Merge BoringSSL 18254e2: Discuss the doubling case in windowed Booth representation.
This commit is contained in:
commit
544babc848
@ -94,8 +94,158 @@
|
||||
// recoded digit to *sign (0 for positive, 1 for negative) and *digit (absolute
|
||||
// value, in the range 0 .. 2**(w-1). Note that this integer essentially provides
|
||||
// the input bits "shifted to the left" by one position: for example, the input
|
||||
// to compute the least significant recoded digit, given that there's no bit b_-1,
|
||||
// has to be b_4 b_3 b_2 b_1 b_0 0.
|
||||
// to compute the least significant recoded digit, given that there's no bit
|
||||
// b_-1, has to be b_4 b_3 b_2 b_1 b_0 0.
|
||||
//
|
||||
// DOUBLING CASE:
|
||||
//
|
||||
// Point addition formulas for short Weierstrass curves are often incomplete.
|
||||
// Edge cases such as P + P or P + ∞ must be handled separately. This
|
||||
// complicates constant-time requirements. P + ∞ cannot be avoided (any window
|
||||
// may be zero) and is handled with constant-time selects. P + P (where P is not
|
||||
// ∞) usually is not. Instead, windowing strategies are chosen to avoid this
|
||||
// case. Whether this happens depends on the group order.
|
||||
//
|
||||
// Let w be the window width (in this function, w = 5). The non-trivial doubling
|
||||
// case in single-point scalar multiplication may occur if and only if the
|
||||
// 2^(w-1) bit of the group order is zero.
|
||||
//
|
||||
// Note the above only holds if the scalar is fully reduced and the group order
|
||||
// is a prime that is much larger than 2^w. It also only holds when windows
|
||||
// are applied from most significant to least significant, doubling between each
|
||||
// window. It does not apply to more complex table strategies such as
|
||||
// |EC_GFp_nistz256_method|.
|
||||
//
|
||||
// PROOF:
|
||||
//
|
||||
// Let n be the group order. Let l be the number of bits needed to represent n.
|
||||
// Assume there exists some 0 <= k < n such that signed w-bit windowed
|
||||
// multiplication hits the doubling case.
|
||||
//
|
||||
// Windowed multiplication consists of iterating over groups of s_i (defined
|
||||
// above based on k's binary representation) from most to least significant. At
|
||||
// iteration i (for i = ..., 3w, 2w, w, 0, starting from the most significant
|
||||
// window), we:
|
||||
//
|
||||
// 1. Double the accumulator A, w times. Let A_i be the value of A at this
|
||||
// point.
|
||||
//
|
||||
// 2. Set A to T_i + A_i, where T_i is a precomputed multiple of P
|
||||
// corresponding to the window s_(i+w-1) ... s_i.
|
||||
//
|
||||
// Let j be the index such that A_j = T_j ≠ ∞. Looking at A_i and T_i as
|
||||
// multiples of P, define a_i and t_i to be scalar coefficients of A_i and T_i.
|
||||
// Thus a_j = t_j ≠ 0 (mod n). Note a_i and t_i may not be reduced mod n. t_i is
|
||||
// the value of the w signed bits s_(i+w-1) ... s_i. a_i is computed as a_i =
|
||||
// 2^w * (a_(i+w) + t_(i+w)).
|
||||
//
|
||||
// t_i is bounded by -2^(w-1) <= t_i <= 2^(w-1). Additionally, we may write it
|
||||
// in terms of unsigned bits b_i. t_i consists of signed bits s_(i+w-1) ... s_i.
|
||||
// This is computed as:
|
||||
//
|
||||
// b_(i+w-2) b_(i+w-3) ... b_i b_(i-1)
|
||||
// - b_(i+w-1) b_(i+w-2) ... b_(i+1) b_i
|
||||
// --------------------------------------------
|
||||
// t_i = s_(i+w-1) s_(i+w-2) ... s_(i+1) s_i
|
||||
//
|
||||
// Observe that b_(i+w-2) through b_i occur in both terms. Let x be the integer
|
||||
// represented by that bit string, i.e. 2^(w-2)*b_(i+w-2) + ... + b_i.
|
||||
//
|
||||
// t_i = (2*x + b_(i-1)) - (2^(w-1)*b_(i+w-1) + x)
|
||||
// = x - 2^(w-1)*b_(i+w-1) + b_(i-1)
|
||||
//
|
||||
// Or, using C notation for bit operations:
|
||||
//
|
||||
// t_i = (k>>i) & ((1<<(w-1)) - 1) - (k>>i) & (1<<(w-1)) + (k>>(i-1)) & 1
|
||||
//
|
||||
// Note b_(i-1) is added in left-shifted by one (or doubled) from its place.
|
||||
// This is compensated by t_(i-w)'s subtraction term. Thus, a_i may be computed
|
||||
// by adding b_l b_(l-1) ... b_(i+1) b_i and an extra copy of b_(i-1). In C
|
||||
// notation, this is:
|
||||
//
|
||||
// a_i = (k>>(i+w)) << w + ((k>>(i+w-1)) & 1) << w
|
||||
//
|
||||
// Observe that, while t_i may be positive or negative, a_i is bounded by
|
||||
// 0 <= a_i < n + 2^w. Additionally, a_i can only be zero if b_(i+w-1) and up
|
||||
// are all zero. (Note this implies a non-trivial P + (-P) is unreachable for
|
||||
// all groups. That would imply the subsequent a_i is zero, which means all
|
||||
// terms thus far were zero.)
|
||||
//
|
||||
// Returning to our doubling position, we have a_j = t_j (mod n). We now
|
||||
// determine the value of a_j - t_j, which must be divisible by n. Our bounds on
|
||||
// a_j and t_j imply a_j - t_j is 0 or n. If it is 0, a_j = t_j. However, 2^w
|
||||
// divides a_j and -2^(w-1) <= t_j <= 2^(w-1), so this can only happen if
|
||||
// a_j = t_j = 0, which is a trivial doubling. Therefore, a_j - t_j = n.
|
||||
//
|
||||
// Now we determine j. Suppose j > 0. w divides j, so j >= w. Then,
|
||||
//
|
||||
// n = a_j - t_j = (k>>(j+w)) << w + ((k>>(j+w-1)) & 1) << w - t_j
|
||||
// <= k/2^j + 2^w - t_j
|
||||
// < n/2^w + 2^w + 2^(w-1)
|
||||
//
|
||||
// n is much larger than 2^w, so this is impossible. Thus, j = 0: only the final
|
||||
// addition may hit the doubling case.
|
||||
//
|
||||
// Finally, we consider bit patterns for n and k. Divide k into k_H + k_M + k_L
|
||||
// such that k_H is the contribution from b_(l-1) .. b_w, k_M is the
|
||||
// contribution from b_(w-1), and k_L is the contribution from b_(w-2) ... b_0.
|
||||
// That is:
|
||||
//
|
||||
// - 2^w divides k_H
|
||||
// - k_M is 0 or 2^(w-1)
|
||||
// - 0 <= k_L < 2^(w-1)
|
||||
//
|
||||
// Divide n into n_H + n_M + n_L similarly. We thus have:
|
||||
//
|
||||
// t_0 = (k>>0) & ((1<<(w-1)) - 1) - (k>>0) & (1<<(w-1)) + (k>>(0-1)) & 1
|
||||
// = k & ((1<<(w-1)) - 1) - k & (1<<(w-1))
|
||||
// = k_L - k_M
|
||||
//
|
||||
// a_0 = (k>>(0+w)) << w + ((k>>(0+w-1)) & 1) << w
|
||||
// = (k>>w) << w + ((k>>(w-1)) & 1) << w
|
||||
// = k_H + 2*k_M
|
||||
//
|
||||
// n = a_0 - t_0
|
||||
// n_H + n_M + n_L = (k_H + 2*k_M) - (k_L - k_M)
|
||||
// = k_H + 3*k_M - k_L
|
||||
//
|
||||
// k_H - k_L < k and k < n, so k_H - k_L ≠ n. Therefore k_M is not 0 and must be
|
||||
// 2^(w-1). Now we consider k_H and n_H. We know k_H <= n_H. Suppose k_H = n_H.
|
||||
// Then,
|
||||
//
|
||||
// n_M + n_L = 3*(2^(w-1)) - k_L
|
||||
// > 3*(2^(w-1)) - 2^(w-1)
|
||||
// = 2^w
|
||||
//
|
||||
// Contradiction (n_M + n_L is the bottom w bits of n). Thus k_H < n_H. Suppose
|
||||
// k_H < n_H - 2*2^w. Then,
|
||||
//
|
||||
// n_H + n_M + n_L = k_H + 3*(2^(w-1)) - k_L
|
||||
// < n_H - 2*2^w + 3*(2^(w-1)) - k_L
|
||||
// n_M + n_L < -2^(w-1) - k_L
|
||||
//
|
||||
// Contradiction. Thus, k_H = n_H - 2^w. (Note 2^w divides n_H and k_H.) Thus,
|
||||
//
|
||||
// n_H + n_M + n_L = k_H + 3*(2^(w-1)) - k_L
|
||||
// = n_H - 2^w + 3*(2^(w-1)) - k_L
|
||||
// n_M + n_L = 2^(w-1) - k_L
|
||||
// <= 2^(w-1)
|
||||
//
|
||||
// Equality would mean 2^(w-1) divides n, which is impossible if n is prime.
|
||||
// Thus n_M + n_L < 2^(w-1), so n_M is zero, proving our condition.
|
||||
//
|
||||
// This proof constructs k, so, to show the converse, let k_H = n_H - 2^w,
|
||||
// k_M = 2^(w-1), k_L = 2^(w-1) - n_L. This will result in a non-trivial point
|
||||
// doubling in the final addition and is the only such scalar.
|
||||
//
|
||||
// COMMON CURVES:
|
||||
//
|
||||
// The group orders for common curves end in the following bit patterns:
|
||||
//
|
||||
// P-521: ...00001001; w = 4 is okay
|
||||
// P-384: ...01110011; w = 2, 5, 6, 7 are okay
|
||||
// P-256: ...01010001; w = 5, 7 are okay
|
||||
// P-224: ...00111101; w = 3, 4, 5, 6 are okay
|
||||
static inline void booth_recode(Limb *is_negative, unsigned *digit,
|
||||
unsigned in, unsigned w) {
|
||||
assert(w >= 2);
|
||||
|
Loading…
x
Reference in New Issue
Block a user