Revert "Fetch entropy from a system daemon in FIPS mode on Android."

This reverts commit 4259ae81982aa312e52e8ba9fd8b9e8ed4b317f2.

Some Android builders perhaps lack getrandom support.

Change-Id: Ic7537c07dacb31a54adb453ddd5f82a789089eaf
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/53625
Auto-Submit: Adam Langley <agl@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: Adam Langley <agl@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
This commit is contained in:
Adam Langley 2022-07-27 18:45:17 +00:00 committed by Boringssl LUCI CQ
parent 4259ae8198
commit 8ce0e1c14e
3 changed files with 76 additions and 527 deletions

View File

@ -170,6 +170,12 @@ void CRYPTO_get_seed_entropy(uint8_t *out_entropy, size_t out_entropy_len,
} else {
CRYPTO_sysrand_for_seed(out_entropy, out_entropy_len);
}
if (boringssl_fips_break_test("CRNG")) {
// This breaks the "continuous random number generator test" defined in FIPS
// 140-2, section 4.9.2, and implemented in |rand_get_seed|.
OPENSSL_memset(out_entropy, 0, out_entropy_len);
}
}
// In passive entropy mode, entropy is supplied from outside of the module via

View File

@ -18,19 +18,15 @@
#include <openssl/ctrdrbg.h>
#include <openssl/rand.h>
#include "getrandom_fillin.h"
#include "internal.h"
#include "getrandom_fillin.h"
#if (defined(OPENSSL_X86_64) || defined(OPENSSL_AARCH64)) && \
!defined(BORINGSSL_SHARED_LIBRARY) && \
#if defined(OPENSSL_X86_64) && !defined(BORINGSSL_SHARED_LIBRARY) && \
!defined(BORINGSSL_UNSAFE_DETERMINISTIC_MODE) && defined(USE_NR_getrandom)
#include <linux/random.h>
#include <sys/ptrace.h>
#include <sys/socket.h>
#include <sys/syscall.h>
#include <sys/uio.h>
#include <sys/un.h>
#include <sys/user.h>
#include "fork_detect.h"
@ -39,21 +35,6 @@
#define PTRACE_O_EXITKILL (1 << 20)
#endif
#if defined(BORINGSSL_FIPS)
static const bool kIsFIPS = true;
#if defined(OPENSSL_ANDROID)
static const bool kUsesDaemon = true;
#else
static const bool kUsesDaemon = false;
#endif
#else
static const bool kIsFIPS = false;
static const bool kUsesDaemon = false;
#endif
// kDaemonWriteLength is the number of bytes that the entropy daemon writes.
static const size_t kDaemonWriteLength = 496;
// This test can be run with $OPENSSL_ia32cap=~0x4000000000000000 in order to
// simulate the absence of RDRAND of machines that have it.
@ -65,10 +46,6 @@ struct Event {
kOpen,
kUrandomRead,
kUrandomIoctl,
kSocket,
kConnect,
kSocketRead,
kSocketClose,
kAbort,
};
@ -105,27 +82,6 @@ struct Event {
return e;
}
static Event Socket() {
Event e(Syscall::kSocket);
return e;
}
static Event Connect() {
Event e(Syscall::kConnect);
return e;
}
static Event SocketRead(size_t length) {
Event e(Syscall::kSocketRead);
e.length = length;
return e;
}
static Event SocketClose() {
Event e(Syscall::kSocketClose);
return e;
}
static Event Abort() {
Event e(Syscall::kAbort);
return e;
@ -150,19 +106,6 @@ struct Event {
case Syscall::kUrandomIoctl:
return "ioctl(urandom_fd, RNDGETENTCNT, _)";
case Syscall::kSocket:
return "socket(UNIX, STREAM, _)";
case Syscall::kConnect:
return "connect(sock, _, _)";
case Syscall::kSocketRead:
snprintf(buf, sizeof(buf), "read(sock_fd, _, %zu)", length);
break;
case Syscall::kSocketClose:
return "close(sock)";
case Syscall::kAbort:
return "abort()";
}
@ -203,193 +146,7 @@ static const unsigned URANDOM_NOT_READY = 8;
static const unsigned GETRANDOM_ERROR = 16;
// Reading from /dev/urandom gives |EINVAL|.
static const unsigned URANDOM_ERROR = 32;
static const unsigned SOCKET_ERROR = 64;
static const unsigned CONNECT_ERROR = 128;
static const unsigned SOCKET_READ_ERROR = 256;
static const unsigned SOCKET_READ_SHORT = 512;
static const unsigned NEXT_FLAG = 1024;
// regs_read fetches the registers of |child_pid| and writes them to |out_regs|.
// That structure will contain at least the following members:
// syscall: the syscall number, if registers were read just before entering
// one.
// args[0..2]: syscall arguments, if registers were read just before
// entering one.
// ret: the syscall return value, if registers were read just after finishing
// one.
//
// This call returns true on success and false otherwise.
static bool regs_read(struct regs *out_regs, int child_pid);
// regs_set_ret sets the return value of the system call that |child_pid| has
// just finished, to |ret|. It returns true on success and false otherwise.
static bool regs_set_ret(int child_pid, int ret);
// regs_break_syscall causes the system call that |child_pid| is about to enter
// to fail to run.
static bool regs_break_syscall(int child_pid, const struct regs *orig_regs);
#if defined(OPENSSL_X86_64)
struct regs {
uintptr_t syscall;
uintptr_t args[3];
uintptr_t ret;
struct user_regs_struct regs;
};
static bool regs_read(struct regs *out_regs, int child_pid) {
if (ptrace(PTRACE_GETREGS, child_pid, nullptr, &out_regs->regs) != 0) {
return false;
}
out_regs->syscall = out_regs->regs.orig_rax;
out_regs->ret = out_regs->regs.rax;
out_regs->args[0] = out_regs->regs.rdi;
out_regs->args[1] = out_regs->regs.rsi;
out_regs->args[2] = out_regs->regs.rdx;
return true;
}
static bool regs_set_ret(int child_pid, int ret) {
struct regs regs;
if (!regs_read(&regs, child_pid)) {
return false;
}
regs.regs.rax = ret;
return ptrace(PTRACE_SETREGS, child_pid, nullptr, &regs.regs) == 0;
}
static bool regs_break_syscall(int child_pid, const struct regs *orig_regs) {
// Replacing the syscall number with -1 doesn't work on AArch64 thus we set
// the first argument to -1, which suffices to break the syscalls that we care
// about here.
struct user_regs_struct regs;
memcpy(&regs, &orig_regs->regs, sizeof(regs));
regs.rdi = -1;
return ptrace(PTRACE_SETREGS, child_pid, nullptr, &regs) == 0;
}
#elif defined(OPENSSL_AARCH64)
struct regs {
uintptr_t syscall;
uintptr_t args[3];
uintptr_t ret;
uint64_t regs[9];
};
static bool regs_read(struct regs *out_regs, int child_pid) {
struct iovec io;
io.iov_base = out_regs->regs;
io.iov_len = sizeof(out_regs->regs);
if (ptrace(PTRACE_GETREGSET, child_pid, (void *)/*NT_PRSTATUS*/ 1, &io) !=
0) {
return false;
}
out_regs->syscall = out_regs->regs[8];
out_regs->ret = out_regs->regs[0];
out_regs->args[0] = out_regs->regs[0];
out_regs->args[1] = out_regs->regs[1];
out_regs->args[2] = out_regs->regs[2];
return true;
}
static bool regs_set(int child_pid, const struct regs *orig_regs,
uint64_t x0_value) {
uint64_t regs[OPENSSL_ARRAY_SIZE(orig_regs->regs)];
memcpy(regs, orig_regs->regs, sizeof(regs));
regs[0] = x0_value;
struct iovec io;
io.iov_base = regs;
io.iov_len = sizeof(regs);
return ptrace(PTRACE_SETREGSET, child_pid, (void *)/*NT_PRSTATUS*/ 1, &io) ==
0;
}
static bool regs_set_ret(int child_pid, int ret) {
struct regs regs;
return regs_read(&regs, child_pid) && regs_set(child_pid, &regs, ret);
}
static bool regs_break_syscall(int child_pid, const struct regs *orig_regs) {
// Replacing the syscall number with -1 doesn't work on AArch64 thus we set
// the first argument to -1, which suffices to break the syscalls that we care
// about here.
return regs_set(child_pid, orig_regs, -1);
}
#endif
// SyscallResult is like std::optional<int>.
// TODO: use std::optional when we can use C++17.
class SyscallResult {
public:
SyscallResult &operator=(int value) {
has_value_ = true;
value_ = value;
return *this;
}
int value() const {
if (!has_value_) {
abort();
}
return value_;
}
bool has_value() const { return has_value_; }
private:
bool has_value_ = false;
int value_ = 0;
};
// memcpy_to_remote copies |n| bytes from |in_src| in the local address space,
// to |dest| in the address space of |child_pid|.
static void memcpy_to_remote(int child_pid, uint64_t dest, const void *in_src,
size_t n) {
const uint8_t *src = reinterpret_cast<const uint8_t *>(in_src);
// ptrace always works with ill-defined "words", which appear to be 64-bit
// on 64-bit systems.
#if !defined(OPENSSL_64_BIT)
#error "This code probably doesn't work"
#endif
while (n) {
const uintptr_t aligned_addr = dest & ~7;
const uintptr_t offset = dest - aligned_addr;
const size_t space = 8 - offset;
size_t todo = n;
if (todo > space) {
todo = space;
}
uint64_t word;
if (offset == 0 && todo == 8) {
word = CRYPTO_load_u64_le(src);
} else {
uint8_t bytes[8];
CRYPTO_store_u64_le(
bytes, ptrace(PTRACE_PEEKDATA, child_pid,
reinterpret_cast<void *>(aligned_addr), nullptr));
memcpy(&bytes[offset], src, todo);
word = CRYPTO_load_u64_le(bytes);
}
ASSERT_EQ(0, ptrace(PTRACE_POKEDATA, child_pid,
reinterpret_cast<void *>(aligned_addr),
reinterpret_cast<void *>(word)));
src += todo;
n -= todo;
dest += todo;
}
}
static const unsigned NEXT_FLAG = 64;
// GetTrace runs |thunk| in a forked process and observes the resulting system
// calls using ptrace. It simulates a variety of failures based on the contents
@ -428,10 +185,6 @@ static void GetTrace(std::vector<Event> *out_trace, unsigned flags,
// process, if it opens it.
int urandom_fd = -1;
// sock_fd tracks the file descriptor number for the socket to the entropy
// daemon, if one is opened.
int sock_fd = -1;
for (;;) {
// Advance the child to the next system call.
ASSERT_EQ(0, ptrace(PTRACE_SYSCALL, child_pid, 0, 0));
@ -446,130 +199,76 @@ static void GetTrace(std::vector<Event> *out_trace, unsigned flags,
// Otherwise the only valid ptrace event is a system call stop.
ASSERT_TRUE(WIFSTOPPED(status) && WSTOPSIG(status) == (SIGTRAP | 0x80));
struct regs regs;
ASSERT_TRUE(regs_read(&regs, child_pid));
struct user_regs_struct regs;
ASSERT_EQ(0, ptrace(PTRACE_GETREGS, child_pid, nullptr, &regs));
const auto syscall_number = regs.orig_rax;
bool is_opening_urandom = false;
bool is_socket_call = false;
bool is_urandom_ioctl = false;
uintptr_t ioctl_output_addr = 0;
bool is_socket_read = false;
uint64_t socket_read_bytes = 0;
// force_result is unset to indicate that the system call should run
// inject_error is zero to indicate that the system call should run
// normally. Otherwise it's, e.g. -EINVAL, to indicate that the system call
// should not run and that the given value should be injected on return.
SyscallResult force_result;
// should not run and that error should be injected on return.
int inject_error = 0;
switch (regs.syscall) {
switch (syscall_number) {
case __NR_getrandom:
if (flags & NO_GETRANDOM) {
force_result = -ENOSYS;
inject_error = -ENOSYS;
} else if (flags & GETRANDOM_ERROR) {
force_result = -EINVAL;
inject_error = -EINVAL;
} else if (flags & GETRANDOM_NOT_READY) {
if (regs.args[2] & GRND_NONBLOCK) {
force_result = -EAGAIN;
if (regs.rdx & GRND_NONBLOCK) {
inject_error = -EAGAIN;
}
}
out_trace->push_back(
Event::GetRandom(/*length=*/regs.args[1], /*flags=*/regs.args[2]));
Event::GetRandom(/*length=*/regs.rsi, /*flags=*/regs.rdx));
break;
case __NR_openat:
#if defined(OPENSSL_X86_64)
case __NR_open:
#endif
{
case __NR_open: {
// It's assumed that any arguments to open(2) are constants in read-only
// memory and thus the pointer in the child's context will also be a
// valid pointer in our address space.
const char *filename = reinterpret_cast<const char *>(
(regs.syscall == __NR_openat) ? regs.args[1] : regs.args[0]);
(syscall_number == __NR_openat) ? regs.rsi : regs.rdi);
out_trace->push_back(Event::Open(filename));
is_opening_urandom = strcmp(filename, "/dev/urandom") == 0;
if (is_opening_urandom && (flags & NO_URANDOM)) {
force_result = -ENOENT;
inject_error = -ENOENT;
}
break;
}
case __NR_read: {
const int read_fd = regs.args[0];
const int read_fd = regs.rdi;
if (urandom_fd >= 0 && urandom_fd == read_fd) {
out_trace->push_back(Event::UrandomRead(/*length=*/regs.args[2]));
out_trace->push_back(Event::UrandomRead(/*length=*/regs.rdx));
if (flags & URANDOM_ERROR) {
force_result = -EINVAL;
inject_error = -EINVAL;
}
} else if (sock_fd >= 0 && sock_fd == read_fd) {
uint64_t length = regs.args[2];
out_trace->push_back(Event::SocketRead(length));
if (flags & SOCKET_READ_ERROR) {
force_result = -EINVAL;
} else {
is_socket_read = true;
socket_read_bytes = length;
if (flags & SOCKET_READ_SHORT) {
ASSERT_GT(socket_read_bytes, 0u);
socket_read_bytes--;
flags &= ~SOCKET_READ_SHORT;
}
}
}
break;
}
case __NR_close: {
if (sock_fd >= 0 && static_cast<int>(regs.args[0]) == sock_fd) {
out_trace->push_back(Event::SocketClose());
sock_fd = -1;
}
break;
}
case __NR_ioctl: {
const int ioctl_fd = regs.args[0];
const int ioctl_fd = regs.rdi;
if (urandom_fd >= 0 && ioctl_fd == urandom_fd &&
regs.args[1] == RNDGETENTCNT) {
regs.rsi == RNDGETENTCNT) {
out_trace->push_back(Event::UrandomIoctl());
is_urandom_ioctl = true;
ioctl_output_addr = regs.args[2];
ioctl_output_addr = regs.rdx;
}
break;
}
case __NR_socket: {
const int family = regs.args[0];
const int type = regs.args[1];
if (family == AF_UNIX && type == SOCK_STREAM) {
out_trace->push_back(Event::Socket());
is_socket_call = true;
if (flags & SOCKET_ERROR) {
force_result = -EINVAL;
}
}
break;
}
case __NR_connect: {
const int connect_fd = regs.args[0];
if (sock_fd >= 0 && connect_fd == sock_fd) {
out_trace->push_back(Event::Connect());
if (flags & CONNECT_ERROR) {
force_result = -EINVAL;
} else {
// The test system might not have an entropy daemon running so
// inject a success result.
force_result = 0;
}
}
break;
}
}
if (force_result.has_value()) {
ASSERT_TRUE(regs_break_syscall(child_pid, &regs));
if (inject_error) {
// Replace the system call number with -1 to cause the kernel to ignore
// the call. The -ENOSYS will be replaced later with the value of
// |inject_error|.
regs.orig_rax = -1;
ASSERT_EQ(0, ptrace(PTRACE_SETREGS, child_pid, nullptr, &regs));
}
ASSERT_EQ(0, ptrace(PTRACE_SYSCALL, child_pid, 0, 0));
@ -586,14 +285,15 @@ static void GetTrace(std::vector<Event> *out_trace, unsigned flags,
// and know that these events happen in pairs.
ASSERT_TRUE(WIFSTOPPED(status) && WSTOPSIG(status) == (SIGTRAP | 0x80));
if (force_result.has_value()) {
ASSERT_TRUE(regs_set_ret(child_pid, force_result.value()));
if (inject_error) {
if (inject_error != -ENOSYS) {
ASSERT_EQ(0, ptrace(PTRACE_GETREGS, child_pid, nullptr, &regs));
regs.rax = inject_error;
ASSERT_EQ(0, ptrace(PTRACE_SETREGS, child_pid, nullptr, &regs));
}
} else if (is_opening_urandom) {
ASSERT_TRUE(regs_read(&regs, child_pid));
urandom_fd = regs.ret;
} else if (is_socket_call) {
ASSERT_TRUE(regs_read(&regs, child_pid));
sock_fd = regs.ret;
ASSERT_EQ(0, ptrace(PTRACE_GETREGS, child_pid, nullptr, &regs));
urandom_fd = regs.rax;
} else if (is_urandom_ioctl) {
// The result is the number of bits of entropy that the kernel currently
// believes that it has. urandom.c waits until 256 bits are ready.
@ -606,19 +306,21 @@ static void GetTrace(std::vector<Event> *out_trace, unsigned flags,
flags &= ~URANDOM_NOT_READY;
}
memcpy_to_remote(child_pid, ioctl_output_addr, &result, sizeof(result));
} else if (is_socket_read) {
// Simulate a response from the entropy daemon since it might not be
// running on the current system.
uint8_t entropy[kDaemonWriteLength];
ASSERT_LE(socket_read_bytes, sizeof(entropy));
for (size_t i = 0; i < sizeof(entropy); i++) {
entropy[i] = i & 0xff;
}
memcpy_to_remote(child_pid, regs.args[1], entropy, socket_read_bytes);
ASSERT_TRUE(regs_set_ret(child_pid, socket_read_bytes));
// ptrace always works with ill-defined "words", which appear to be 64-bit
// on x86-64. Since the ioctl result is a 32-bit int, do a
// read-modify-write to inject the answer.
const uintptr_t aligned_addr = ioctl_output_addr & ~7;
const uintptr_t offset = ioctl_output_addr - aligned_addr;
union {
uint64_t word;
uint8_t bytes[8];
} u;
u.word = ptrace(PTRACE_PEEKDATA, child_pid,
reinterpret_cast<void *>(aligned_addr), nullptr);
memcpy(&u.bytes[offset], &result, sizeof(result));
ASSERT_EQ(0, ptrace(PTRACE_POKEDATA, child_pid,
reinterpret_cast<void *>(aligned_addr),
reinterpret_cast<void *>(u.word)));
}
}
}
@ -630,46 +332,24 @@ static void TestFunction() {
RAND_bytes(&byte, sizeof(byte));
}
static bool have_fork_detection() { return CRYPTO_get_fork_generation() != 0; }
static bool AppendDaemonEvents(std::vector<Event> *events, unsigned flags) {
events->push_back(Event::Socket());
if (flags & SOCKET_ERROR) {
return false;
}
bool ret = false;
events->push_back(Event::Connect());
if (flags & CONNECT_ERROR) {
goto out;
}
events->push_back(Event::SocketRead(kDaemonWriteLength));
if (flags & SOCKET_READ_ERROR) {
goto out;
}
if (flags & SOCKET_READ_SHORT) {
events->push_back(Event::SocketRead(1));
}
ret = true;
out:
events->push_back(Event::SocketClose());
return ret;
static bool have_fork_detection() {
return CRYPTO_get_fork_generation() != 0;
}
// TestFunctionPRNGModel is a model of how the urandom.c code will behave when
// |TestFunction| is run. It should return the same trace of events that
// |GetTrace| will observe the real code making.
static std::vector<Event> TestFunctionPRNGModel(unsigned flags) {
#if defined(BORINGSSL_FIPS)
static const bool is_fips = true;
#else
static const bool is_fips = false;
#endif
std::vector<Event> ret;
bool urandom_probed = false;
bool getrandom_ready = false;
const bool used_daemon = kUsesDaemon && AppendDaemonEvents(&ret, flags);
// Probe for getrandom support
ret.push_back(Event::GetRandom(1, GRND_NONBLOCK));
std::function<void()> wait_for_entropy;
@ -683,7 +363,7 @@ static std::vector<Event> TestFunctionPRNGModel(unsigned flags) {
}
wait_for_entropy = [&ret, &urandom_probed, flags] {
if (!kIsFIPS || urandom_probed) {
if (!is_fips || urandom_probed) {
return;
}
@ -734,15 +414,13 @@ static std::vector<Event> TestFunctionPRNGModel(unsigned flags) {
};
}
const size_t kSeedLength = CTR_DRBG_ENTROPY_LEN * (kIsFIPS ? 10 : 1);
const size_t kSeedLength = CTR_DRBG_ENTROPY_LEN * (is_fips ? 10 : 1);
const size_t kAdditionalDataLength = 32;
if (!have_rdrand()) {
if ((!have_fork_detection() && !sysrand(true, kAdditionalDataLength)) ||
// Initialise CRNGT.
(!used_daemon && !sysrand(true, kSeedLength + (kIsFIPS ? 16 : 0))) ||
// Personalisation draw if the daemon was used.
(used_daemon && !sysrand(false, CTR_DRBG_ENTROPY_LEN)) ||
!sysrand(true, kSeedLength + (is_fips ? 16 : 0)) ||
// Second entropy draw.
(!have_fork_detection() && !sysrand(true, kAdditionalDataLength))) {
return ret;
@ -755,7 +433,7 @@ static std::vector<Event> TestFunctionPRNGModel(unsigned flags) {
// Opportuntistic entropy draw in FIPS mode because RDRAND was used.
// In non-FIPS mode it's just drawn from |CRYPTO_sysrand| in a blocking
// way.
!sysrand(!kIsFIPS, CTR_DRBG_ENTROPY_LEN) ||
!sysrand(!is_fips, CTR_DRBG_ENTROPY_LEN) ||
// Second entropy draw's additional data.
(!have_fast_rdrand() && !have_fork_detection() &&
!sysrand(false, kAdditionalDataLength))) {
@ -802,23 +480,12 @@ TEST(URandomTest, Test) {
SCOPED_TRACE(buf);
for (unsigned flags = 0; flags < NEXT_FLAG; flags++) {
if (!kUsesDaemon && (flags & (SOCKET_ERROR | CONNECT_ERROR |
SOCKET_READ_ERROR | SOCKET_READ_SHORT))) {
// These cases are meaningless unless the code will try to use the entropy
// daemon.
continue;
}
TRACE_FLAG(NO_GETRANDOM);
TRACE_FLAG(NO_URANDOM);
TRACE_FLAG(GETRANDOM_NOT_READY);
TRACE_FLAG(URANDOM_NOT_READY);
TRACE_FLAG(GETRANDOM_ERROR);
TRACE_FLAG(URANDOM_ERROR);
TRACE_FLAG(SOCKET_ERROR);
TRACE_FLAG(CONNECT_ERROR);
TRACE_FLAG(SOCKET_READ_ERROR);
TRACE_FLAG(SOCKET_READ_SHORT);
const std::vector<Event> expected_trace = TestFunctionPRNGModel(flags);
CheckInvariants(expected_trace);
@ -849,5 +516,5 @@ int main(int argc, char **argv) {
return 0;
}
#endif // (X86_64 || AARCH64) && !SHARED_LIBRARY &&
// !UNSAFE_DETERMINISTIC_MODE && USE_NR_getrandom
#endif // X86_64 && !SHARED_LIBRARY && !UNSAFE_DETERMINISTIC_MODE &&
// USE_NR_getrandom

View File

@ -15,145 +15,21 @@
#include <openssl/ctrdrbg.h>
#include "../fipsmodule/rand/internal.h"
#include "../internal.h"
#if defined(BORINGSSL_FIPS)
#define ENTROPY_READ_LEN \
(/* last_block size */ 16 + CTR_DRBG_ENTROPY_LEN * BORINGSSL_FIPS_OVERREAD)
#if defined(OPENSSL_ANDROID)
#include <errno.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <sys/un.h>
#include <unistd.h>
static struct CRYPTO_STATIC_MUTEX g_socket_history_lock =
CRYPTO_STATIC_MUTEX_INIT;
// socket_history_t enumerates whether the entropy daemon should be contacted
// for a given entropy request. Values other than socket_not_yet_attempted are
// sticky so if the first attempt to read from the daemon fails it's assumed
// that the daemon is not present and no more attempts will be made. If the
// first attempt is successful then attempts will be made forever more.
enum socket_history_t {
// initial value, no connections to the entropy daemon have been made yet.
socket_not_yet_attempted = 0,
// reading from the entropy daemon was successful
socket_success,
// reading from the entropy daemon failed.
socket_failed,
};
enum socket_history_t g_socket_history = socket_not_yet_attempted;
// DAEMON_RESPONSE_LEN is the number of bytes that the entropy daemon replies
// with.
#define DAEMON_RESPONSE_LEN 496
OPENSSL_STATIC_ASSERT(ENTROPY_READ_LEN == DAEMON_RESPONSE_LEN,
"entropy daemon response length mismatch");
static int get_seed_from_daemon(uint8_t *out_entropy, size_t out_entropy_len) {
// |RAND_need_entropy| should never call this function for more than
// |DAEMON_RESPONSE_LEN| bytes.
if (out_entropy_len > DAEMON_RESPONSE_LEN) {
abort();
}
CRYPTO_STATIC_MUTEX_lock_read(&g_socket_history_lock);
const enum socket_history_t socket_history = g_socket_history;
CRYPTO_STATIC_MUTEX_unlock_read(&g_socket_history_lock);
if (socket_history == socket_failed) {
return 0;
}
int ret = 0;
const int sock = socket(AF_UNIX, SOCK_STREAM, 0);
if (sock < 0) {
goto out;
}
struct sockaddr_un sun;
memset(&sun, 0, sizeof(sun));
sun.sun_family = AF_UNIX;
static const char kSocketPath[] = "/dev/socket/prng_seeder";
OPENSSL_memcpy(sun.sun_path, kSocketPath, sizeof(kSocketPath));
if (connect(sock, (struct sockaddr *)&sun, sizeof(sun))) {
goto out;
}
uint8_t buffer[DAEMON_RESPONSE_LEN];
size_t done = 0;
while (done < sizeof(buffer)) {
ssize_t n;
do {
n = read(sock, buffer + done, sizeof(buffer) - done);
} while (n == -1 && errno == EINTR);
if (n < 1) {
goto out;
}
done += n;
}
if (done != DAEMON_RESPONSE_LEN) {
// The daemon should always write |DAEMON_RESPONSE_LEN| bytes on every
// connection.
goto out;
}
assert(out_entropy_len <= DAEMON_RESPONSE_LEN);
OPENSSL_memcpy(out_entropy, buffer, out_entropy_len);
ret = 1;
out:
if (socket_history == socket_not_yet_attempted) {
CRYPTO_STATIC_MUTEX_lock_write(&g_socket_history_lock);
if (g_socket_history == socket_not_yet_attempted) {
g_socket_history = (ret == 0) ? socket_failed : socket_success;
}
CRYPTO_STATIC_MUTEX_unlock_write(&g_socket_history_lock);
}
close(sock);
return ret;
}
#else
static int get_seed_from_daemon(uint8_t *out_entropy, size_t out_entropy_len) {
return 0;
}
#endif // OPENSSL_ANDROID
// RAND_need_entropy is called by the FIPS module when it has blocked because of
// a lack of entropy. This signal is used as an indication to feed it more.
void RAND_need_entropy(size_t bytes_needed) {
uint8_t buf[ENTROPY_READ_LEN];
uint8_t buf[/* last_block size */ 16 +
CTR_DRBG_ENTROPY_LEN * BORINGSSL_FIPS_OVERREAD];
size_t todo = sizeof(buf);
if (todo > bytes_needed) {
todo = bytes_needed;
}
int want_additional_input;
if (get_seed_from_daemon(buf, todo)) {
want_additional_input = 1;
} else {
CRYPTO_get_seed_entropy(buf, todo, &want_additional_input);
}
if (boringssl_fips_break_test("CRNG")) {
// This breaks the "continuous random number generator test" defined in FIPS
// 140-2, section 4.9.2, and implemented in |rand_get_seed|.
OPENSSL_memset(buf, 0, todo);
}
CRYPTO_get_seed_entropy(buf, todo, &want_additional_input);
RAND_load_entropy(buf, todo, want_additional_input);
}