' method because that would
* enable several messages to be authenticated with the same key. */
// CRYPTO_poly1305_init sets up |state| so that it can be used to calculate an
// authentication tag with the one-time key |key|. Note that |key| is a
// one-time key and therefore there is no `reset' method because that would
// enable several messages to be authenticated with the same key.
OPENSSL_EXPORT void CRYPTO_poly1305_init(poly1305_state* state,
const uint8_t key[32]);
/* CRYPTO_poly1305_update processes |in_len| bytes from |in|. It can be called
* zero or more times after poly1305_init. */
// CRYPTO_poly1305_update processes |in_len| bytes from |in|. It can be called
// zero or more times after poly1305_init.
OPENSSL_EXPORT void CRYPTO_poly1305_update(poly1305_state* state,
const uint8_t* in,
size_t in_len);
/* CRYPTO_poly1305_finish completes the poly1305 calculation and writes a 16
* byte authentication tag to |mac|. The |mac| address must be 16-byte
* aligned. */
// CRYPTO_poly1305_finish completes the poly1305 calculation and writes a 16
// byte authentication tag to |mac|. The |mac| address must be 16-byte
// aligned.
OPENSSL_EXPORT void CRYPTO_poly1305_finish(poly1305_state* state,
uint8_t mac[16]);
#if defined(__cplusplus)
} /* extern C */
} // extern C
#endif
#endif /* OPENSSL_HEADER_POLY1305_H */
#endif // OPENSSL_HEADER_POLY1305_H

View File

@ -24,56 +24,56 @@ extern "C" {
#endif
/* Buffers and buffer pools.
*
* |CRYPTO_BUFFER|s are simply reference-counted blobs. A |CRYPTO_BUFFER_POOL|
* is an intern table for |CRYPTO_BUFFER|s. This allows for a single copy of a
* given blob to be kept in memory and referenced from multiple places. */
// Buffers and buffer pools.
//
// |CRYPTO_BUFFER|s are simply reference-counted blobs. A |CRYPTO_BUFFER_POOL|
// is an intern table for |CRYPTO_BUFFER|s. This allows for a single copy of a
// given blob to be kept in memory and referenced from multiple places.
DEFINE_STACK_OF(CRYPTO_BUFFER)
/* CRYPTO_BUFFER_POOL_new returns a freshly allocated |CRYPTO_BUFFER_POOL| or
* NULL on error. */
// CRYPTO_BUFFER_POOL_new returns a freshly allocated |CRYPTO_BUFFER_POOL| or
// NULL on error.
OPENSSL_EXPORT CRYPTO_BUFFER_POOL* CRYPTO_BUFFER_POOL_new(void);
/* CRYPTO_BUFFER_POOL_free frees |pool|, which must be empty. */
// CRYPTO_BUFFER_POOL_free frees |pool|, which must be empty.
OPENSSL_EXPORT void CRYPTO_BUFFER_POOL_free(CRYPTO_BUFFER_POOL *pool);
/* CRYPTO_BUFFER_new returns a |CRYPTO_BUFFER| containing a copy of |data|, or
* else NULL on error. If |pool| is not NULL then the returned value may be a
* reference to a previously existing |CRYPTO_BUFFER| that contained the same
* data. Otherwise, the returned, fresh |CRYPTO_BUFFER| will be added to the
* pool. */
// CRYPTO_BUFFER_new returns a |CRYPTO_BUFFER| containing a copy of |data|, or
// else NULL on error. If |pool| is not NULL then the returned value may be a
// reference to a previously existing |CRYPTO_BUFFER| that contained the same
// data. Otherwise, the returned, fresh |CRYPTO_BUFFER| will be added to the
// pool.
OPENSSL_EXPORT CRYPTO_BUFFER *CRYPTO_BUFFER_new(const uint8_t *data, size_t len,
CRYPTO_BUFFER_POOL *pool);
/* CRYPTO_BUFFER_new_from_CBS acts the same as |CRYPTO_BUFFER_new|. */
// CRYPTO_BUFFER_new_from_CBS acts the same as |CRYPTO_BUFFER_new|.
OPENSSL_EXPORT CRYPTO_BUFFER *CRYPTO_BUFFER_new_from_CBS(
CBS *cbs, CRYPTO_BUFFER_POOL *pool);
/* CRYPTO_BUFFER_free decrements the reference count of |buf|. If there are no
* other references, or if the only remaining reference is from a pool, then
* |buf| will be freed. */
// CRYPTO_BUFFER_free decrements the reference count of |buf|. If there are no
// other references, or if the only remaining reference is from a pool, then
// |buf| will be freed.
OPENSSL_EXPORT void CRYPTO_BUFFER_free(CRYPTO_BUFFER *buf);
/* CRYPTO_BUFFER_up_ref increments the reference count of |buf| and returns
* one. */
// CRYPTO_BUFFER_up_ref increments the reference count of |buf| and returns
// one.
OPENSSL_EXPORT int CRYPTO_BUFFER_up_ref(CRYPTO_BUFFER *buf);
/* CRYPTO_BUFFER_data returns a pointer to the data contained in |buf|. */
// CRYPTO_BUFFER_data returns a pointer to the data contained in |buf|.
OPENSSL_EXPORT const uint8_t *CRYPTO_BUFFER_data(const CRYPTO_BUFFER *buf);
/* CRYPTO_BUFFER_len returns the length, in bytes, of the data contained in
* |buf|. */
// CRYPTO_BUFFER_len returns the length, in bytes, of the data contained in
// |buf|.
OPENSSL_EXPORT size_t CRYPTO_BUFFER_len(const CRYPTO_BUFFER *buf);
/* CRYPTO_BUFFER_init_CBS initialises |out| to point at the data from |buf|. */
// CRYPTO_BUFFER_init_CBS initialises |out| to point at the data from |buf|.
OPENSSL_EXPORT void CRYPTO_BUFFER_init_CBS(const CRYPTO_BUFFER *buf, CBS *out);
#if defined(__cplusplus)
} /* extern C */
} // extern C
extern "C++" {
@ -84,7 +84,7 @@ BORINGSSL_MAKE_DELETER(CRYPTO_BUFFER, CRYPTO_BUFFER_free)
} // namespace bssl
} /* extern C++ */
} // extern C++
#endif

View File

@ -22,83 +22,83 @@ extern "C" {
#endif
/* Random number generation. */
// Random number generation.
/* RAND_bytes writes |len| bytes of random data to |buf| and returns one. */
// RAND_bytes writes |len| bytes of random data to |buf| and returns one.
OPENSSL_EXPORT int RAND_bytes(uint8_t *buf, size_t len);
/* RAND_cleanup frees any resources used by the RNG. This is not safe if other
* threads might still be calling |RAND_bytes|. */
// RAND_cleanup frees any resources used by the RNG. This is not safe if other
// threads might still be calling |RAND_bytes|.
OPENSSL_EXPORT void RAND_cleanup(void);
/* Obscure functions. */
// Obscure functions.
#if !defined(OPENSSL_WINDOWS)
/* RAND_set_urandom_fd causes the module to use a copy of |fd| for system
* randomness rather opening /dev/urandom internally. The caller retains
* ownership of |fd| and is at liberty to close it at any time. This is useful
* if, due to a sandbox, /dev/urandom isn't available. If used, it must be
* called before the first call to |RAND_bytes|, and it is mutually exclusive
* with |RAND_enable_fork_unsafe_buffering|.
*
* |RAND_set_urandom_fd| does not buffer any entropy, so it is safe to call
* |fork| at any time after calling |RAND_set_urandom_fd|. */
// RAND_set_urandom_fd causes the module to use a copy of |fd| for system
// randomness rather opening /dev/urandom internally. The caller retains
// ownership of |fd| and is at liberty to close it at any time. This is useful
// if, due to a sandbox, /dev/urandom isn't available. If used, it must be
// called before the first call to |RAND_bytes|, and it is mutually exclusive
// with |RAND_enable_fork_unsafe_buffering|.
//
// |RAND_set_urandom_fd| does not buffer any entropy, so it is safe to call
// |fork| at any time after calling |RAND_set_urandom_fd|.
OPENSSL_EXPORT void RAND_set_urandom_fd(int fd);
/* RAND_enable_fork_unsafe_buffering enables efficient buffered reading of
* /dev/urandom. It adds an overhead of a few KB of memory per thread. It must
* be called before the first call to |RAND_bytes| and it is mutually exclusive
* with calls to |RAND_set_urandom_fd|.
*
* If |fd| is non-negative then a copy of |fd| will be used rather than opening
* /dev/urandom internally. Like |RAND_set_urandom_fd|, the caller retains
* ownership of |fd|. If |fd| is negative then /dev/urandom will be opened and
* any error from open(2) crashes the address space.
*
* It has an unusual name because the buffer is unsafe across calls to |fork|.
* Hence, this function should never be called by libraries. */
// RAND_enable_fork_unsafe_buffering enables efficient buffered reading of
// /dev/urandom. It adds an overhead of a few KB of memory per thread. It must
// be called before the first call to |RAND_bytes| and it is mutually exclusive
// with calls to |RAND_set_urandom_fd|.
//
// If |fd| is non-negative then a copy of |fd| will be used rather than opening
// /dev/urandom internally. Like |RAND_set_urandom_fd|, the caller retains
// ownership of |fd|. If |fd| is negative then /dev/urandom will be opened and
// any error from open(2) crashes the address space.
//
// It has an unusual name because the buffer is unsafe across calls to |fork|.
// Hence, this function should never be called by libraries.
OPENSSL_EXPORT void RAND_enable_fork_unsafe_buffering(int fd);
#endif
#if defined(BORINGSSL_UNSAFE_DETERMINISTIC_MODE)
/* RAND_reset_for_fuzzing resets the fuzzer-only deterministic RNG. This
* function is only defined in the fuzzer-only build configuration. */
// RAND_reset_for_fuzzing resets the fuzzer-only deterministic RNG. This
// function is only defined in the fuzzer-only build configuration.
OPENSSL_EXPORT void RAND_reset_for_fuzzing(void);
#endif
/* Deprecated functions */
// Deprecated functions
/* RAND_pseudo_bytes is a wrapper around |RAND_bytes|. */
// RAND_pseudo_bytes is a wrapper around |RAND_bytes|.
OPENSSL_EXPORT int RAND_pseudo_bytes(uint8_t *buf, size_t len);
/* RAND_seed reads a single byte of random data to ensure that any file
* descriptors etc are opened. */
// RAND_seed reads a single byte of random data to ensure that any file
// descriptors etc are opened.
OPENSSL_EXPORT void RAND_seed(const void *buf, int num);
/* RAND_load_file returns a nonnegative number. */
// RAND_load_file returns a nonnegative number.
OPENSSL_EXPORT int RAND_load_file(const char *path, long num);
/* RAND_file_name returns NULL. */
// RAND_file_name returns NULL.
OPENSSL_EXPORT const char *RAND_file_name(char *buf, size_t num);
/* RAND_add does nothing. */
// RAND_add does nothing.
OPENSSL_EXPORT void RAND_add(const void *buf, int num, double entropy);
/* RAND_egd returns 255. */
// RAND_egd returns 255.
OPENSSL_EXPORT int RAND_egd(const char *);
/* RAND_poll returns one. */
// RAND_poll returns one.
OPENSSL_EXPORT int RAND_poll(void);
/* RAND_status returns one. */
// RAND_status returns one.
OPENSSL_EXPORT int RAND_status(void);
/* rand_meth_st is typedefed to |RAND_METHOD| in base.h. It isn't used; it
* exists only to be the return type of |RAND_SSLeay|. It's
* external so that variables of this type can be initialized. */
// rand_meth_st is typedefed to |RAND_METHOD| in base.h. It isn't used; it
// exists only to be the return type of |RAND_SSLeay|. It's
// external so that variables of this type can be initialized.
struct rand_meth_st {
void (*seed) (const void *buf, int num);
int (*bytes) (uint8_t *buf, size_t num);
@ -108,18 +108,18 @@ struct rand_meth_st {
int (*status) (void);
};
/* RAND_SSLeay returns a pointer to a dummy |RAND_METHOD|. */
// RAND_SSLeay returns a pointer to a dummy |RAND_METHOD|.
OPENSSL_EXPORT RAND_METHOD *RAND_SSLeay(void);
/* RAND_get_rand_method returns |RAND_SSLeay()|. */
// RAND_get_rand_method returns |RAND_SSLeay()|.
OPENSSL_EXPORT const RAND_METHOD *RAND_get_rand_method(void);
/* RAND_set_rand_method does nothing. */
// RAND_set_rand_method does nothing.
OPENSSL_EXPORT void RAND_set_rand_method(const RAND_METHOD *);
#if defined(__cplusplus)
} /* extern C */
} // extern C
#endif
#endif /* OPENSSL_HEADER_RAND_H */
#endif // OPENSSL_HEADER_RAND_H

View File

@ -64,7 +64,7 @@ extern "C" {
#endif
/* RC4. */
// RC4.
struct rc4_key_st {
@ -72,25 +72,25 @@ struct rc4_key_st {
uint32_t data[256];
} /* RC4_KEY */;
/* RC4_set_key performs an RC4 key schedule and initialises |rc4key| with |len|
* bytes of key material from |key|. */
// RC4_set_key performs an RC4 key schedule and initialises |rc4key| with |len|
// bytes of key material from |key|.
OPENSSL_EXPORT void RC4_set_key(RC4_KEY *rc4key, unsigned len,
const uint8_t *key);
/* RC4 encrypts (or decrypts, it's the same with RC4) |len| bytes from |in| to
* |out|. */
// RC4 encrypts (or decrypts, it's the same with RC4) |len| bytes from |in| to
// |out|.
OPENSSL_EXPORT void RC4(RC4_KEY *key, size_t len, const uint8_t *in,
uint8_t *out);
/* Deprecated functions. */
// Deprecated functions.
/* RC4_options returns the string "rc4(ptr,int)". */
// RC4_options returns the string "rc4(ptr,int)".
OPENSSL_EXPORT const char *RC4_options(void);
#if defined(__cplusplus)
} /* extern C */
} // extern C
#endif
#endif /* OPENSSL_HEADER_RC4_H */
#endif // OPENSSL_HEADER_RC4_H

View File

@ -75,33 +75,33 @@ struct RIPEMD160state_st {
unsigned num;
};
/* RIPEMD160_Init initialises |ctx| and returns one. */
// RIPEMD160_Init initialises |ctx| and returns one.
OPENSSL_EXPORT int RIPEMD160_Init(RIPEMD160_CTX *ctx);
/* RIPEMD160_Update adds |len| bytes from |data| to |ctx| and returns one. */
// RIPEMD160_Update adds |len| bytes from |data| to |ctx| and returns one.
OPENSSL_EXPORT int RIPEMD160_Update(RIPEMD160_CTX *ctx, const void *data,
size_t len);
/* RIPEMD160_Final adds the final padding to |ctx| and writes the resulting
* digest to |md|, which must have at least |RIPEMD160_DIGEST_LENGTH| bytes of
* space. It returns one. */
// RIPEMD160_Final adds the final padding to |ctx| and writes the resulting
// digest to |md|, which must have at least |RIPEMD160_DIGEST_LENGTH| bytes of
// space. It returns one.
OPENSSL_EXPORT int RIPEMD160_Final(uint8_t *md, RIPEMD160_CTX *ctx);
/* RIPEMD160 writes the digest of |len| bytes from |data| to |out| and returns
* |out|. There must be at least |RIPEMD160_DIGEST_LENGTH| bytes of space in
* |out|. */
// RIPEMD160 writes the digest of |len| bytes from |data| to |out| and returns
// |out|. There must be at least |RIPEMD160_DIGEST_LENGTH| bytes of space in
// |out|.
OPENSSL_EXPORT uint8_t *RIPEMD160(const uint8_t *data, size_t len,
uint8_t *out);
/* RIPEMD160_Transform is a low-level function that performs a single,
* RIPEMD160 block transformation using the state from |ctx| and 64 bytes from
* |block|. */
// RIPEMD160_Transform is a low-level function that performs a single,
// RIPEMD160 block transformation using the state from |ctx| and 64 bytes from
// |block|.
OPENSSL_EXPORT void RIPEMD160_Transform(RIPEMD160_CTX *ctx,
const uint8_t *block);
#if defined(__cplusplus)
} /* extern C */
} // extern C
#endif
#endif /* OPENSSL_HEADER_RIPEMD_H */
#endif // OPENSSL_HEADER_RIPEMD_H

View File

@ -68,389 +68,389 @@ extern "C" {
#endif
/* rsa.h contains functions for handling encryption and signature using RSA. */
// rsa.h contains functions for handling encryption and signature using RSA.
/* Allocation and destruction. */
// Allocation and destruction.
/* RSA_new returns a new, empty RSA object or NULL on error. */
// RSA_new returns a new, empty RSA object or NULL on error.
OPENSSL_EXPORT RSA *RSA_new(void);
/* RSA_new_method acts the same as |RSA_new| but takes an explicit |ENGINE|. */
// RSA_new_method acts the same as |RSA_new| but takes an explicit |ENGINE|.
OPENSSL_EXPORT RSA *RSA_new_method(const ENGINE *engine);
/* RSA_free decrements the reference count of |rsa| and frees it if the
* reference count drops to zero. */
// RSA_free decrements the reference count of |rsa| and frees it if the
// reference count drops to zero.
OPENSSL_EXPORT void RSA_free(RSA *rsa);
/* RSA_up_ref increments the reference count of |rsa| and returns one. */
// RSA_up_ref increments the reference count of |rsa| and returns one.
OPENSSL_EXPORT int RSA_up_ref(RSA *rsa);
/* Properties. */
// Properties.
/* RSA_get0_key sets |*out_n|, |*out_e|, and |*out_d|, if non-NULL, to |rsa|'s
* modulus, public exponent, and private exponent, respectively. If |rsa| is a
* public key, the private exponent will be set to NULL. */
// RSA_get0_key sets |*out_n|, |*out_e|, and |*out_d|, if non-NULL, to |rsa|'s
// modulus, public exponent, and private exponent, respectively. If |rsa| is a
// public key, the private exponent will be set to NULL.
OPENSSL_EXPORT void RSA_get0_key(const RSA *rsa, const BIGNUM **out_n,
const BIGNUM **out_e, const BIGNUM **out_d);
/* RSA_get0_factors sets |*out_p| and |*out_q|, if non-NULL, to |rsa|'s prime
* factors. If |rsa| is a public key, they will be set to NULL. */
// RSA_get0_factors sets |*out_p| and |*out_q|, if non-NULL, to |rsa|'s prime
// factors. If |rsa| is a public key, they will be set to NULL.
OPENSSL_EXPORT void RSA_get0_factors(const RSA *rsa, const BIGNUM **out_p,
const BIGNUM **out_q);
/* RSA_get0_crt_params sets |*out_dmp1|, |*out_dmq1|, and |*out_iqmp|, if
* non-NULL, to |rsa|'s CRT parameters. These are d (mod p-1), d (mod q-1) and
* q^-1 (mod p), respectively. If |rsa| is a public key, each parameter will be
* set to NULL. */
// RSA_get0_crt_params sets |*out_dmp1|, |*out_dmq1|, and |*out_iqmp|, if
// non-NULL, to |rsa|'s CRT parameters. These are d (mod p-1), d (mod q-1) and
// q^-1 (mod p), respectively. If |rsa| is a public key, each parameter will be
// set to NULL.
OPENSSL_EXPORT void RSA_get0_crt_params(const RSA *rsa, const BIGNUM **out_dmp1,
const BIGNUM **out_dmq1,
const BIGNUM **out_iqmp);
/* Key generation. */
// Key generation.
/* RSA_generate_key_ex generates a new RSA key where the modulus has size
* |bits| and the public exponent is |e|. If unsure, |RSA_F4| is a good value
* for |e|. If |cb| is not NULL then it is called during the key generation
* process. In addition to the calls documented for |BN_generate_prime_ex|, it
* is called with event=2 when the n'th prime is rejected as unsuitable and
* with event=3 when a suitable value for |p| is found.
*
* It returns one on success or zero on error. */
// RSA_generate_key_ex generates a new RSA key where the modulus has size
// |bits| and the public exponent is |e|. If unsure, |RSA_F4| is a good value
// for |e|. If |cb| is not NULL then it is called during the key generation
// process. In addition to the calls documented for |BN_generate_prime_ex|, it
// is called with event=2 when the n'th prime is rejected as unsuitable and
// with event=3 when a suitable value for |p| is found.
//
// It returns one on success or zero on error.
OPENSSL_EXPORT int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e,
BN_GENCB *cb);
/* RSA_generate_key_fips behaves like |RSA_generate_key_ex| but performs
* additional checks for FIPS compliance. The public exponent is always 65537
* and |bits| must be either 2048 or 3072. */
// RSA_generate_key_fips behaves like |RSA_generate_key_ex| but performs
// additional checks for FIPS compliance. The public exponent is always 65537
// and |bits| must be either 2048 or 3072.
OPENSSL_EXPORT int RSA_generate_key_fips(RSA *rsa, int bits, BN_GENCB *cb);
/* Encryption / Decryption */
// Encryption / Decryption
/* Padding types for encryption. */
// Padding types for encryption.
#define RSA_PKCS1_PADDING 1
#define RSA_NO_PADDING 3
#define RSA_PKCS1_OAEP_PADDING 4
/* RSA_PKCS1_PSS_PADDING can only be used via the EVP interface. */
// RSA_PKCS1_PSS_PADDING can only be used via the EVP interface.
#define RSA_PKCS1_PSS_PADDING 6
/* RSA_encrypt encrypts |in_len| bytes from |in| to the public key from |rsa|
* and writes, at most, |max_out| bytes of encrypted data to |out|. The
* |max_out| argument must be, at least, |RSA_size| in order to ensure success.
*
* It returns 1 on success or zero on error.
*
* The |padding| argument must be one of the |RSA_*_PADDING| values. If in
* doubt, use |RSA_PKCS1_OAEP_PADDING| for new protocols but
* |RSA_PKCS1_PADDING| is most common. */
// RSA_encrypt encrypts |in_len| bytes from |in| to the public key from |rsa|
// and writes, at most, |max_out| bytes of encrypted data to |out|. The
// |max_out| argument must be, at least, |RSA_size| in order to ensure success.
//
// It returns 1 on success or zero on error.
//
// The |padding| argument must be one of the |RSA_*_PADDING| values. If in
// doubt, use |RSA_PKCS1_OAEP_PADDING| for new protocols but
// |RSA_PKCS1_PADDING| is most common.
OPENSSL_EXPORT int RSA_encrypt(RSA *rsa, size_t *out_len, uint8_t *out,
size_t max_out, const uint8_t *in, size_t in_len,
int padding);
/* RSA_decrypt decrypts |in_len| bytes from |in| with the private key from
* |rsa| and writes, at most, |max_out| bytes of plaintext to |out|. The
* |max_out| argument must be, at least, |RSA_size| in order to ensure success.
*
* It returns 1 on success or zero on error.
*
* The |padding| argument must be one of the |RSA_*_PADDING| values. If in
* doubt, use |RSA_PKCS1_OAEP_PADDING| for new protocols.
*
* Passing |RSA_PKCS1_PADDING| into this function is deprecated and insecure. If
* implementing a protocol using RSAES-PKCS1-V1_5, use |RSA_NO_PADDING| and then
* check padding in constant-time combined with a swap to a random session key
* or other mitigation. See "Chosen Ciphertext Attacks Against Protocols Based
* on the RSA Encryption Standard PKCS #1", Daniel Bleichenbacher, Advances in
* Cryptology (Crypto '98). */
// RSA_decrypt decrypts |in_len| bytes from |in| with the private key from
// |rsa| and writes, at most, |max_out| bytes of plaintext to |out|. The
// |max_out| argument must be, at least, |RSA_size| in order to ensure success.
//
// It returns 1 on success or zero on error.
//
// The |padding| argument must be one of the |RSA_*_PADDING| values. If in
// doubt, use |RSA_PKCS1_OAEP_PADDING| for new protocols.
//
// Passing |RSA_PKCS1_PADDING| into this function is deprecated and insecure. If
// implementing a protocol using RSAES-PKCS1-V1_5, use |RSA_NO_PADDING| and then
// check padding in constant-time combined with a swap to a random session key
// or other mitigation. See "Chosen Ciphertext Attacks Against Protocols Based
// on the RSA Encryption Standard PKCS #1", Daniel Bleichenbacher, Advances in
// Cryptology (Crypto '98).
OPENSSL_EXPORT int RSA_decrypt(RSA *rsa, size_t *out_len, uint8_t *out,
size_t max_out, const uint8_t *in, size_t in_len,
int padding);
/* RSA_public_encrypt encrypts |flen| bytes from |from| to the public key in
* |rsa| and writes the encrypted data to |to|. The |to| buffer must have at
* least |RSA_size| bytes of space. It returns the number of bytes written, or
* -1 on error. The |padding| argument must be one of the |RSA_*_PADDING|
* values. If in doubt, use |RSA_PKCS1_OAEP_PADDING| for new protocols but
* |RSA_PKCS1_PADDING| is most common.
*
* WARNING: this function is dangerous because it breaks the usual return value
* convention. Use |RSA_encrypt| instead. */
// RSA_public_encrypt encrypts |flen| bytes from |from| to the public key in
// |rsa| and writes the encrypted data to |to|. The |to| buffer must have at
// least |RSA_size| bytes of space. It returns the number of bytes written, or
// -1 on error. The |padding| argument must be one of the |RSA_*_PADDING|
// values. If in doubt, use |RSA_PKCS1_OAEP_PADDING| for new protocols but
// |RSA_PKCS1_PADDING| is most common.
//
// WARNING: this function is dangerous because it breaks the usual return value
// convention. Use |RSA_encrypt| instead.
OPENSSL_EXPORT int RSA_public_encrypt(size_t flen, const uint8_t *from,
uint8_t *to, RSA *rsa, int padding);
/* RSA_private_decrypt decrypts |flen| bytes from |from| with the public key in
* |rsa| and writes the plaintext to |to|. The |to| buffer must have at least
* |RSA_size| bytes of space. It returns the number of bytes written, or -1 on
* error. The |padding| argument must be one of the |RSA_*_PADDING| values. If
* in doubt, use |RSA_PKCS1_OAEP_PADDING| for new protocols. Passing
* |RSA_PKCS1_PADDING| into this function is deprecated and insecure. See
* |RSA_decrypt|.
*
* WARNING: this function is dangerous because it breaks the usual return value
* convention. Use |RSA_decrypt| instead. */
// RSA_private_decrypt decrypts |flen| bytes from |from| with the public key in
// |rsa| and writes the plaintext to |to|. The |to| buffer must have at least
// |RSA_size| bytes of space. It returns the number of bytes written, or -1 on
// error. The |padding| argument must be one of the |RSA_*_PADDING| values. If
// in doubt, use |RSA_PKCS1_OAEP_PADDING| for new protocols. Passing
// |RSA_PKCS1_PADDING| into this function is deprecated and insecure. See
// |RSA_decrypt|.
//
// WARNING: this function is dangerous because it breaks the usual return value
// convention. Use |RSA_decrypt| instead.
OPENSSL_EXPORT int RSA_private_decrypt(size_t flen, const uint8_t *from,
uint8_t *to, RSA *rsa, int padding);
/* Signing / Verification */
// Signing / Verification
/* RSA_sign signs |in_len| bytes of digest from |in| with |rsa| using
* RSASSA-PKCS1-v1_5. It writes, at most, |RSA_size(rsa)| bytes to |out|. On
* successful return, the actual number of bytes written is written to
* |*out_len|.
*
* The |hash_nid| argument identifies the hash function used to calculate |in|
* and is embedded in the resulting signature. For example, it might be
* |NID_sha256|.
*
* It returns 1 on success and zero on error. */
// RSA_sign signs |in_len| bytes of digest from |in| with |rsa| using
// RSASSA-PKCS1-v1_5. It writes, at most, |RSA_size(rsa)| bytes to |out|. On
// successful return, the actual number of bytes written is written to
// |*out_len|.
//
// The |hash_nid| argument identifies the hash function used to calculate |in|
// and is embedded in the resulting signature. For example, it might be
// |NID_sha256|.
//
// It returns 1 on success and zero on error.
OPENSSL_EXPORT int RSA_sign(int hash_nid, const uint8_t *in,
unsigned int in_len, uint8_t *out,
unsigned int *out_len, RSA *rsa);
/* RSA_sign_pss_mgf1 signs |in_len| bytes from |in| with the public key from
* |rsa| using RSASSA-PSS with MGF1 as the mask generation function. It writes,
* at most, |max_out| bytes of signature data to |out|. The |max_out| argument
* must be, at least, |RSA_size| in order to ensure success. It returns 1 on
* success or zero on error.
*
* The |md| and |mgf1_md| arguments identify the hash used to calculate |msg|
* and the MGF1 hash, respectively. If |mgf1_md| is NULL, |md| is
* used.
*
* |salt_len| specifies the expected salt length in bytes. If |salt_len| is -1,
* then the salt length is the same as the hash length. If -2, then the salt
* length is maximal given the size of |rsa|. If unsure, use -1. */
// RSA_sign_pss_mgf1 signs |in_len| bytes from |in| with the public key from
// |rsa| using RSASSA-PSS with MGF1 as the mask generation function. It writes,
// at most, |max_out| bytes of signature data to |out|. The |max_out| argument
// must be, at least, |RSA_size| in order to ensure success. It returns 1 on
// success or zero on error.
//
// The |md| and |mgf1_md| arguments identify the hash used to calculate |msg|
// and the MGF1 hash, respectively. If |mgf1_md| is NULL, |md| is
// used.
//
// |salt_len| specifies the expected salt length in bytes. If |salt_len| is -1,
// then the salt length is the same as the hash length. If -2, then the salt
// length is maximal given the size of |rsa|. If unsure, use -1.
OPENSSL_EXPORT int RSA_sign_pss_mgf1(RSA *rsa, size_t *out_len, uint8_t *out,
size_t max_out, const uint8_t *in,
size_t in_len, const EVP_MD *md,
const EVP_MD *mgf1_md, int salt_len);
/* RSA_sign_raw signs |in_len| bytes from |in| with the public key from |rsa|
* and writes, at most, |max_out| bytes of signature data to |out|. The
* |max_out| argument must be, at least, |RSA_size| in order to ensure success.
*
* It returns 1 on success or zero on error.
*
* The |padding| argument must be one of the |RSA_*_PADDING| values. If in
* doubt, |RSA_PKCS1_PADDING| is the most common but |RSA_PKCS1_PSS_PADDING|
* (via the |EVP_PKEY| interface) is preferred for new protocols. */
// RSA_sign_raw signs |in_len| bytes from |in| with the public key from |rsa|
// and writes, at most, |max_out| bytes of signature data to |out|. The
// |max_out| argument must be, at least, |RSA_size| in order to ensure success.
//
// It returns 1 on success or zero on error.
//
// The |padding| argument must be one of the |RSA_*_PADDING| values. If in
// doubt, |RSA_PKCS1_PADDING| is the most common but |RSA_PKCS1_PSS_PADDING|
// (via the |EVP_PKEY| interface) is preferred for new protocols.
OPENSSL_EXPORT int RSA_sign_raw(RSA *rsa, size_t *out_len, uint8_t *out,
size_t max_out, const uint8_t *in,
size_t in_len, int padding);
/* RSA_verify verifies that |sig_len| bytes from |sig| are a valid,
* RSASSA-PKCS1-v1_5 signature of |msg_len| bytes at |msg| by |rsa|.
*
* The |hash_nid| argument identifies the hash function used to calculate |msg|
* and is embedded in the resulting signature in order to prevent hash
* confusion attacks. For example, it might be |NID_sha256|.
*
* It returns one if the signature is valid and zero otherwise.
*
* WARNING: this differs from the original, OpenSSL function which additionally
* returned -1 on error. */
// RSA_verify verifies that |sig_len| bytes from |sig| are a valid,
// RSASSA-PKCS1-v1_5 signature of |msg_len| bytes at |msg| by |rsa|.
//
// The |hash_nid| argument identifies the hash function used to calculate |msg|
// and is embedded in the resulting signature in order to prevent hash
// confusion attacks. For example, it might be |NID_sha256|.
//
// It returns one if the signature is valid and zero otherwise.
//
// WARNING: this differs from the original, OpenSSL function which additionally
// returned -1 on error.
OPENSSL_EXPORT int RSA_verify(int hash_nid, const uint8_t *msg, size_t msg_len,
const uint8_t *sig, size_t sig_len, RSA *rsa);
/* RSA_verify_pss_mgf1 verifies that |sig_len| bytes from |sig| are a valid,
* RSASSA-PSS signature of |msg_len| bytes at |msg| by |rsa|. It returns one if
* the signature is valid and zero otherwise. MGF1 is used as the mask
* generation function.
*
* The |md| and |mgf1_md| arguments identify the hash used to calculate |msg|
* and the MGF1 hash, respectively. If |mgf1_md| is NULL, |md| is
* used. |salt_len| specifies the expected salt length in bytes.
*
* If |salt_len| is -1, then the salt length is the same as the hash length. If
* -2, then the salt length is recovered and all values accepted. If unsure, use
* -1. */
// RSA_verify_pss_mgf1 verifies that |sig_len| bytes from |sig| are a valid,
// RSASSA-PSS signature of |msg_len| bytes at |msg| by |rsa|. It returns one if
// the signature is valid and zero otherwise. MGF1 is used as the mask
// generation function.
//
// The |md| and |mgf1_md| arguments identify the hash used to calculate |msg|
// and the MGF1 hash, respectively. If |mgf1_md| is NULL, |md| is
// used. |salt_len| specifies the expected salt length in bytes.
//
// If |salt_len| is -1, then the salt length is the same as the hash length. If
// -2, then the salt length is recovered and all values accepted. If unsure, use
// -1.
OPENSSL_EXPORT int RSA_verify_pss_mgf1(RSA *rsa, const uint8_t *msg,
size_t msg_len, const EVP_MD *md,
const EVP_MD *mgf1_md, int salt_len,
const uint8_t *sig, size_t sig_len);
/* RSA_verify_raw verifies |in_len| bytes of signature from |in| using the
* public key from |rsa| and writes, at most, |max_out| bytes of plaintext to
* |out|. The |max_out| argument must be, at least, |RSA_size| in order to
* ensure success.
*
* It returns 1 on success or zero on error.
*
* The |padding| argument must be one of the |RSA_*_PADDING| values. If in
* doubt, |RSA_PKCS1_PADDING| is the most common but |RSA_PKCS1_PSS_PADDING|
* (via the |EVP_PKEY| interface) is preferred for new protocols. */
// RSA_verify_raw verifies |in_len| bytes of signature from |in| using the
// public key from |rsa| and writes, at most, |max_out| bytes of plaintext to
// |out|. The |max_out| argument must be, at least, |RSA_size| in order to
// ensure success.
//
// It returns 1 on success or zero on error.
//
// The |padding| argument must be one of the |RSA_*_PADDING| values. If in
// doubt, |RSA_PKCS1_PADDING| is the most common but |RSA_PKCS1_PSS_PADDING|
// (via the |EVP_PKEY| interface) is preferred for new protocols.
OPENSSL_EXPORT int RSA_verify_raw(RSA *rsa, size_t *out_len, uint8_t *out,
size_t max_out, const uint8_t *in,
size_t in_len, int padding);
/* RSA_private_encrypt encrypts |flen| bytes from |from| with the private key in
* |rsa| and writes the encrypted data to |to|. The |to| buffer must have at
* least |RSA_size| bytes of space. It returns the number of bytes written, or
* -1 on error. The |padding| argument must be one of the |RSA_*_PADDING|
* values. If in doubt, |RSA_PKCS1_PADDING| is the most common but
* |RSA_PKCS1_PSS_PADDING| (via the |EVP_PKEY| interface) is preferred for new
* protocols.
*
* WARNING: this function is dangerous because it breaks the usual return value
* convention. Use |RSA_sign_raw| instead. */
// RSA_private_encrypt encrypts |flen| bytes from |from| with the private key in
// |rsa| and writes the encrypted data to |to|. The |to| buffer must have at
// least |RSA_size| bytes of space. It returns the number of bytes written, or
// -1 on error. The |padding| argument must be one of the |RSA_*_PADDING|
// values. If in doubt, |RSA_PKCS1_PADDING| is the most common but
// |RSA_PKCS1_PSS_PADDING| (via the |EVP_PKEY| interface) is preferred for new
// protocols.
//
// WARNING: this function is dangerous because it breaks the usual return value
// convention. Use |RSA_sign_raw| instead.
OPENSSL_EXPORT int RSA_private_encrypt(size_t flen, const uint8_t *from,
uint8_t *to, RSA *rsa, int padding);
/* RSA_public_decrypt verifies |flen| bytes of signature from |from| using the
* public key in |rsa| and writes the plaintext to |to|. The |to| buffer must
* have at least |RSA_size| bytes of space. It returns the number of bytes
* written, or -1 on error. The |padding| argument must be one of the
* |RSA_*_PADDING| values. If in doubt, |RSA_PKCS1_PADDING| is the most common
* but |RSA_PKCS1_PSS_PADDING| (via the |EVP_PKEY| interface) is preferred for
* new protocols.
*
* WARNING: this function is dangerous because it breaks the usual return value
* convention. Use |RSA_verify_raw| instead. */
// RSA_public_decrypt verifies |flen| bytes of signature from |from| using the
// public key in |rsa| and writes the plaintext to |to|. The |to| buffer must
// have at least |RSA_size| bytes of space. It returns the number of bytes
// written, or -1 on error. The |padding| argument must be one of the
// |RSA_*_PADDING| values. If in doubt, |RSA_PKCS1_PADDING| is the most common
// but |RSA_PKCS1_PSS_PADDING| (via the |EVP_PKEY| interface) is preferred for
// new protocols.
//
// WARNING: this function is dangerous because it breaks the usual return value
// convention. Use |RSA_verify_raw| instead.
OPENSSL_EXPORT int RSA_public_decrypt(size_t flen, const uint8_t *from,
uint8_t *to, RSA *rsa, int padding);
/* Utility functions. */
// Utility functions.
/* RSA_size returns the number of bytes in the modulus, which is also the size
* of a signature or encrypted value using |rsa|. */
// RSA_size returns the number of bytes in the modulus, which is also the size
// of a signature or encrypted value using |rsa|.
OPENSSL_EXPORT unsigned RSA_size(const RSA *rsa);
/* RSA_is_opaque returns one if |rsa| is opaque and doesn't expose its key
* material. Otherwise it returns zero. */
// RSA_is_opaque returns one if |rsa| is opaque and doesn't expose its key
// material. Otherwise it returns zero.
OPENSSL_EXPORT int RSA_is_opaque(const RSA *rsa);
/* RSAPublicKey_dup allocates a fresh |RSA| and copies the public key from
* |rsa| into it. It returns the fresh |RSA| object, or NULL on error. */
// RSAPublicKey_dup allocates a fresh |RSA| and copies the public key from
// |rsa| into it. It returns the fresh |RSA| object, or NULL on error.
OPENSSL_EXPORT RSA *RSAPublicKey_dup(const RSA *rsa);
/* RSAPrivateKey_dup allocates a fresh |RSA| and copies the private key from
* |rsa| into it. It returns the fresh |RSA| object, or NULL on error. */
// RSAPrivateKey_dup allocates a fresh |RSA| and copies the private key from
// |rsa| into it. It returns the fresh |RSA| object, or NULL on error.
OPENSSL_EXPORT RSA *RSAPrivateKey_dup(const RSA *rsa);
/* RSA_check_key performs basic validity tests on |rsa|. It returns one if
* they pass and zero otherwise. Opaque keys and public keys always pass. If it
* returns zero then a more detailed error is available on the error queue. */
// RSA_check_key performs basic validity tests on |rsa|. It returns one if
// they pass and zero otherwise. Opaque keys and public keys always pass. If it
// returns zero then a more detailed error is available on the error queue.
OPENSSL_EXPORT int RSA_check_key(const RSA *rsa);
/* RSA_check_fips performs public key validity tests on |key|. It returns one
* if they pass and zero otherwise. Opaque keys always fail. */
// RSA_check_fips performs public key validity tests on |key|. It returns one
// if they pass and zero otherwise. Opaque keys always fail.
OPENSSL_EXPORT int RSA_check_fips(RSA *key);
/* RSA_verify_PKCS1_PSS_mgf1 verifies that |EM| is a correct PSS padding of
* |mHash|, where |mHash| is a digest produced by |Hash|. |EM| must point to
* exactly |RSA_size(rsa)| bytes of data. The |mgf1Hash| argument specifies the
* hash function for generating the mask. If NULL, |Hash| is used. The |sLen|
* argument specifies the expected salt length in bytes. If |sLen| is -1 then
* the salt length is the same as the hash length. If -2, then the salt length
* is recovered and all values accepted.
*
* If unsure, use -1.
*
* It returns one on success or zero on error.
*
* This function implements only the low-level padding logic. Use
* |RSA_verify_pss_mgf1| instead. */
// RSA_verify_PKCS1_PSS_mgf1 verifies that |EM| is a correct PSS padding of
// |mHash|, where |mHash| is a digest produced by |Hash|. |EM| must point to
// exactly |RSA_size(rsa)| bytes of data. The |mgf1Hash| argument specifies the
// hash function for generating the mask. If NULL, |Hash| is used. The |sLen|
// argument specifies the expected salt length in bytes. If |sLen| is -1 then
// the salt length is the same as the hash length. If -2, then the salt length
// is recovered and all values accepted.
//
// If unsure, use -1.
//
// It returns one on success or zero on error.
//
// This function implements only the low-level padding logic. Use
// |RSA_verify_pss_mgf1| instead.
OPENSSL_EXPORT int RSA_verify_PKCS1_PSS_mgf1(RSA *rsa, const uint8_t *mHash,
const EVP_MD *Hash,
const EVP_MD *mgf1Hash,
const uint8_t *EM, int sLen);
/* RSA_padding_add_PKCS1_PSS_mgf1 writes a PSS padding of |mHash| to |EM|,
* where |mHash| is a digest produced by |Hash|. |RSA_size(rsa)| bytes of
* output will be written to |EM|. The |mgf1Hash| argument specifies the hash
* function for generating the mask. If NULL, |Hash| is used. The |sLen|
* argument specifies the expected salt length in bytes. If |sLen| is -1 then
* the salt length is the same as the hash length. If -2, then the salt length
* is maximal given the space in |EM|.
*
* It returns one on success or zero on error.
*
* This function implements only the low-level padding logic. Use
* |RSA_sign_pss_mgf1| instead. */
// RSA_padding_add_PKCS1_PSS_mgf1 writes a PSS padding of |mHash| to |EM|,
// where |mHash| is a digest produced by |Hash|. |RSA_size(rsa)| bytes of
// output will be written to |EM|. The |mgf1Hash| argument specifies the hash
// function for generating the mask. If NULL, |Hash| is used. The |sLen|
// argument specifies the expected salt length in bytes. If |sLen| is -1 then
// the salt length is the same as the hash length. If -2, then the salt length
// is maximal given the space in |EM|.
//
// It returns one on success or zero on error.
//
// This function implements only the low-level padding logic. Use
// |RSA_sign_pss_mgf1| instead.
OPENSSL_EXPORT int RSA_padding_add_PKCS1_PSS_mgf1(RSA *rsa, uint8_t *EM,
const uint8_t *mHash,
const EVP_MD *Hash,
const EVP_MD *mgf1Hash,
int sLen);
/* RSA_padding_add_PKCS1_OAEP_mgf1 writes an OAEP padding of |from| to |to|
* with the given parameters and hash functions. If |md| is NULL then SHA-1 is
* used. If |mgf1md| is NULL then the value of |md| is used (which means SHA-1
* if that, in turn, is NULL).
*
* It returns one on success or zero on error. */
// RSA_padding_add_PKCS1_OAEP_mgf1 writes an OAEP padding of |from| to |to|
// with the given parameters and hash functions. If |md| is NULL then SHA-1 is
// used. If |mgf1md| is NULL then the value of |md| is used (which means SHA-1
// if that, in turn, is NULL).
//
// It returns one on success or zero on error.
OPENSSL_EXPORT int RSA_padding_add_PKCS1_OAEP_mgf1(
uint8_t *to, size_t to_len, const uint8_t *from, size_t from_len,
const uint8_t *param, size_t param_len, const EVP_MD *md,
const EVP_MD *mgf1md);
/* RSA_add_pkcs1_prefix builds a version of |msg| prefixed with the DigestInfo
* header for the given hash function and sets |out_msg| to point to it. On
* successful return, |*out_msg| may be allocated memory and, if so,
* |*is_alloced| will be 1. */
// RSA_add_pkcs1_prefix builds a version of |msg| prefixed with the DigestInfo
// header for the given hash function and sets |out_msg| to point to it. On
// successful return, |*out_msg| may be allocated memory and, if so,
// |*is_alloced| will be 1.
OPENSSL_EXPORT int RSA_add_pkcs1_prefix(uint8_t **out_msg, size_t *out_msg_len,
int *is_alloced, int hash_nid,
const uint8_t *msg, size_t msg_len);
/* ASN.1 functions. */
// ASN.1 functions.
/* RSA_parse_public_key parses a DER-encoded RSAPublicKey structure (RFC 3447)
* from |cbs| and advances |cbs|. It returns a newly-allocated |RSA| or NULL on
* error. */
// RSA_parse_public_key parses a DER-encoded RSAPublicKey structure (RFC 3447)
// from |cbs| and advances |cbs|. It returns a newly-allocated |RSA| or NULL on
// error.
OPENSSL_EXPORT RSA *RSA_parse_public_key(CBS *cbs);
/* RSA_parse_public_key_buggy behaves like |RSA_parse_public_key|, but it
* tolerates some invalid encodings. Do not use this function. */
// RSA_parse_public_key_buggy behaves like |RSA_parse_public_key|, but it
// tolerates some invalid encodings. Do not use this function.
OPENSSL_EXPORT RSA *RSA_parse_public_key_buggy(CBS *cbs);
/* RSA_public_key_from_bytes parses |in| as a DER-encoded RSAPublicKey structure
* (RFC 3447). It returns a newly-allocated |RSA| or NULL on error. */
// RSA_public_key_from_bytes parses |in| as a DER-encoded RSAPublicKey structure
// (RFC 3447). It returns a newly-allocated |RSA| or NULL on error.
OPENSSL_EXPORT RSA *RSA_public_key_from_bytes(const uint8_t *in, size_t in_len);
/* RSA_marshal_public_key marshals |rsa| as a DER-encoded RSAPublicKey structure
* (RFC 3447) and appends the result to |cbb|. It returns one on success and
* zero on failure. */
// RSA_marshal_public_key marshals |rsa| as a DER-encoded RSAPublicKey structure
// (RFC 3447) and appends the result to |cbb|. It returns one on success and
// zero on failure.
OPENSSL_EXPORT int RSA_marshal_public_key(CBB *cbb, const RSA *rsa);
/* RSA_public_key_to_bytes marshals |rsa| as a DER-encoded RSAPublicKey
* structure (RFC 3447) and, on success, sets |*out_bytes| to a newly allocated
* buffer containing the result and returns one. Otherwise, it returns zero. The
* result should be freed with |OPENSSL_free|. */
// RSA_public_key_to_bytes marshals |rsa| as a DER-encoded RSAPublicKey
// structure (RFC 3447) and, on success, sets |*out_bytes| to a newly allocated
// buffer containing the result and returns one. Otherwise, it returns zero. The
// result should be freed with |OPENSSL_free|.
OPENSSL_EXPORT int RSA_public_key_to_bytes(uint8_t **out_bytes, size_t *out_len,
const RSA *rsa);
/* RSA_parse_private_key parses a DER-encoded RSAPrivateKey structure (RFC 3447)
* from |cbs| and advances |cbs|. It returns a newly-allocated |RSA| or NULL on
* error. */
// RSA_parse_private_key parses a DER-encoded RSAPrivateKey structure (RFC 3447)
// from |cbs| and advances |cbs|. It returns a newly-allocated |RSA| or NULL on
// error.
OPENSSL_EXPORT RSA *RSA_parse_private_key(CBS *cbs);
/* RSA_private_key_from_bytes parses |in| as a DER-encoded RSAPrivateKey
* structure (RFC 3447). It returns a newly-allocated |RSA| or NULL on error. */
// RSA_private_key_from_bytes parses |in| as a DER-encoded RSAPrivateKey
// structure (RFC 3447). It returns a newly-allocated |RSA| or NULL on error.
OPENSSL_EXPORT RSA *RSA_private_key_from_bytes(const uint8_t *in,
size_t in_len);
/* RSA_marshal_private_key marshals |rsa| as a DER-encoded RSAPrivateKey
* structure (RFC 3447) and appends the result to |cbb|. It returns one on
* success and zero on failure. */
// RSA_marshal_private_key marshals |rsa| as a DER-encoded RSAPrivateKey
// structure (RFC 3447) and appends the result to |cbb|. It returns one on
// success and zero on failure.
OPENSSL_EXPORT int RSA_marshal_private_key(CBB *cbb, const RSA *rsa);
/* RSA_private_key_to_bytes marshals |rsa| as a DER-encoded RSAPrivateKey
* structure (RFC 3447) and, on success, sets |*out_bytes| to a newly allocated
* buffer containing the result and returns one. Otherwise, it returns zero. The
* result should be freed with |OPENSSL_free|. */
// RSA_private_key_to_bytes marshals |rsa| as a DER-encoded RSAPrivateKey
// structure (RFC 3447) and, on success, sets |*out_bytes| to a newly allocated
// buffer containing the result and returns one. Otherwise, it returns zero. The
// result should be freed with |OPENSSL_free|.
OPENSSL_EXPORT int RSA_private_key_to_bytes(uint8_t **out_bytes,
size_t *out_len, const RSA *rsa);
/* ex_data functions.
*
* See |ex_data.h| for details. */
// ex_data functions.
//
// See |ex_data.h| for details.
OPENSSL_EXPORT int RSA_get_ex_new_index(long argl, void *argp,
CRYPTO_EX_unused *unused,
@ -460,102 +460,102 @@ OPENSSL_EXPORT int RSA_set_ex_data(RSA *rsa, int idx, void *arg);
OPENSSL_EXPORT void *RSA_get_ex_data(const RSA *rsa, int idx);
/* Flags. */
// Flags.
/* RSA_FLAG_OPAQUE specifies that this RSA_METHOD does not expose its key
* material. This may be set if, for instance, it is wrapping some other crypto
* API, like a platform key store. */
// RSA_FLAG_OPAQUE specifies that this RSA_METHOD does not expose its key
// material. This may be set if, for instance, it is wrapping some other crypto
// API, like a platform key store.
#define RSA_FLAG_OPAQUE 1
/* Deprecated and ignored. */
// Deprecated and ignored.
#define RSA_FLAG_CACHE_PUBLIC 2
/* Deprecated and ignored. */
// Deprecated and ignored.
#define RSA_FLAG_CACHE_PRIVATE 4
/* RSA_FLAG_NO_BLINDING disables blinding of private operations, which is a
* dangerous thing to do. It is deprecated and should not be used. It will
* be ignored whenever possible.
*
* This flag must be used if a key without the public exponent |e| is used for
* private key operations; avoid using such keys whenever possible. */
// RSA_FLAG_NO_BLINDING disables blinding of private operations, which is a
// dangerous thing to do. It is deprecated and should not be used. It will
// be ignored whenever possible.
//
// This flag must be used if a key without the public exponent |e| is used for
// private key operations; avoid using such keys whenever possible.
#define RSA_FLAG_NO_BLINDING 8
/* RSA_FLAG_EXT_PKEY is deprecated and ignored. */
// RSA_FLAG_EXT_PKEY is deprecated and ignored.
#define RSA_FLAG_EXT_PKEY 0x20
/* RSA_FLAG_SIGN_VER causes the |sign| and |verify| functions of |rsa_meth_st|
* to be called when set. */
// RSA_FLAG_SIGN_VER causes the |sign| and |verify| functions of |rsa_meth_st|
// to be called when set.
#define RSA_FLAG_SIGN_VER 0x40
/* RSA public exponent values. */
// RSA public exponent values.
#define RSA_3 0x3
#define RSA_F4 0x10001
/* Deprecated functions. */
// Deprecated functions.
/* RSA_blinding_on returns one. */
// RSA_blinding_on returns one.
OPENSSL_EXPORT int RSA_blinding_on(RSA *rsa, BN_CTX *ctx);
/* RSA_generate_key behaves like |RSA_generate_key_ex|, which is what you
* should use instead. It returns NULL on error, or a newly-allocated |RSA| on
* success. This function is provided for compatibility only. The |callback|
* and |cb_arg| parameters must be NULL. */
// RSA_generate_key behaves like |RSA_generate_key_ex|, which is what you
// should use instead. It returns NULL on error, or a newly-allocated |RSA| on
// success. This function is provided for compatibility only. The |callback|
// and |cb_arg| parameters must be NULL.
OPENSSL_EXPORT RSA *RSA_generate_key(int bits, unsigned long e, void *callback,
void *cb_arg);
/* d2i_RSAPublicKey parses an ASN.1, DER-encoded, RSA public key from |len|
* bytes at |*inp|. If |out| is not NULL then, on exit, a pointer to the result
* is in |*out|. Note that, even if |*out| is already non-NULL on entry, it
* will not be written to. Rather, a fresh |RSA| is allocated and the previous
* one is freed. On successful exit, |*inp| is advanced past the DER structure.
* It returns the result or NULL on error. */
// d2i_RSAPublicKey parses an ASN.1, DER-encoded, RSA public key from |len|
// bytes at |*inp|. If |out| is not NULL then, on exit, a pointer to the result
// is in |*out|. Note that, even if |*out| is already non-NULL on entry, it
// will not be written to. Rather, a fresh |RSA| is allocated and the previous
// one is freed. On successful exit, |*inp| is advanced past the DER structure.
// It returns the result or NULL on error.
OPENSSL_EXPORT RSA *d2i_RSAPublicKey(RSA **out, const uint8_t **inp, long len);
/* i2d_RSAPublicKey marshals |in| to an ASN.1, DER structure. If |outp| is not
* NULL then the result is written to |*outp| and |*outp| is advanced just past
* the output. It returns the number of bytes in the result, whether written or
* not, or a negative value on error. */
// i2d_RSAPublicKey marshals |in| to an ASN.1, DER structure. If |outp| is not
// NULL then the result is written to |*outp| and |*outp| is advanced just past
// the output. It returns the number of bytes in the result, whether written or
// not, or a negative value on error.
OPENSSL_EXPORT int i2d_RSAPublicKey(const RSA *in, uint8_t **outp);
/* d2i_RSAPrivateKey parses an ASN.1, DER-encoded, RSA private key from |len|
* bytes at |*inp|. If |out| is not NULL then, on exit, a pointer to the result
* is in |*out|. Note that, even if |*out| is already non-NULL on entry, it
* will not be written to. Rather, a fresh |RSA| is allocated and the previous
* one is freed. On successful exit, |*inp| is advanced past the DER structure.
* It returns the result or NULL on error. */
// d2i_RSAPrivateKey parses an ASN.1, DER-encoded, RSA private key from |len|
// bytes at |*inp|. If |out| is not NULL then, on exit, a pointer to the result
// is in |*out|. Note that, even if |*out| is already non-NULL on entry, it
// will not be written to. Rather, a fresh |RSA| is allocated and the previous
// one is freed. On successful exit, |*inp| is advanced past the DER structure.
// It returns the result or NULL on error.
OPENSSL_EXPORT RSA *d2i_RSAPrivateKey(RSA **out, const uint8_t **inp, long len);
/* i2d_RSAPrivateKey marshals |in| to an ASN.1, DER structure. If |outp| is not
* NULL then the result is written to |*outp| and |*outp| is advanced just past
* the output. It returns the number of bytes in the result, whether written or
* not, or a negative value on error. */
// i2d_RSAPrivateKey marshals |in| to an ASN.1, DER structure. If |outp| is not
// NULL then the result is written to |*outp| and |*outp| is advanced just past
// the output. It returns the number of bytes in the result, whether written or
// not, or a negative value on error.
OPENSSL_EXPORT int i2d_RSAPrivateKey(const RSA *in, uint8_t **outp);
/* RSA_padding_add_PKCS1_PSS acts like |RSA_padding_add_PKCS1_PSS_mgf1| but the
* |mgf1Hash| parameter of the latter is implicitly set to |Hash|.
*
* This function implements only the low-level padding logic. Use
* |RSA_sign_pss_mgf1| instead. */
// RSA_padding_add_PKCS1_PSS acts like |RSA_padding_add_PKCS1_PSS_mgf1| but the
// |mgf1Hash| parameter of the latter is implicitly set to |Hash|.
//
// This function implements only the low-level padding logic. Use
// |RSA_sign_pss_mgf1| instead.
OPENSSL_EXPORT int RSA_padding_add_PKCS1_PSS(RSA *rsa, uint8_t *EM,
const uint8_t *mHash,
const EVP_MD *Hash, int sLen);
/* RSA_verify_PKCS1_PSS acts like |RSA_verify_PKCS1_PSS_mgf1| but the
* |mgf1Hash| parameter of the latter is implicitly set to |Hash|.
*
* This function implements only the low-level padding logic. Use
* |RSA_verify_pss_mgf1| instead. */
// RSA_verify_PKCS1_PSS acts like |RSA_verify_PKCS1_PSS_mgf1| but the
// |mgf1Hash| parameter of the latter is implicitly set to |Hash|.
//
// This function implements only the low-level padding logic. Use
// |RSA_verify_pss_mgf1| instead.
OPENSSL_EXPORT int RSA_verify_PKCS1_PSS(RSA *rsa, const uint8_t *mHash,
const EVP_MD *Hash, const uint8_t *EM,
int sLen);
/* RSA_padding_add_PKCS1_OAEP acts like |RSA_padding_add_PKCS1_OAEP_mgf1| but
* the |md| and |mgf1md| parameters of the latter are implicitly set to NULL,
* which means SHA-1. */
// RSA_padding_add_PKCS1_OAEP acts like |RSA_padding_add_PKCS1_OAEP_mgf1| but
// the |md| and |mgf1md| parameters of the latter are implicitly set to NULL,
// which means SHA-1.
OPENSSL_EXPORT int RSA_padding_add_PKCS1_OAEP(uint8_t *to, size_t to_len,
const uint8_t *from,
size_t from_len,
@ -571,37 +571,37 @@ struct rsa_meth_st {
int (*init)(RSA *rsa);
int (*finish)(RSA *rsa);
/* size returns the size of the RSA modulus in bytes. */
// size returns the size of the RSA modulus in bytes.
size_t (*size)(const RSA *rsa);
int (*sign)(int type, const uint8_t *m, unsigned int m_length,
uint8_t *sigret, unsigned int *siglen, const RSA *rsa);
/* Ignored. Set this to NULL.
* TODO(davidben): Remove this when
* https://github.com/google/conscrypt/commit/bb0571e358e95e1c70ac7a6984fc4d7236cac72f
* is in all BoringSSL consumers. */
// Ignored. Set this to NULL.
// TODO(davidben): Remove this when
// https://github.com/google/conscrypt/commit/bb0571e358e95e1c70ac7a6984fc4d7236cac72f
// is in all BoringSSL consumers.
int (*encrypt)(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
const uint8_t *in, size_t in_len, int padding);
/* These functions mirror the |RSA_*| functions of the same name. */
// These functions mirror the |RSA_*| functions of the same name.
int (*sign_raw)(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
const uint8_t *in, size_t in_len, int padding);
int (*decrypt)(RSA *rsa, size_t *out_len, uint8_t *out, size_t max_out,
const uint8_t *in, size_t in_len, int padding);
/* private_transform takes a big-endian integer from |in|, calculates the
* d'th power of it, modulo the RSA modulus and writes the result as a
* big-endian integer to |out|. Both |in| and |out| are |len| bytes long and
* |len| is always equal to |RSA_size(rsa)|. If the result of the transform
* can be represented in fewer than |len| bytes, then |out| must be zero
* padded on the left.
*
* It returns one on success and zero otherwise.
*
* RSA decrypt and sign operations will call this, thus an ENGINE might wish
* to override it in order to avoid having to implement the padding
* functionality demanded by those, higher level, operations. */
// private_transform takes a big-endian integer from |in|, calculates the
// d'th power of it, modulo the RSA modulus and writes the result as a
// big-endian integer to |out|. Both |in| and |out| are |len| bytes long and
// |len| is always equal to |RSA_size(rsa)|. If the result of the transform
// can be represented in fewer than |len| bytes, then |out| must be zero
// padded on the left.
//
// It returns one on success and zero otherwise.
//
// RSA decrypt and sign operations will call this, thus an ENGINE might wish
// to override it in order to avoid having to implement the padding
// functionality demanded by those, higher level, operations.
int (*private_transform)(RSA *rsa, uint8_t *out, const uint8_t *in,
size_t len);
@ -609,7 +609,7 @@ struct rsa_meth_st {
};
/* Private functions. */
// Private functions.
typedef struct bn_blinding_st BN_BLINDING;
@ -625,33 +625,33 @@ struct rsa_st {
BIGNUM *dmq1;
BIGNUM *iqmp;
/* be careful using this if the RSA structure is shared */
// be careful using this if the RSA structure is shared
CRYPTO_EX_DATA ex_data;
CRYPTO_refcount_t references;
int flags;
CRYPTO_MUTEX lock;
/* Used to cache montgomery values. The creation of these values is protected
* by |lock|. */
// Used to cache montgomery values. The creation of these values is protected
// by |lock|.
BN_MONT_CTX *mont_n;
BN_MONT_CTX *mont_p;
BN_MONT_CTX *mont_q;
/* num_blindings contains the size of the |blindings| and |blindings_inuse|
* arrays. This member and the |blindings_inuse| array are protected by
* |lock|. */
// num_blindings contains the size of the |blindings| and |blindings_inuse|
// arrays. This member and the |blindings_inuse| array are protected by
// |lock|.
unsigned num_blindings;
/* blindings is an array of BN_BLINDING structures that can be reserved by a
* thread by locking |lock| and changing the corresponding element in
* |blindings_inuse| from 0 to 1. */
// blindings is an array of BN_BLINDING structures that can be reserved by a
// thread by locking |lock| and changing the corresponding element in
// |blindings_inuse| from 0 to 1.
BN_BLINDING **blindings;
unsigned char *blindings_inuse;
};
#if defined(__cplusplus)
} /* extern C */
} // extern C
extern "C++" {
@ -661,7 +661,7 @@ BORINGSSL_MAKE_DELETER(RSA, RSA_free)
} // namespace bssl
} /* extern C++ */
} // extern C++
#endif
@ -713,4 +713,4 @@ BORINGSSL_MAKE_DELETER(RSA, RSA_free)
#define RSA_R_WRONG_SIGNATURE_LENGTH 145
#define RSA_R_PUBLIC_KEY_VALIDATION_FAILED 146
#endif /* OPENSSL_HEADER_RSA_H */
#endif // OPENSSL_HEADER_RSA_H

View File

@ -64,42 +64,42 @@ extern "C" {
#endif
/* The SHA family of hash functions (SHA-1 and SHA-2). */
// The SHA family of hash functions (SHA-1 and SHA-2).
/* SHA_CBLOCK is the block size of SHA-1. */
// SHA_CBLOCK is the block size of SHA-1.
#define SHA_CBLOCK 64
/* SHA_DIGEST_LENGTH is the length of a SHA-1 digest. */
// SHA_DIGEST_LENGTH is the length of a SHA-1 digest.
#define SHA_DIGEST_LENGTH 20
/* SHA1_Init initialises |sha| and returns one. */
// SHA1_Init initialises |sha| and returns one.
OPENSSL_EXPORT int SHA1_Init(SHA_CTX *sha);
/* SHA1_Update adds |len| bytes from |data| to |sha| and returns one. */
// SHA1_Update adds |len| bytes from |data| to |sha| and returns one.
OPENSSL_EXPORT int SHA1_Update(SHA_CTX *sha, const void *data, size_t len);
/* SHA1_Final adds the final padding to |sha| and writes the resulting digest
* to |md|, which must have at least |SHA_DIGEST_LENGTH| bytes of space. It
* returns one. */
// SHA1_Final adds the final padding to |sha| and writes the resulting digest
// to |md|, which must have at least |SHA_DIGEST_LENGTH| bytes of space. It
// returns one.
OPENSSL_EXPORT int SHA1_Final(uint8_t *md, SHA_CTX *sha);
/* SHA1 writes the digest of |len| bytes from |data| to |out| and returns
* |out|. There must be at least |SHA_DIGEST_LENGTH| bytes of space in
* |out|. */
// SHA1 writes the digest of |len| bytes from |data| to |out| and returns
// |out|. There must be at least |SHA_DIGEST_LENGTH| bytes of space in
// |out|.
OPENSSL_EXPORT uint8_t *SHA1(const uint8_t *data, size_t len, uint8_t *out);
/* SHA1_Transform is a low-level function that performs a single, SHA-1 block
* transformation using the state from |sha| and |SHA_CBLOCK| bytes from
* |block|. */
// SHA1_Transform is a low-level function that performs a single, SHA-1 block
// transformation using the state from |sha| and |SHA_CBLOCK| bytes from
// |block|.
OPENSSL_EXPORT void SHA1_Transform(SHA_CTX *sha, const uint8_t *block);
struct sha_state_st {
#if defined(OPENSSL_WINDOWS)
uint32_t h[5];
#else
/* wpa_supplicant accesses |h0|..|h4| so we must support those names
* for compatibility with it until it can be updated. */
// wpa_supplicant accesses |h0|..|h4| so we must support those names
// for compatibility with it until it can be updated.
union {
uint32_t h[5];
struct {
@ -117,58 +117,58 @@ struct sha_state_st {
};
/* SHA-224. */
// SHA-224.
/* SHA224_CBLOCK is the block size of SHA-224. */
// SHA224_CBLOCK is the block size of SHA-224.
#define SHA224_CBLOCK 64
/* SHA224_DIGEST_LENGTH is the length of a SHA-224 digest. */
// SHA224_DIGEST_LENGTH is the length of a SHA-224 digest.
#define SHA224_DIGEST_LENGTH 28
/* SHA224_Init initialises |sha| and returns 1. */
// SHA224_Init initialises |sha| and returns 1.
OPENSSL_EXPORT int SHA224_Init(SHA256_CTX *sha);
/* SHA224_Update adds |len| bytes from |data| to |sha| and returns 1. */
// SHA224_Update adds |len| bytes from |data| to |sha| and returns 1.
OPENSSL_EXPORT int SHA224_Update(SHA256_CTX *sha, const void *data, size_t len);
/* SHA224_Final adds the final padding to |sha| and writes the resulting digest
* to |md|, which must have at least |SHA224_DIGEST_LENGTH| bytes of space. It
* returns one on success and zero on programmer error. */
// SHA224_Final adds the final padding to |sha| and writes the resulting digest
// to |md|, which must have at least |SHA224_DIGEST_LENGTH| bytes of space. It
// returns one on success and zero on programmer error.
OPENSSL_EXPORT int SHA224_Final(uint8_t *md, SHA256_CTX *sha);
/* SHA224 writes the digest of |len| bytes from |data| to |out| and returns
* |out|. There must be at least |SHA224_DIGEST_LENGTH| bytes of space in
* |out|. */
// SHA224 writes the digest of |len| bytes from |data| to |out| and returns
// |out|. There must be at least |SHA224_DIGEST_LENGTH| bytes of space in
// |out|.
OPENSSL_EXPORT uint8_t *SHA224(const uint8_t *data, size_t len, uint8_t *out);
/* SHA-256. */
// SHA-256.
/* SHA256_CBLOCK is the block size of SHA-256. */
// SHA256_CBLOCK is the block size of SHA-256.
#define SHA256_CBLOCK 64
/* SHA256_DIGEST_LENGTH is the length of a SHA-256 digest. */
// SHA256_DIGEST_LENGTH is the length of a SHA-256 digest.
#define SHA256_DIGEST_LENGTH 32
/* SHA256_Init initialises |sha| and returns 1. */
// SHA256_Init initialises |sha| and returns 1.
OPENSSL_EXPORT int SHA256_Init(SHA256_CTX *sha);
/* SHA256_Update adds |len| bytes from |data| to |sha| and returns 1. */
// SHA256_Update adds |len| bytes from |data| to |sha| and returns 1.
OPENSSL_EXPORT int SHA256_Update(SHA256_CTX *sha, const void *data, size_t len);
/* SHA256_Final adds the final padding to |sha| and writes the resulting digest
* to |md|, which must have at least |SHA256_DIGEST_LENGTH| bytes of space. It
* returns one on success and zero on programmer error. */
// SHA256_Final adds the final padding to |sha| and writes the resulting digest
// to |md|, which must have at least |SHA256_DIGEST_LENGTH| bytes of space. It
// returns one on success and zero on programmer error.
OPENSSL_EXPORT int SHA256_Final(uint8_t *md, SHA256_CTX *sha);
/* SHA256 writes the digest of |len| bytes from |data| to |out| and returns
* |out|. There must be at least |SHA256_DIGEST_LENGTH| bytes of space in
* |out|. */
// SHA256 writes the digest of |len| bytes from |data| to |out| and returns
// |out|. There must be at least |SHA256_DIGEST_LENGTH| bytes of space in
// |out|.
OPENSSL_EXPORT uint8_t *SHA256(const uint8_t *data, size_t len, uint8_t *out);
/* SHA256_Transform is a low-level function that performs a single, SHA-256
* block transformation using the state from |sha| and |SHA256_CBLOCK| bytes
* from |block|. */
// SHA256_Transform is a low-level function that performs a single, SHA-256
// block transformation using the state from |sha| and |SHA256_CBLOCK| bytes
// from |block|.
OPENSSL_EXPORT void SHA256_Transform(SHA256_CTX *sha, const uint8_t *block);
struct sha256_state_st {
@ -179,63 +179,63 @@ struct sha256_state_st {
};
/* SHA-384. */
// SHA-384.
/* SHA384_CBLOCK is the block size of SHA-384. */
// SHA384_CBLOCK is the block size of SHA-384.
#define SHA384_CBLOCK 128
/* SHA384_DIGEST_LENGTH is the length of a SHA-384 digest. */
// SHA384_DIGEST_LENGTH is the length of a SHA-384 digest.
#define SHA384_DIGEST_LENGTH 48
/* SHA384_Init initialises |sha| and returns 1. */
// SHA384_Init initialises |sha| and returns 1.
OPENSSL_EXPORT int SHA384_Init(SHA512_CTX *sha);
/* SHA384_Update adds |len| bytes from |data| to |sha| and returns 1. */
// SHA384_Update adds |len| bytes from |data| to |sha| and returns 1.
OPENSSL_EXPORT int SHA384_Update(SHA512_CTX *sha, const void *data, size_t len);
/* SHA384_Final adds the final padding to |sha| and writes the resulting digest
* to |md|, which must have at least |SHA384_DIGEST_LENGTH| bytes of space. It
* returns one on success and zero on programmer error. */
// SHA384_Final adds the final padding to |sha| and writes the resulting digest
// to |md|, which must have at least |SHA384_DIGEST_LENGTH| bytes of space. It
// returns one on success and zero on programmer error.
OPENSSL_EXPORT int SHA384_Final(uint8_t *md, SHA512_CTX *sha);
/* SHA384 writes the digest of |len| bytes from |data| to |out| and returns
* |out|. There must be at least |SHA384_DIGEST_LENGTH| bytes of space in
* |out|. */
// SHA384 writes the digest of |len| bytes from |data| to |out| and returns
// |out|. There must be at least |SHA384_DIGEST_LENGTH| bytes of space in
// |out|.
OPENSSL_EXPORT uint8_t *SHA384(const uint8_t *data, size_t len, uint8_t *out);
/* SHA384_Transform is a low-level function that performs a single, SHA-384
* block transformation using the state from |sha| and |SHA384_CBLOCK| bytes
* from |block|. */
// SHA384_Transform is a low-level function that performs a single, SHA-384
// block transformation using the state from |sha| and |SHA384_CBLOCK| bytes
// from |block|.
OPENSSL_EXPORT void SHA384_Transform(SHA512_CTX *sha, const uint8_t *block);
/* SHA-512. */
// SHA-512.
/* SHA512_CBLOCK is the block size of SHA-512. */
// SHA512_CBLOCK is the block size of SHA-512.
#define SHA512_CBLOCK 128
/* SHA512_DIGEST_LENGTH is the length of a SHA-512 digest. */
// SHA512_DIGEST_LENGTH is the length of a SHA-512 digest.
#define SHA512_DIGEST_LENGTH 64
/* SHA512_Init initialises |sha| and returns 1. */
// SHA512_Init initialises |sha| and returns 1.
OPENSSL_EXPORT int SHA512_Init(SHA512_CTX *sha);
/* SHA512_Update adds |len| bytes from |data| to |sha| and returns 1. */
// SHA512_Update adds |len| bytes from |data| to |sha| and returns 1.
OPENSSL_EXPORT int SHA512_Update(SHA512_CTX *sha, const void *data, size_t len);
/* SHA512_Final adds the final padding to |sha| and writes the resulting digest
* to |md|, which must have at least |SHA512_DIGEST_LENGTH| bytes of space. It
* returns one on success and zero on programmer error. */
// SHA512_Final adds the final padding to |sha| and writes the resulting digest
// to |md|, which must have at least |SHA512_DIGEST_LENGTH| bytes of space. It
// returns one on success and zero on programmer error.
OPENSSL_EXPORT int SHA512_Final(uint8_t *md, SHA512_CTX *sha);
/* SHA512 writes the digest of |len| bytes from |data| to |out| and returns
* |out|. There must be at least |SHA512_DIGEST_LENGTH| bytes of space in
* |out|. */
// SHA512 writes the digest of |len| bytes from |data| to |out| and returns
// |out|. There must be at least |SHA512_DIGEST_LENGTH| bytes of space in
// |out|.
OPENSSL_EXPORT uint8_t *SHA512(const uint8_t *data, size_t len, uint8_t *out);
/* SHA512_Transform is a low-level function that performs a single, SHA-512
* block transformation using the state from |sha| and |SHA512_CBLOCK| bytes
* from |block|. */
// SHA512_Transform is a low-level function that performs a single, SHA-512
// block transformation using the state from |sha| and |SHA512_CBLOCK| bytes
// from |block|.
OPENSSL_EXPORT void SHA512_Transform(SHA512_CTX *sha, const uint8_t *block);
struct sha512_state_st {
@ -250,7 +250,7 @@ struct sha512_state_st {
#if defined(__cplusplus)
} /* extern C */
} // extern C
#endif
#endif /* OPENSSL_HEADER_SHA_H */
#endif // OPENSSL_HEADER_SHA_H

View File

@ -32,16 +32,16 @@ class Span;
namespace internal {
template <typename T>
class SpanBase {
/* Put comparison operator implementations into a base class with const T, so
* they can be used with any type that implicitly converts into a Span. */
// Put comparison operator implementations into a base class with const T, so
// they can be used with any type that implicitly converts into a Span.
static_assert(std::is_const<T>::value,
"Span<T> must be derived from SpanBase<const T>");
friend bool operator==(Span<T> lhs, Span<T> rhs) {
/* MSVC issues warning C4996 because std::equal is unsafe. The pragma to
* suppress the warning mysteriously has no effect, hence this
* implementation. See
* https://msdn.microsoft.com/en-us/library/aa985974.aspx. */
// MSVC issues warning C4996 because std::equal is unsafe. The pragma to
// suppress the warning mysteriously has no effect, hence this
// implementation. See
// https://msdn.microsoft.com/en-us/library/aa985974.aspx.
if (lhs.size() != rhs.size()) {
return false;
}
@ -58,37 +58,37 @@ class SpanBase {
};
} // namespace internal
/* A Span<T> is a non-owning reference to a contiguous array of objects of type
* |T|. Conceptually, a Span is a simple a pointer to |T| and a count of
* elements accessible via that pointer. The elements referenced by the Span can
* be mutated if |T| is mutable.
*
* A Span can be constructed from container types implementing |data()| and
* |size()| methods. If |T| is constant, construction from a container type is
* implicit. This allows writing methods that accept data from some unspecified
* container type:
*
* // Foo views data referenced by v.
* void Foo(bssl::Span<const uint8_t> v) { ... }
*
* std::vector<uint8_t> vec;
* Foo(vec);
*
* For mutable Spans, conversion is explicit:
*
* // FooMutate mutates data referenced by v.
* void FooMutate(bssl::Span<uint8_t> v) { ... }
*
* FooMutate(bssl::Span<uint8_t>(vec));
*
* You can also use the |MakeSpan| and |MakeConstSpan| factory methods to
* construct Spans in order to deduce the type of the Span automatically.
*
* FooMutate(bssl::MakeSpan(vec));
*
* Note that Spans have value type sematics. They are cheap to construct and
* copy, and should be passed by value whenever a method would otherwise accept
* a reference or pointer to a container or array. */
// A Span<T> is a non-owning reference to a contiguous array of objects of type
// |T|. Conceptually, a Span is a simple a pointer to |T| and a count of
// elements accessible via that pointer. The elements referenced by the Span can
// be mutated if |T| is mutable.
//
// A Span can be constructed from container types implementing |data()| and
// |size()| methods. If |T| is constant, construction from a container type is
// implicit. This allows writing methods that accept data from some unspecified
// container type:
//
// // Foo views data referenced by v.
// void Foo(bssl::Span<const uint8_t> v) { ... }
//
// std::vector<uint8_t> vec;
// Foo(vec);
//
// For mutable Spans, conversion is explicit:
//
// // FooMutate mutates data referenced by v.
// void FooMutate(bssl::Span<uint8_t> v) { ... }
//
// FooMutate(bssl::Span<uint8_t>(vec));
//
// You can also use the |MakeSpan| and |MakeConstSpan| factory methods to
// construct Spans in order to deduce the type of the Span automatically.
//
// FooMutate(bssl::MakeSpan(vec));
//
// Note that Spans have value type sematics. They are cheap to construct and
// copy, and should be passed by value whenever a method would otherwise accept
// a reference or pointer to a container or array.
template <typename T>
class Span : private internal::SpanBase<const T> {
private:
@ -160,4 +160,4 @@ auto MakeConstSpan(const C &c) -> decltype(MakeConstSpan(c.data(), c.size())) {
#endif // !defined(BORINGSSL_NO_CXX)
#endif /* OPENSSL_HEADER_SSL_SPAN_H */
#endif // OPENSSL_HEADER_SSL_SPAN_H

File diff suppressed because it is too large Load Diff

View File

@ -125,14 +125,14 @@ extern "C" {
#endif
/* These are kept to support clients that negotiates higher protocol versions
* using SSLv2 client hello records. */
// These are kept to support clients that negotiates higher protocol versions
// using SSLv2 client hello records.
#define SSL2_MT_CLIENT_HELLO 1
#define SSL2_VERSION 0x0002
/* Signalling cipher suite value from RFC 5746. */
// Signalling cipher suite value from RFC 5746.
#define SSL3_CK_SCSV 0x030000FF
/* Fallback signalling cipher suite value from RFC 7507. */
// Fallback signalling cipher suite value from RFC 7507.
#define SSL3_CK_FALLBACK_SCSV 0x03005600
#define SSL3_CK_RSA_NULL_MD5 0x03000001
@ -208,11 +208,11 @@ extern "C" {
#define SSL3_HM_HEADER_LENGTH 4
#ifndef SSL3_ALIGN_PAYLOAD
/* Some will argue that this increases memory footprint, but it's not actually
* true. Point is that malloc has to return at least 64-bit aligned pointers,
* meaning that allocating 5 bytes wastes 3 bytes in either case. Suggested
* pre-gaping simply moves these wasted bytes from the end of allocated region
* to its front, but makes data payload aligned, which improves performance. */
// Some will argue that this increases memory footprint, but it's not actually
// true. Point is that malloc has to return at least 64-bit aligned pointers,
// meaning that allocating 5 bytes wastes 3 bytes in either case. Suggested
// pre-gaping simply moves these wasted bytes from the end of allocated region
// to its front, but makes data payload aligned, which improves performance.
#define SSL3_ALIGN_PAYLOAD 8
#else
#if (SSL3_ALIGN_PAYLOAD & (SSL3_ALIGN_PAYLOAD - 1)) != 0
@ -221,33 +221,33 @@ extern "C" {
#endif
#endif
/* This is the maximum MAC (digest) size used by the SSL library. Currently
* maximum of 20 is used by SHA1, but we reserve for future extension for
* 512-bit hashes. */
// This is the maximum MAC (digest) size used by the SSL library. Currently
// maximum of 20 is used by SHA1, but we reserve for future extension for
// 512-bit hashes.
#define SSL3_RT_MAX_MD_SIZE 64
/* Maximum block size used in all ciphersuites. Currently 16 for AES. */
// Maximum block size used in all ciphersuites. Currently 16 for AES.
#define SSL_RT_MAX_CIPHER_BLOCK_SIZE 16
/* Maximum plaintext length: defined by SSL/TLS standards */
// Maximum plaintext length: defined by SSL/TLS standards
#define SSL3_RT_MAX_PLAIN_LENGTH 16384
/* Maximum compression overhead: defined by SSL/TLS standards */
// Maximum compression overhead: defined by SSL/TLS standards
#define SSL3_RT_MAX_COMPRESSED_OVERHEAD 1024
/* The standards give a maximum encryption overhead of 1024 bytes. In practice
* the value is lower than this. The overhead is the maximum number of padding
* bytes (256) plus the mac size.
*
* TODO(davidben): This derivation doesn't take AEADs into account, or TLS 1.1
* explicit nonces. It happens to work because |SSL3_RT_MAX_MD_SIZE| is larger
* than necessary and no true AEAD has variable overhead in TLS 1.2. */
// The standards give a maximum encryption overhead of 1024 bytes. In practice
// the value is lower than this. The overhead is the maximum number of padding
// bytes (256) plus the mac size.
//
// TODO(davidben): This derivation doesn't take AEADs into account, or TLS 1.1
// explicit nonces. It happens to work because |SSL3_RT_MAX_MD_SIZE| is larger
// than necessary and no true AEAD has variable overhead in TLS 1.2.
#define SSL3_RT_MAX_ENCRYPTED_OVERHEAD (256 + SSL3_RT_MAX_MD_SIZE)
/* SSL3_RT_SEND_MAX_ENCRYPTED_OVERHEAD is the maximum overhead in encrypting a
* record. This does not include the record header. Some ciphers use explicit
* nonces, so it includes both the AEAD overhead as well as the nonce. */
// SSL3_RT_SEND_MAX_ENCRYPTED_OVERHEAD is the maximum overhead in encrypting a
// record. This does not include the record header. Some ciphers use explicit
// nonces, so it includes both the AEAD overhead as well as the nonce.
#define SSL3_RT_SEND_MAX_ENCRYPTED_OVERHEAD \
(EVP_AEAD_MAX_OVERHEAD + EVP_AEAD_MAX_NONCE_LENGTH)
@ -255,9 +255,9 @@ OPENSSL_COMPILE_ASSERT(
SSL3_RT_MAX_ENCRYPTED_OVERHEAD >= SSL3_RT_SEND_MAX_ENCRYPTED_OVERHEAD,
max_overheads_are_consistent);
/* SSL3_RT_MAX_COMPRESSED_LENGTH is an alias for
* |SSL3_RT_MAX_PLAIN_LENGTH|. Compression is gone, so don't include the
* compression overhead. */
// SSL3_RT_MAX_COMPRESSED_LENGTH is an alias for
// |SSL3_RT_MAX_PLAIN_LENGTH|. Compression is gone, so don't include the
// compression overhead.
#define SSL3_RT_MAX_COMPRESSED_LENGTH SSL3_RT_MAX_PLAIN_LENGTH
#define SSL3_RT_MAX_ENCRYPTED_LENGTH \
@ -274,46 +274,46 @@ OPENSSL_COMPILE_ASSERT(
#define SSL3_RT_APPLICATION_DATA 23
#define SSL3_RT_PLAINTEXT_HANDSHAKE 24
/* Pseudo content type for SSL/TLS header info */
// Pseudo content type for SSL/TLS header info
#define SSL3_RT_HEADER 0x100
#define SSL3_AL_WARNING 1
#define SSL3_AL_FATAL 2
#define SSL3_AD_CLOSE_NOTIFY 0
#define SSL3_AD_UNEXPECTED_MESSAGE 10 /* fatal */
#define SSL3_AD_BAD_RECORD_MAC 20 /* fatal */
#define SSL3_AD_DECOMPRESSION_FAILURE 30 /* fatal */
#define SSL3_AD_HANDSHAKE_FAILURE 40 /* fatal */
#define SSL3_AD_UNEXPECTED_MESSAGE 10 // fatal
#define SSL3_AD_BAD_RECORD_MAC 20 // fatal
#define SSL3_AD_DECOMPRESSION_FAILURE 30 // fatal
#define SSL3_AD_HANDSHAKE_FAILURE 40 // fatal
#define SSL3_AD_NO_CERTIFICATE 41
#define SSL3_AD_BAD_CERTIFICATE 42
#define SSL3_AD_UNSUPPORTED_CERTIFICATE 43
#define SSL3_AD_CERTIFICATE_REVOKED 44
#define SSL3_AD_CERTIFICATE_EXPIRED 45
#define SSL3_AD_CERTIFICATE_UNKNOWN 46
#define SSL3_AD_ILLEGAL_PARAMETER 47 /* fatal */
#define SSL3_AD_INAPPROPRIATE_FALLBACK 86 /* fatal */
#define SSL3_AD_ILLEGAL_PARAMETER 47 // fatal
#define SSL3_AD_INAPPROPRIATE_FALLBACK 86 // fatal
#define SSL3_CT_RSA_SIGN 1
/* SSLv3 */
/* client */
/* extra state */
// SSLv3
// client
// extra state
#define SSL3_ST_CW_FLUSH (0x100 | SSL_ST_CONNECT)
#define SSL3_ST_FALSE_START (0x101 | SSL_ST_CONNECT)
#define SSL3_ST_VERIFY_SERVER_CERT (0x102 | SSL_ST_CONNECT)
#define SSL3_ST_FINISH_CLIENT_HANDSHAKE (0x103 | SSL_ST_CONNECT)
#define SSL3_ST_WRITE_EARLY_DATA (0x104 | SSL_ST_CONNECT)
/* write to server */
// write to server
#define SSL3_ST_CW_CLNT_HELLO_A (0x110 | SSL_ST_CONNECT)
/* read from server */
// read from server
#define SSL3_ST_CR_SRVR_HELLO_A (0x120 | SSL_ST_CONNECT)
#define DTLS1_ST_CR_HELLO_VERIFY_REQUEST_A (0x126 | SSL_ST_CONNECT)
#define SSL3_ST_CR_CERT_A (0x130 | SSL_ST_CONNECT)
#define SSL3_ST_CR_KEY_EXCH_A (0x140 | SSL_ST_CONNECT)
#define SSL3_ST_CR_CERT_REQ_A (0x150 | SSL_ST_CONNECT)
#define SSL3_ST_CR_SRVR_DONE_A (0x160 | SSL_ST_CONNECT)
/* write to server */
// write to server
#define SSL3_ST_CW_CERT_A (0x170 | SSL_ST_CONNECT)
#define SSL3_ST_CW_KEY_EXCH_A (0x180 | SSL_ST_CONNECT)
#define SSL3_ST_CW_CERT_VRFY_A (0x190 | SSL_ST_CONNECT)
@ -321,30 +321,30 @@ OPENSSL_COMPILE_ASSERT(
#define SSL3_ST_CW_NEXT_PROTO_A (0x200 | SSL_ST_CONNECT)
#define SSL3_ST_CW_CHANNEL_ID_A (0x220 | SSL_ST_CONNECT)
#define SSL3_ST_CW_FINISHED_A (0x1B0 | SSL_ST_CONNECT)
/* read from server */
// read from server
#define SSL3_ST_CR_CHANGE (0x1C0 | SSL_ST_CONNECT)
#define SSL3_ST_CR_FINISHED_A (0x1D0 | SSL_ST_CONNECT)
#define SSL3_ST_CR_SESSION_TICKET_A (0x1E0 | SSL_ST_CONNECT)
#define SSL3_ST_CR_CERT_STATUS_A (0x1F0 | SSL_ST_CONNECT)
/* SSL3_ST_CR_SRVR_HELLO_B is a legacy alias for |SSL3_ST_CR_SRVR_HELLO_A| used
* by some consumers which check |SSL_state|. */
// SSL3_ST_CR_SRVR_HELLO_B is a legacy alias for |SSL3_ST_CR_SRVR_HELLO_A| used
// by some consumers which check |SSL_state|.
#define SSL3_ST_CR_SRVR_HELLO_B SSL3_ST_CR_SRVR_HELLO_A
/* server */
/* extra state */
// server
// extra state
#define SSL3_ST_SW_FLUSH (0x100 | SSL_ST_ACCEPT)
#define SSL3_ST_VERIFY_CLIENT_CERT (0x101 | SSL_ST_ACCEPT)
/* read from client */
// read from client
#define SSL3_ST_SR_CLNT_HELLO_A (0x110 | SSL_ST_ACCEPT)
#define SSL3_ST_SR_CLNT_HELLO_B (0x111 | SSL_ST_ACCEPT)
#define SSL3_ST_SR_CLNT_HELLO_C (0x112 | SSL_ST_ACCEPT)
/* write to client */
// write to client
#define SSL3_ST_SW_SRVR_HELLO_A (0x130 | SSL_ST_ACCEPT)
#define SSL3_ST_SW_CERT_A (0x140 | SSL_ST_ACCEPT)
#define SSL3_ST_SW_KEY_EXCH_A (0x150 | SSL_ST_ACCEPT)
#define SSL3_ST_SW_SRVR_DONE_A (0x170 | SSL_ST_ACCEPT)
/* read from client */
// read from client
#define SSL3_ST_SR_CERT_A (0x180 | SSL_ST_ACCEPT)
#define SSL3_ST_SR_KEY_EXCH_A (0x190 | SSL_ST_ACCEPT)
#define SSL3_ST_SR_CERT_VRFY_A (0x1A0 | SSL_ST_ACCEPT)
@ -353,7 +353,7 @@ OPENSSL_COMPILE_ASSERT(
#define SSL3_ST_SR_CHANNEL_ID_A (0x230 | SSL_ST_ACCEPT)
#define SSL3_ST_SR_FINISHED_A (0x1C0 | SSL_ST_ACCEPT)
/* write to client */
// write to client
#define SSL3_ST_SW_FINISHED_A (0x1E0 | SSL_ST_ACCEPT)
#define SSL3_MT_HELLO_REQUEST 0
@ -376,15 +376,15 @@ OPENSSL_COMPILE_ASSERT(
#define SSL3_MT_CHANNEL_ID 203
#define DTLS1_MT_HELLO_VERIFY_REQUEST 3
/* The following are legacy aliases for consumers which use
* |SSL_CTX_set_msg_callback|. */
// The following are legacy aliases for consumers which use
// |SSL_CTX_set_msg_callback|.
#define SSL3_MT_SERVER_DONE SSL3_MT_SERVER_HELLO_DONE
#define SSL3_MT_NEWSESSION_TICKET SSL3_MT_NEW_SESSION_TICKET
#define SSL3_MT_CCS 1
/* These are used when changing over to a new cipher */
// These are used when changing over to a new cipher
#define SSL3_CC_READ 0x01
#define SSL3_CC_WRITE 0x02
#define SSL3_CC_CLIENT 0x10
@ -396,7 +396,7 @@ OPENSSL_COMPILE_ASSERT(
#ifdef __cplusplus
} /* extern C */
} // extern C
#endif
#endif /* OPENSSL_HEADER_SSL3_H */
#endif // OPENSSL_HEADER_SSL3_H

View File

@ -66,45 +66,45 @@ extern "C" {
#endif
/* A stack, in OpenSSL, is an array of pointers. They are the most commonly
* used collection object.
*
* This file defines macros for type safe use of the stack functions. A stack
* of a specific type of object has type |STACK_OF(type)|. This can be defined
* (once) with |DEFINE_STACK_OF(type)| and declared where needed with
* |DECLARE_STACK_OF(type)|. For example:
*
* typedef struct foo_st {
* int bar;
* } FOO;
*
* DEFINE_STACK_OF(FOO);
*
* Although note that the stack will contain /pointers/ to |FOO|.
*
* A macro will be defined for each of the sk_* functions below. For
* STACK_OF(FOO), the macros would be sk_FOO_new, sk_FOO_pop etc. */
// A stack, in OpenSSL, is an array of pointers. They are the most commonly
// used collection object.
//
// This file defines macros for type safe use of the stack functions. A stack
// of a specific type of object has type |STACK_OF(type)|. This can be defined
// (once) with |DEFINE_STACK_OF(type)| and declared where needed with
// |DECLARE_STACK_OF(type)|. For example:
//
// typedef struct foo_st {
// int bar;
// } FOO;
//
// DEFINE_STACK_OF(FOO);
//
// Although note that the stack will contain /pointers/ to |FOO|.
//
// A macro will be defined for each of the sk_* functions below. For
// STACK_OF(FOO), the macros would be sk_FOO_new, sk_FOO_pop etc.
/* stack_cmp_func is a comparison function that returns a value < 0, 0 or > 0
* if |*a| is less than, equal to or greater than |*b|, respectively. Note the
* extra indirection - the function is given a pointer to a pointer to the
* element. This differs from the usual qsort/bsearch comparison function. */
// stack_cmp_func is a comparison function that returns a value < 0, 0 or > 0
// if |*a| is less than, equal to or greater than |*b|, respectively. Note the
// extra indirection - the function is given a pointer to a pointer to the
// element. This differs from the usual qsort/bsearch comparison function.
typedef int (*stack_cmp_func)(const void **a, const void **b);
/* stack_st contains an array of pointers. It is not designed to be used
* directly, rather the wrapper macros should be used. */
// stack_st contains an array of pointers. It is not designed to be used
// directly, rather the wrapper macros should be used.
typedef struct stack_st {
/* num contains the number of valid pointers in |data|. */
// num contains the number of valid pointers in |data|.
size_t num;
void **data;
/* sorted is non-zero if the values pointed to by |data| are in ascending
* order, based on |comp|. */
// sorted is non-zero if the values pointed to by |data| are in ascending
// order, based on |comp|.
int sorted;
/* num_alloc contains the number of pointers allocated in the buffer pointed
* to by |data|, which may be larger than |num|. */
// num_alloc contains the number of pointers allocated in the buffer pointed
// to by |data|, which may be larger than |num|.
size_t num_alloc;
/* comp is an optional comparison function. */
// comp is an optional comparison function.
stack_cmp_func comp;
} _STACK;
@ -113,104 +113,104 @@ typedef struct stack_st {
#define DECLARE_STACK_OF(type) STACK_OF(type);
/* These are the raw stack functions, you shouldn't be using them. Rather you
* should be using the type stack macros implemented above. */
// These are the raw stack functions, you shouldn't be using them. Rather you
// should be using the type stack macros implemented above.
/* sk_new creates a new, empty stack with the given comparison function, which
* may be zero. It returns the new stack or NULL on allocation failure. */
// sk_new creates a new, empty stack with the given comparison function, which
// may be zero. It returns the new stack or NULL on allocation failure.
OPENSSL_EXPORT _STACK *sk_new(stack_cmp_func comp);
/* sk_new_null creates a new, empty stack. It returns the new stack or NULL on
* allocation failure. */
// sk_new_null creates a new, empty stack. It returns the new stack or NULL on
// allocation failure.
OPENSSL_EXPORT _STACK *sk_new_null(void);
/* sk_num returns the number of elements in |s|. */
// sk_num returns the number of elements in |s|.
OPENSSL_EXPORT size_t sk_num(const _STACK *sk);
/* sk_zero resets |sk| to the empty state but does nothing to free the
* individual elements themselves. */
// sk_zero resets |sk| to the empty state but does nothing to free the
// individual elements themselves.
OPENSSL_EXPORT void sk_zero(_STACK *sk);
/* sk_value returns the |i|th pointer in |sk|, or NULL if |i| is out of
* range. */
// sk_value returns the |i|th pointer in |sk|, or NULL if |i| is out of
// range.
OPENSSL_EXPORT void *sk_value(const _STACK *sk, size_t i);
/* sk_set sets the |i|th pointer in |sk| to |p| and returns |p|. If |i| is out
* of range, it returns NULL. */
// sk_set sets the |i|th pointer in |sk| to |p| and returns |p|. If |i| is out
// of range, it returns NULL.
OPENSSL_EXPORT void *sk_set(_STACK *sk, size_t i, void *p);
/* sk_free frees the given stack and array of pointers, but does nothing to
* free the individual elements. Also see |sk_pop_free|. */
// sk_free frees the given stack and array of pointers, but does nothing to
// free the individual elements. Also see |sk_pop_free|.
OPENSSL_EXPORT void sk_free(_STACK *sk);
/* sk_pop_free calls |free_func| on each element in the stack and then frees
* the stack itself. */
// sk_pop_free calls |free_func| on each element in the stack and then frees
// the stack itself.
OPENSSL_EXPORT void sk_pop_free(_STACK *sk, void (*free_func)(void *));
/* sk_insert inserts |p| into the stack at index |where|, moving existing
* elements if needed. It returns the length of the new stack, or zero on
* error. */
// sk_insert inserts |p| into the stack at index |where|, moving existing
// elements if needed. It returns the length of the new stack, or zero on
// error.
OPENSSL_EXPORT size_t sk_insert(_STACK *sk, void *p, size_t where);
/* sk_delete removes the pointer at index |where|, moving other elements down
* if needed. It returns the removed pointer, or NULL if |where| is out of
* range. */
// sk_delete removes the pointer at index |where|, moving other elements down
// if needed. It returns the removed pointer, or NULL if |where| is out of
// range.
OPENSSL_EXPORT void *sk_delete(_STACK *sk, size_t where);
/* sk_delete_ptr removes, at most, one instance of |p| from the stack based on
* pointer equality. If an instance of |p| is found then |p| is returned,
* otherwise it returns NULL. */
// sk_delete_ptr removes, at most, one instance of |p| from the stack based on
// pointer equality. If an instance of |p| is found then |p| is returned,
// otherwise it returns NULL.
OPENSSL_EXPORT void *sk_delete_ptr(_STACK *sk, void *p);
/* sk_find returns the first value in the stack equal to |p|. If a comparison
* function has been set on the stack, then equality is defined by it and the
* stack will be sorted if need be so that a binary search can be used.
* Otherwise pointer equality is used. If a matching element is found, its
* index is written to |*out_index| (if |out_index| is not NULL) and one is
* returned. Otherwise zero is returned. */
// sk_find returns the first value in the stack equal to |p|. If a comparison
// function has been set on the stack, then equality is defined by it and the
// stack will be sorted if need be so that a binary search can be used.
// Otherwise pointer equality is used. If a matching element is found, its
// index is written to |*out_index| (if |out_index| is not NULL) and one is
// returned. Otherwise zero is returned.
OPENSSL_EXPORT int sk_find(_STACK *sk, size_t *out_index, void *p);
/* sk_shift removes and returns the first element in the stack, or returns NULL
* if the stack is empty. */
// sk_shift removes and returns the first element in the stack, or returns NULL
// if the stack is empty.
OPENSSL_EXPORT void *sk_shift(_STACK *sk);
/* sk_push appends |p| to the stack and returns the length of the new stack, or
* 0 on allocation failure. */
// sk_push appends |p| to the stack and returns the length of the new stack, or
// 0 on allocation failure.
OPENSSL_EXPORT size_t sk_push(_STACK *sk, void *p);
/* sk_pop returns and removes the last element on the stack, or NULL if the
* stack is empty. */
// sk_pop returns and removes the last element on the stack, or NULL if the
// stack is empty.
OPENSSL_EXPORT void *sk_pop(_STACK *sk);
/* sk_dup performs a shallow copy of a stack and returns the new stack, or NULL
* on error. */
// sk_dup performs a shallow copy of a stack and returns the new stack, or NULL
// on error.
OPENSSL_EXPORT _STACK *sk_dup(const _STACK *sk);
/* sk_sort sorts the elements of |sk| into ascending order based on the
* comparison function. The stack maintains a |sorted| flag and sorting an
* already sorted stack is a no-op. */
// sk_sort sorts the elements of |sk| into ascending order based on the
// comparison function. The stack maintains a |sorted| flag and sorting an
// already sorted stack is a no-op.
OPENSSL_EXPORT void sk_sort(_STACK *sk);
/* sk_is_sorted returns one if |sk| is known to be sorted and zero
* otherwise. */
// sk_is_sorted returns one if |sk| is known to be sorted and zero
// otherwise.
OPENSSL_EXPORT int sk_is_sorted(const _STACK *sk);
/* sk_set_cmp_func sets the comparison function to be used by |sk| and returns
* the previous one. */
// sk_set_cmp_func sets the comparison function to be used by |sk| and returns
// the previous one.
OPENSSL_EXPORT stack_cmp_func sk_set_cmp_func(_STACK *sk, stack_cmp_func comp);
/* sk_deep_copy performs a copy of |sk| and of each of the non-NULL elements in
* |sk| by using |copy_func|. If an error occurs, |free_func| is used to free
* any copies already made and NULL is returned. */
// sk_deep_copy performs a copy of |sk| and of each of the non-NULL elements in
// |sk| by using |copy_func|. If an error occurs, |free_func| is used to free
// any copies already made and NULL is returned.
OPENSSL_EXPORT _STACK *sk_deep_copy(const _STACK *sk,
void *(*copy_func)(void *),
void (*free_func)(void *));
/* Defining stack types.
*
* This set of macros is used to emit the typed functions that act on a
* |STACK_OF(T)|. */
// Defining stack types.
//
// This set of macros is used to emit the typed functions that act on a
// |STACK_OF(T)|.
#if !defined(BORINGSSL_NO_CXX)
extern "C++" {
@ -240,9 +240,9 @@ struct StackTraits {};
#define BORINGSSL_DEFINE_STACK_TRAITS(name, type, is_const)
#endif
/* Stack functions must be tagged unused to support file-local stack types.
* Clang's -Wunused-function only allows unused static inline functions if they
* are defined in a header. */
// Stack functions must be tagged unused to support file-local stack types.
// Clang's -Wunused-function only allows unused static inline functions if they
// are defined in a header.
#define BORINGSSL_DEFINE_STACK_OF_IMPL(name, ptrtype, constptrtype) \
DECLARE_STACK_OF(name); \
@ -349,20 +349,20 @@ struct StackTraits {};
(void (*)(void *))free_func); \
}
/* DEFINE_STACK_OF defines |STACK_OF(type)| to be a stack whose elements are
* |type| *. */
// DEFINE_STACK_OF defines |STACK_OF(type)| to be a stack whose elements are
// |type| *.
#define DEFINE_STACK_OF(type) \
BORINGSSL_DEFINE_STACK_OF_IMPL(type, type *, const type *) \
BORINGSSL_DEFINE_STACK_TRAITS(type, type, false)
/* DEFINE_CONST_STACK_OF defines |STACK_OF(type)| to be a stack whose elements
* are const |type| *. */
// DEFINE_CONST_STACK_OF defines |STACK_OF(type)| to be a stack whose elements
// are const |type| *.
#define DEFINE_CONST_STACK_OF(type) \
BORINGSSL_DEFINE_STACK_OF_IMPL(type, const type *, const type *) \
BORINGSSL_DEFINE_STACK_TRAITS(type, const type, true)
/* DEFINE_SPECIAL_STACK_OF defines |STACK_OF(type)| to be a stack whose elements
* are |type|, where |type| must be a typedef for a pointer. */
// DEFINE_SPECIAL_STACK_OF defines |STACK_OF(type)| to be a stack whose elements
// are |type|, where |type| must be a typedef for a pointer.
#define DEFINE_SPECIAL_STACK_OF(type) \
OPENSSL_COMPILE_ASSERT(sizeof(type) == sizeof(void *), \
special_stack_of_non_pointer_##type); \
@ -376,7 +376,7 @@ DEFINE_SPECIAL_STACK_OF(OPENSSL_STRING)
#if defined(__cplusplus)
} /* extern C */
} // extern C
#endif
#if !defined(BORINGSSL_NO_CXX)
@ -482,4 +482,4 @@ static inline bssl::internal::StackIterator<Stack> end(const Stack *sk) {
} // extern C++
#endif
#endif /* OPENSSL_HEADER_STACK_H */
#endif // OPENSSL_HEADER_STACK_H

View File

@ -68,88 +68,88 @@ extern "C" {
#if defined(OPENSSL_NO_THREADS)
typedef struct crypto_mutex_st {
char padding; /* Empty structs have different sizes in C and C++. */
char padding; // Empty structs have different sizes in C and C++.
} CRYPTO_MUTEX;
#elif defined(OPENSSL_WINDOWS)
/* CRYPTO_MUTEX can appear in public header files so we really don't want to
* pull in windows.h. It's statically asserted that this structure is large
* enough to contain a Windows SRWLOCK by thread_win.c. */
// CRYPTO_MUTEX can appear in public header files so we really don't want to
// pull in windows.h. It's statically asserted that this structure is large
// enough to contain a Windows SRWLOCK by thread_win.c.
typedef union crypto_mutex_st {
void *handle;
} CRYPTO_MUTEX;
#elif defined(__MACH__) && defined(__APPLE__)
typedef pthread_rwlock_t CRYPTO_MUTEX;
#else
/* It is reasonable to include pthread.h on non-Windows systems, however the
* |pthread_rwlock_t| that we need is hidden under feature flags, and we can't
* ensure that we'll be able to get it. It's statically asserted that this
* structure is large enough to contain a |pthread_rwlock_t| by
* thread_pthread.c. */
// It is reasonable to include pthread.h on non-Windows systems, however the
// |pthread_rwlock_t| that we need is hidden under feature flags, and we can't
// ensure that we'll be able to get it. It's statically asserted that this
// structure is large enough to contain a |pthread_rwlock_t| by
// thread_pthread.c.
typedef union crypto_mutex_st {
double alignment;
uint8_t padding[3*sizeof(int) + 5*sizeof(unsigned) + 16 + 8];
} CRYPTO_MUTEX;
#endif
/* CRYPTO_refcount_t is the type of a reference count.
*
* Since some platforms use C11 atomics to access this, it should have the
* _Atomic qualifier. However, this header is included by C++ programs as well
* as C code that might not set -std=c11. So, in practice, it's not possible to
* do that. Instead we statically assert that the size and native alignment of
* a plain uint32_t and an _Atomic uint32_t are equal in refcount_c11.c. */
// CRYPTO_refcount_t is the type of a reference count.
//
// Since some platforms use C11 atomics to access this, it should have the
// _Atomic qualifier. However, this header is included by C++ programs as well
// as C code that might not set -std=c11. So, in practice, it's not possible to
// do that. Instead we statically assert that the size and native alignment of
// a plain uint32_t and an _Atomic uint32_t are equal in refcount_c11.c.
typedef uint32_t CRYPTO_refcount_t;
/* Deprecated functions.
*
* Historically, OpenSSL required callers to provide locking callbacks.
* BoringSSL is thread-safe by default, but some old code calls these functions
* and so no-op implementations are provided. */
// Deprecated functions.
//
// Historically, OpenSSL required callers to provide locking callbacks.
// BoringSSL is thread-safe by default, but some old code calls these functions
// and so no-op implementations are provided.
/* These defines do nothing but are provided to make old code easier to
* compile. */
// These defines do nothing but are provided to make old code easier to
// compile.
#define CRYPTO_LOCK 1
#define CRYPTO_UNLOCK 2
#define CRYPTO_READ 4
#define CRYPTO_WRITE 8
/* CRYPTO_num_locks returns one. (This is non-zero that callers who allocate
* sizeof(lock) times this value don't get zero and then fail because malloc(0)
* returned NULL.) */
// CRYPTO_num_locks returns one. (This is non-zero that callers who allocate
// sizeof(lock) times this value don't get zero and then fail because malloc(0)
// returned NULL.)
OPENSSL_EXPORT int CRYPTO_num_locks(void);
/* CRYPTO_set_locking_callback does nothing. */
// CRYPTO_set_locking_callback does nothing.
OPENSSL_EXPORT void CRYPTO_set_locking_callback(
void (*func)(int mode, int lock_num, const char *file, int line));
/* CRYPTO_set_add_lock_callback does nothing. */
// CRYPTO_set_add_lock_callback does nothing.
OPENSSL_EXPORT void CRYPTO_set_add_lock_callback(int (*func)(
int *num, int amount, int lock_num, const char *file, int line));
/* CRYPTO_get_locking_callback returns NULL. */
// CRYPTO_get_locking_callback returns NULL.
OPENSSL_EXPORT void (*CRYPTO_get_locking_callback(void))(int mode, int lock_num,
const char *file,
int line);
/* CRYPTO_get_lock_name returns a fixed, dummy string. */
// CRYPTO_get_lock_name returns a fixed, dummy string.
OPENSSL_EXPORT const char *CRYPTO_get_lock_name(int lock_num);
/* CRYPTO_THREADID_set_callback returns one. */
// CRYPTO_THREADID_set_callback returns one.
OPENSSL_EXPORT int CRYPTO_THREADID_set_callback(
void (*threadid_func)(CRYPTO_THREADID *threadid));
/* CRYPTO_THREADID_set_numeric does nothing. */
// CRYPTO_THREADID_set_numeric does nothing.
OPENSSL_EXPORT void CRYPTO_THREADID_set_numeric(CRYPTO_THREADID *id,
unsigned long val);
/* CRYPTO_THREADID_set_pointer does nothing. */
// CRYPTO_THREADID_set_pointer does nothing.
OPENSSL_EXPORT void CRYPTO_THREADID_set_pointer(CRYPTO_THREADID *id, void *ptr);
/* CRYPTO_THREADID_current does nothing. */
// CRYPTO_THREADID_current does nothing.
OPENSSL_EXPORT void CRYPTO_THREADID_current(CRYPTO_THREADID *id);
/* CRYPTO_set_id_callback does nothing. */
// CRYPTO_set_id_callback does nothing.
OPENSSL_EXPORT void CRYPTO_set_id_callback(unsigned long (*func)(void));
typedef struct {
@ -157,35 +157,35 @@ typedef struct {
struct CRYPTO_dynlock_value *data;
} CRYPTO_dynlock;
/* CRYPTO_set_dynlock_create_callback does nothing. */
// CRYPTO_set_dynlock_create_callback does nothing.
OPENSSL_EXPORT void CRYPTO_set_dynlock_create_callback(
struct CRYPTO_dynlock_value *(*dyn_create_function)(const char *file,
int line));
/* CRYPTO_set_dynlock_lock_callback does nothing. */
// CRYPTO_set_dynlock_lock_callback does nothing.
OPENSSL_EXPORT void CRYPTO_set_dynlock_lock_callback(void (*dyn_lock_function)(
int mode, struct CRYPTO_dynlock_value *l, const char *file, int line));
/* CRYPTO_set_dynlock_destroy_callback does nothing. */
// CRYPTO_set_dynlock_destroy_callback does nothing.
OPENSSL_EXPORT void CRYPTO_set_dynlock_destroy_callback(
void (*dyn_destroy_function)(struct CRYPTO_dynlock_value *l,
const char *file, int line));
/* CRYPTO_get_dynlock_create_callback returns NULL. */
// CRYPTO_get_dynlock_create_callback returns NULL.
OPENSSL_EXPORT struct CRYPTO_dynlock_value *(
*CRYPTO_get_dynlock_create_callback(void))(const char *file, int line);
/* CRYPTO_get_dynlock_lock_callback returns NULL. */
// CRYPTO_get_dynlock_lock_callback returns NULL.
OPENSSL_EXPORT void (*CRYPTO_get_dynlock_lock_callback(void))(
int mode, struct CRYPTO_dynlock_value *l, const char *file, int line);
/* CRYPTO_get_dynlock_destroy_callback returns NULL. */
// CRYPTO_get_dynlock_destroy_callback returns NULL.
OPENSSL_EXPORT void (*CRYPTO_get_dynlock_destroy_callback(void))(
struct CRYPTO_dynlock_value *l, const char *file, int line);
#if defined(__cplusplus)
} /* extern C */
} // extern C
#endif
#endif /* OPENSSL_HEADER_THREAD_H */
#endif // OPENSSL_HEADER_THREAD_H

View File

@ -171,7 +171,7 @@ extern "C" {
#define TLS1_AD_USER_CANCELLED 90
#define TLS1_AD_NO_RENEGOTIATION 100
#define TLS1_AD_MISSING_EXTENSION 109
/* codes 110-114 are from RFC3546 */
// codes 110-114 are from RFC3546
#define TLS1_AD_UNSUPPORTED_EXTENSION 110
#define TLS1_AD_CERTIFICATE_UNOBTAINABLE 111
#define TLS1_AD_UNRECOGNIZED_NAME 112
@ -180,32 +180,32 @@ extern "C" {
#define TLS1_AD_UNKNOWN_PSK_IDENTITY 115
#define TLS1_AD_CERTIFICATE_REQUIRED 116
/* ExtensionType values from RFC6066 */
// ExtensionType values from RFC6066
#define TLSEXT_TYPE_server_name 0
#define TLSEXT_TYPE_status_request 5
/* ExtensionType values from RFC4492 */
// ExtensionType values from RFC4492
#define TLSEXT_TYPE_ec_point_formats 11
/* ExtensionType values from RFC5246 */
// ExtensionType values from RFC5246
#define TLSEXT_TYPE_signature_algorithms 13
/* ExtensionType value from RFC5764 */
// ExtensionType value from RFC5764
#define TLSEXT_TYPE_srtp 14
/* ExtensionType value from RFC7301 */
// ExtensionType value from RFC7301
#define TLSEXT_TYPE_application_layer_protocol_negotiation 16
/* ExtensionType value from RFC7685 */
// ExtensionType value from RFC7685
#define TLSEXT_TYPE_padding 21
/* ExtensionType value from RFC7627 */
// ExtensionType value from RFC7627
#define TLSEXT_TYPE_extended_master_secret 23
/* ExtensionType value from RFC4507 */
// ExtensionType value from RFC4507
#define TLSEXT_TYPE_session_ticket 35
/* ExtensionType values from draft-ietf-tls-tls13-18 */
// ExtensionType values from draft-ietf-tls-tls13-18
#define TLSEXT_TYPE_supported_groups 10
#define TLSEXT_TYPE_key_share 40
#define TLSEXT_TYPE_pre_shared_key 41
@ -215,26 +215,26 @@ extern "C" {
#define TLSEXT_TYPE_psk_key_exchange_modes 45
#define TLSEXT_TYPE_ticket_early_data_info 46
/* ExtensionType value from RFC5746 */
// ExtensionType value from RFC5746
#define TLSEXT_TYPE_renegotiate 0xff01
/* ExtensionType value from RFC6962 */
// ExtensionType value from RFC6962
#define TLSEXT_TYPE_certificate_timestamp 18
/* This is not an IANA defined extension number */
// This is not an IANA defined extension number
#define TLSEXT_TYPE_next_proto_neg 13172
/* This is not an IANA defined extension number */
// This is not an IANA defined extension number
#define TLSEXT_TYPE_channel_id 30032
/* status request value from RFC 3546 */
// status request value from RFC 3546
#define TLSEXT_STATUSTYPE_ocsp 1
/* ECPointFormat values from RFC 4492 */
// ECPointFormat values from RFC 4492
#define TLSEXT_ECPOINTFORMAT_uncompressed 0
#define TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime 1
/* Signature and hash algorithms from RFC 5246 */
// Signature and hash algorithms from RFC 5246
#define TLSEXT_signature_anonymous 0
#define TLSEXT_signature_rsa 1
@ -251,30 +251,30 @@ extern "C" {
#define TLSEXT_MAXLEN_host_name 255
/* PSK ciphersuites from 4279 */
// PSK ciphersuites from 4279
#define TLS1_CK_PSK_WITH_RC4_128_SHA 0x0300008A
#define TLS1_CK_PSK_WITH_3DES_EDE_CBC_SHA 0x0300008B
#define TLS1_CK_PSK_WITH_AES_128_CBC_SHA 0x0300008C
#define TLS1_CK_PSK_WITH_AES_256_CBC_SHA 0x0300008D
/* PSK ciphersuites from RFC 5489 */
// PSK ciphersuites from RFC 5489
#define TLS1_CK_ECDHE_PSK_WITH_AES_128_CBC_SHA 0x0300C035
#define TLS1_CK_ECDHE_PSK_WITH_AES_256_CBC_SHA 0x0300C036
/* Additional TLS ciphersuites from expired Internet Draft
* draft-ietf-tls-56-bit-ciphersuites-01.txt
* (available if TLS1_ALLOW_EXPERIMENTAL_CIPHERSUITES is defined, see
* s3_lib.c). We actually treat them like SSL 3.0 ciphers, which we probably
* shouldn't. Note that the first two are actually not in the IDs. */
#define TLS1_CK_RSA_EXPORT1024_WITH_RC4_56_MD5 0x03000060 /* not in ID */
#define TLS1_CK_RSA_EXPORT1024_WITH_RC2_CBC_56_MD5 0x03000061 /* not in ID */
// Additional TLS ciphersuites from expired Internet Draft
// draft-ietf-tls-56-bit-ciphersuites-01.txt
// (available if TLS1_ALLOW_EXPERIMENTAL_CIPHERSUITES is defined, see
// s3_lib.c). We actually treat them like SSL 3.0 ciphers, which we probably
// shouldn't. Note that the first two are actually not in the IDs.
#define TLS1_CK_RSA_EXPORT1024_WITH_RC4_56_MD5 0x03000060 // not in ID
#define TLS1_CK_RSA_EXPORT1024_WITH_RC2_CBC_56_MD5 0x03000061 // not in ID
#define TLS1_CK_RSA_EXPORT1024_WITH_DES_CBC_SHA 0x03000062
#define TLS1_CK_DHE_DSS_EXPORT1024_WITH_DES_CBC_SHA 0x03000063
#define TLS1_CK_RSA_EXPORT1024_WITH_RC4_56_SHA 0x03000064
#define TLS1_CK_DHE_DSS_EXPORT1024_WITH_RC4_56_SHA 0x03000065
#define TLS1_CK_DHE_DSS_WITH_RC4_128_SHA 0x03000066
/* AES ciphersuites from RFC3268 */
// AES ciphersuites from RFC3268
#define TLS1_CK_RSA_WITH_AES_128_SHA 0x0300002F
#define TLS1_CK_DH_DSS_WITH_AES_128_SHA 0x03000030
@ -290,7 +290,7 @@ extern "C" {
#define TLS1_CK_DHE_RSA_WITH_AES_256_SHA 0x03000039
#define TLS1_CK_ADH_WITH_AES_256_SHA 0x0300003A
/* TLS v1.2 ciphersuites */
// TLS v1.2 ciphersuites
#define TLS1_CK_RSA_WITH_NULL_SHA256 0x0300003B
#define TLS1_CK_RSA_WITH_AES_128_SHA256 0x0300003C
#define TLS1_CK_RSA_WITH_AES_256_SHA256 0x0300003D
@ -298,7 +298,7 @@ extern "C" {
#define TLS1_CK_DH_RSA_WITH_AES_128_SHA256 0x0300003F
#define TLS1_CK_DHE_DSS_WITH_AES_128_SHA256 0x03000040
/* Camellia ciphersuites from RFC4132 */
// Camellia ciphersuites from RFC4132
#define TLS1_CK_RSA_WITH_CAMELLIA_128_CBC_SHA 0x03000041
#define TLS1_CK_DH_DSS_WITH_CAMELLIA_128_CBC_SHA 0x03000042
#define TLS1_CK_DH_RSA_WITH_CAMELLIA_128_CBC_SHA 0x03000043
@ -306,7 +306,7 @@ extern "C" {
#define TLS1_CK_DHE_RSA_WITH_CAMELLIA_128_CBC_SHA 0x03000045
#define TLS1_CK_ADH_WITH_CAMELLIA_128_CBC_SHA 0x03000046
/* TLS v1.2 ciphersuites */
// TLS v1.2 ciphersuites
#define TLS1_CK_DHE_RSA_WITH_AES_128_SHA256 0x03000067
#define TLS1_CK_DH_DSS_WITH_AES_256_SHA256 0x03000068
#define TLS1_CK_DH_RSA_WITH_AES_256_SHA256 0x03000069
@ -315,7 +315,7 @@ extern "C" {
#define TLS1_CK_ADH_WITH_AES_128_SHA256 0x0300006C
#define TLS1_CK_ADH_WITH_AES_256_SHA256 0x0300006D
/* Camellia ciphersuites from RFC4132 */
// Camellia ciphersuites from RFC4132
#define TLS1_CK_RSA_WITH_CAMELLIA_256_CBC_SHA 0x03000084
#define TLS1_CK_DH_DSS_WITH_CAMELLIA_256_CBC_SHA 0x03000085
#define TLS1_CK_DH_RSA_WITH_CAMELLIA_256_CBC_SHA 0x03000086
@ -323,7 +323,7 @@ extern "C" {
#define TLS1_CK_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA 0x03000088
#define TLS1_CK_ADH_WITH_CAMELLIA_256_CBC_SHA 0x03000089
/* SEED ciphersuites from RFC4162 */
// SEED ciphersuites from RFC4162
#define TLS1_CK_RSA_WITH_SEED_SHA 0x03000096
#define TLS1_CK_DH_DSS_WITH_SEED_SHA 0x03000097
#define TLS1_CK_DH_RSA_WITH_SEED_SHA 0x03000098
@ -331,7 +331,7 @@ extern "C" {
#define TLS1_CK_DHE_RSA_WITH_SEED_SHA 0x0300009A
#define TLS1_CK_ADH_WITH_SEED_SHA 0x0300009B
/* TLS v1.2 GCM ciphersuites from RFC5288 */
// TLS v1.2 GCM ciphersuites from RFC5288
#define TLS1_CK_RSA_WITH_AES_128_GCM_SHA256 0x0300009C
#define TLS1_CK_RSA_WITH_AES_256_GCM_SHA384 0x0300009D
#define TLS1_CK_DHE_RSA_WITH_AES_128_GCM_SHA256 0x0300009E
@ -345,7 +345,7 @@ extern "C" {
#define TLS1_CK_ADH_WITH_AES_128_GCM_SHA256 0x030000A6
#define TLS1_CK_ADH_WITH_AES_256_GCM_SHA384 0x030000A7
/* ECC ciphersuites from RFC4492 */
// ECC ciphersuites from RFC4492
#define TLS1_CK_ECDH_ECDSA_WITH_NULL_SHA 0x0300C001
#define TLS1_CK_ECDH_ECDSA_WITH_RC4_128_SHA 0x0300C002
#define TLS1_CK_ECDH_ECDSA_WITH_DES_192_CBC3_SHA 0x0300C003
@ -376,7 +376,7 @@ extern "C" {
#define TLS1_CK_ECDH_anon_WITH_AES_128_CBC_SHA 0x0300C018
#define TLS1_CK_ECDH_anon_WITH_AES_256_CBC_SHA 0x0300C019
/* SRP ciphersuites from RFC 5054 */
// SRP ciphersuites from RFC 5054
#define TLS1_CK_SRP_SHA_WITH_3DES_EDE_CBC_SHA 0x0300C01A
#define TLS1_CK_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA 0x0300C01B
#define TLS1_CK_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA 0x0300C01C
@ -387,7 +387,7 @@ extern "C" {
#define TLS1_CK_SRP_SHA_RSA_WITH_AES_256_CBC_SHA 0x0300C021
#define TLS1_CK_SRP_SHA_DSS_WITH_AES_256_CBC_SHA 0x0300C022
/* ECDH HMAC based ciphersuites from RFC5289 */
// ECDH HMAC based ciphersuites from RFC5289
#define TLS1_CK_ECDHE_ECDSA_WITH_AES_128_SHA256 0x0300C023
#define TLS1_CK_ECDHE_ECDSA_WITH_AES_256_SHA384 0x0300C024
@ -398,7 +398,7 @@ extern "C" {
#define TLS1_CK_ECDH_RSA_WITH_AES_128_SHA256 0x0300C029
#define TLS1_CK_ECDH_RSA_WITH_AES_256_SHA384 0x0300C02A
/* ECDH GCM based ciphersuites from RFC5289 */
// ECDH GCM based ciphersuites from RFC5289
#define TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 0x0300C02B
#define TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 0x0300C02C
#define TLS1_CK_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 0x0300C02D
@ -408,23 +408,23 @@ extern "C" {
#define TLS1_CK_ECDH_RSA_WITH_AES_128_GCM_SHA256 0x0300C031
#define TLS1_CK_ECDH_RSA_WITH_AES_256_GCM_SHA384 0x0300C032
/* ChaCha20-Poly1305 cipher suites from RFC 7905. */
// ChaCha20-Poly1305 cipher suites from RFC 7905.
#define TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 0x0300CCA8
#define TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 0x0300CCA9
#define TLS1_CK_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256 0x0300CCAC
/* TLS 1.3 ciphersuites from draft-ietf-tls-tls13-16 */
// TLS 1.3 ciphersuites from draft-ietf-tls-tls13-16
#define TLS1_CK_AES_128_GCM_SHA256 0x03001301
#define TLS1_CK_AES_256_GCM_SHA384 0x03001302
#define TLS1_CK_CHACHA20_POLY1305_SHA256 0x03001303
/* XXX
* Inconsistency alert:
* The OpenSSL names of ciphers with ephemeral DH here include the string
* "DHE", while elsewhere it has always been "EDH".
* (The alias for the list of all such ciphers also is "EDH".)
* The specifications speak of "EDH"; maybe we should allow both forms
* for everything. */
// XXX
// Inconsistency alert:
// The OpenSSL names of ciphers with ephemeral DH here include the string
// "DHE", while elsewhere it has always been "EDH".
// (The alias for the list of all such ciphers also is "EDH".)
// The specifications speak of "EDH"; maybe we should allow both forms
// for everything.
#define TLS1_TXT_RSA_EXPORT1024_WITH_RC4_56_MD5 "EXP1024-RC4-MD5"
#define TLS1_TXT_RSA_EXPORT1024_WITH_RC2_CBC_56_MD5 "EXP1024-RC2-CBC-MD5"
#define TLS1_TXT_RSA_EXPORT1024_WITH_DES_CBC_SHA "EXP1024-DES-CBC-SHA"
@ -434,7 +434,7 @@ extern "C" {
#define TLS1_TXT_DHE_DSS_EXPORT1024_WITH_RC4_56_SHA "EXP1024-DHE-DSS-RC4-SHA"
#define TLS1_TXT_DHE_DSS_WITH_RC4_128_SHA "DHE-DSS-RC4-SHA"
/* AES ciphersuites from RFC3268 */
// AES ciphersuites from RFC3268
#define TLS1_TXT_RSA_WITH_AES_128_SHA "AES128-SHA"
#define TLS1_TXT_DH_DSS_WITH_AES_128_SHA "DH-DSS-AES128-SHA"
#define TLS1_TXT_DH_RSA_WITH_AES_128_SHA "DH-RSA-AES128-SHA"
@ -449,7 +449,7 @@ extern "C" {
#define TLS1_TXT_DHE_RSA_WITH_AES_256_SHA "DHE-RSA-AES256-SHA"
#define TLS1_TXT_ADH_WITH_AES_256_SHA "ADH-AES256-SHA"
/* ECC ciphersuites from RFC4492 */
// ECC ciphersuites from RFC4492
#define TLS1_TXT_ECDH_ECDSA_WITH_NULL_SHA "ECDH-ECDSA-NULL-SHA"
#define TLS1_TXT_ECDH_ECDSA_WITH_RC4_128_SHA "ECDH-ECDSA-RC4-SHA"
#define TLS1_TXT_ECDH_ECDSA_WITH_DES_192_CBC3_SHA "ECDH-ECDSA-DES-CBC3-SHA"
@ -480,17 +480,17 @@ extern "C" {
#define TLS1_TXT_ECDH_anon_WITH_AES_128_CBC_SHA "AECDH-AES128-SHA"
#define TLS1_TXT_ECDH_anon_WITH_AES_256_CBC_SHA "AECDH-AES256-SHA"
/* PSK ciphersuites from RFC 4279 */
// PSK ciphersuites from RFC 4279
#define TLS1_TXT_PSK_WITH_RC4_128_SHA "PSK-RC4-SHA"
#define TLS1_TXT_PSK_WITH_3DES_EDE_CBC_SHA "PSK-3DES-EDE-CBC-SHA"
#define TLS1_TXT_PSK_WITH_AES_128_CBC_SHA "PSK-AES128-CBC-SHA"
#define TLS1_TXT_PSK_WITH_AES_256_CBC_SHA "PSK-AES256-CBC-SHA"
/* PSK ciphersuites from RFC 5489 */
// PSK ciphersuites from RFC 5489
#define TLS1_TXT_ECDHE_PSK_WITH_AES_128_CBC_SHA "ECDHE-PSK-AES128-CBC-SHA"
#define TLS1_TXT_ECDHE_PSK_WITH_AES_256_CBC_SHA "ECDHE-PSK-AES256-CBC-SHA"
/* SRP ciphersuite from RFC 5054 */
// SRP ciphersuite from RFC 5054
#define TLS1_TXT_SRP_SHA_WITH_3DES_EDE_CBC_SHA "SRP-3DES-EDE-CBC-SHA"
#define TLS1_TXT_SRP_SHA_RSA_WITH_3DES_EDE_CBC_SHA "SRP-RSA-3DES-EDE-CBC-SHA"
#define TLS1_TXT_SRP_SHA_DSS_WITH_3DES_EDE_CBC_SHA "SRP-DSS-3DES-EDE-CBC-SHA"
@ -501,7 +501,7 @@ extern "C" {
#define TLS1_TXT_SRP_SHA_RSA_WITH_AES_256_CBC_SHA "SRP-RSA-AES-256-CBC-SHA"
#define TLS1_TXT_SRP_SHA_DSS_WITH_AES_256_CBC_SHA "SRP-DSS-AES-256-CBC-SHA"
/* Camellia ciphersuites from RFC4132 */
// Camellia ciphersuites from RFC4132
#define TLS1_TXT_RSA_WITH_CAMELLIA_128_CBC_SHA "CAMELLIA128-SHA"
#define TLS1_TXT_DH_DSS_WITH_CAMELLIA_128_CBC_SHA "DH-DSS-CAMELLIA128-SHA"
#define TLS1_TXT_DH_RSA_WITH_CAMELLIA_128_CBC_SHA "DH-RSA-CAMELLIA128-SHA"
@ -516,7 +516,7 @@ extern "C" {
#define TLS1_TXT_DHE_RSA_WITH_CAMELLIA_256_CBC_SHA "DHE-RSA-CAMELLIA256-SHA"
#define TLS1_TXT_ADH_WITH_CAMELLIA_256_CBC_SHA "ADH-CAMELLIA256-SHA"
/* SEED ciphersuites from RFC4162 */
// SEED ciphersuites from RFC4162
#define TLS1_TXT_RSA_WITH_SEED_SHA "SEED-SHA"
#define TLS1_TXT_DH_DSS_WITH_SEED_SHA "DH-DSS-SEED-SHA"
#define TLS1_TXT_DH_RSA_WITH_SEED_SHA "DH-RSA-SEED-SHA"
@ -524,7 +524,7 @@ extern "C" {
#define TLS1_TXT_DHE_RSA_WITH_SEED_SHA "DHE-RSA-SEED-SHA"
#define TLS1_TXT_ADH_WITH_SEED_SHA "ADH-SEED-SHA"
/* TLS v1.2 ciphersuites */
// TLS v1.2 ciphersuites
#define TLS1_TXT_RSA_WITH_NULL_SHA256 "NULL-SHA256"
#define TLS1_TXT_RSA_WITH_AES_128_SHA256 "AES128-SHA256"
#define TLS1_TXT_RSA_WITH_AES_256_SHA256 "AES256-SHA256"
@ -539,7 +539,7 @@ extern "C" {
#define TLS1_TXT_ADH_WITH_AES_128_SHA256 "ADH-AES128-SHA256"
#define TLS1_TXT_ADH_WITH_AES_256_SHA256 "ADH-AES256-SHA256"
/* TLS v1.2 GCM ciphersuites from RFC5288 */
// TLS v1.2 GCM ciphersuites from RFC5288
#define TLS1_TXT_RSA_WITH_AES_128_GCM_SHA256 "AES128-GCM-SHA256"
#define TLS1_TXT_RSA_WITH_AES_256_GCM_SHA384 "AES256-GCM-SHA384"
#define TLS1_TXT_DHE_RSA_WITH_AES_128_GCM_SHA256 "DHE-RSA-AES128-GCM-SHA256"
@ -553,7 +553,7 @@ extern "C" {
#define TLS1_TXT_ADH_WITH_AES_128_GCM_SHA256 "ADH-AES128-GCM-SHA256"
#define TLS1_TXT_ADH_WITH_AES_256_GCM_SHA384 "ADH-AES256-GCM-SHA384"
/* ECDH HMAC based ciphersuites from RFC5289 */
// ECDH HMAC based ciphersuites from RFC5289
#define TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_SHA256 "ECDHE-ECDSA-AES128-SHA256"
#define TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_SHA384 "ECDHE-ECDSA-AES256-SHA384"
@ -564,7 +564,7 @@ extern "C" {
#define TLS1_TXT_ECDH_RSA_WITH_AES_128_SHA256 "ECDH-RSA-AES128-SHA256"
#define TLS1_TXT_ECDH_RSA_WITH_AES_256_SHA384 "ECDH-RSA-AES256-SHA384"
/* ECDH GCM based ciphersuites from RFC5289 */
// ECDH GCM based ciphersuites from RFC5289
#define TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 \
"ECDHE-ECDSA-AES128-GCM-SHA256"
#define TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 \
@ -585,7 +585,7 @@ extern "C" {
#define TLS1_TXT_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256 \
"ECDHE-PSK-CHACHA20-POLY1305"
/* TLS 1.3 ciphersuites from draft-ietf-tls-tls13-16 */
// TLS 1.3 ciphersuites from draft-ietf-tls-tls13-16
#define TLS1_TXT_AES_128_GCM_SHA256 "AEAD-AES128-GCM-SHA256"
#define TLS1_TXT_AES_256_GCM_SHA384 "AEAD-AES256-GCM-SHA384"
#define TLS1_TXT_CHACHA20_POLY1305_SHA256 "AEAD-CHACHA20-POLY1305-SHA256"
@ -619,7 +619,7 @@ extern "C" {
#ifdef __cplusplus
} /* extern C */
} // extern C
#endif
#endif /* OPENSSL_HEADER_TLS1_H */
#endif // OPENSSL_HEADER_TLS1_H

View File

@ -64,16 +64,16 @@ extern "C" {
#endif
/* This header file contains some common macros for enforcing type checking.
* Several, common OpenSSL structures (i.e. stack and lhash) operate on void
* pointers, but we wish to have type checking when they are used with a
* specific type. */
// This header file contains some common macros for enforcing type checking.
// Several, common OpenSSL structures (i.e. stack and lhash) operate on void
// pointers, but we wish to have type checking when they are used with a
// specific type.
/* CHECKED_CAST casts |p| from type |from| to type |to|. */
// CHECKED_CAST casts |p| from type |from| to type |to|.
#define CHECKED_CAST(to, from, p) ((to) (1 ? (p) : (from)0))
/* CHECKED_PTR_OF casts a given pointer to void* and statically checks that it
* was a pointer to |type|. */
// CHECKED_PTR_OF casts a given pointer to void* and statically checks that it
// was a pointer to |type|.
#define CHECKED_PTR_OF(type, p) CHECKED_CAST(void*, type*, (p))
#if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 201112L
@ -85,7 +85,7 @@ extern "C" {
#if defined(__cplusplus)
} /* extern C */
} // extern C
#endif
#endif /* OPENSSL_HEADER_TYPE_CHECK_H */
#endif // OPENSSL_HEADER_TYPE_CHECK_H