Add a function to derive an EC key from some input secret.
Chrome sync folks need to do this. Add a function for it. There doesn't seem to be a standard way to do it, so pick something arbitrary. Bug: chromium:1010968 Change-Id: Ib55456e4af5849cd9da33f397e8f12deb6f02917 Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/38144 Commit-Queue: Adam Langley <agl@google.com> Reviewed-by: Adam Langley <agl@google.com>
This commit is contained in:
parent
7458ded264
commit
bc4c09df64
@ -268,6 +268,7 @@ add_library(
|
||||
ecdh_extra/ecdh_extra.c
|
||||
ecdsa_extra/ecdsa_asn1.c
|
||||
ec_extra/ec_asn1.c
|
||||
ec_extra/ec_derive.c
|
||||
err/err.c
|
||||
err_data.c
|
||||
engine/engine.c
|
||||
|
96
crypto/ec_extra/ec_derive.c
Normal file
96
crypto/ec_extra/ec_derive.c
Normal file
@ -0,0 +1,96 @@
|
||||
/* Copyright (c) 2019, Google Inc.
|
||||
*
|
||||
* Permission to use, copy, modify, and/or distribute this software for any
|
||||
* purpose with or without fee is hereby granted, provided that the above
|
||||
* copyright notice and this permission notice appear in all copies.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
||||
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
|
||||
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
|
||||
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
|
||||
|
||||
#include <openssl/ec_key.h>
|
||||
|
||||
#include <string.h>
|
||||
|
||||
#include <openssl/buf.h>
|
||||
#include <openssl/ec.h>
|
||||
#include <openssl/err.h>
|
||||
#include <openssl/digest.h>
|
||||
#include <openssl/hkdf.h>
|
||||
#include <openssl/mem.h>
|
||||
|
||||
#include "../fipsmodule/ec/internal.h"
|
||||
|
||||
|
||||
EC_KEY *EC_KEY_derive_from_secret(const EC_GROUP *group, const uint8_t *secret,
|
||||
size_t secret_len) {
|
||||
#define EC_KEY_DERIVE_MAX_NAME_LEN 16
|
||||
const char *name = EC_curve_nid2nist(EC_GROUP_get_curve_name(group));
|
||||
if (name == NULL || strlen(name) > EC_KEY_DERIVE_MAX_NAME_LEN) {
|
||||
OPENSSL_PUT_ERROR(EC, EC_R_UNKNOWN_GROUP);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// Assemble a label string to provide some key separation in case |secret| is
|
||||
// misused, but ultimately it's on the caller to ensure |secret| is suitably
|
||||
// separated.
|
||||
static const char kLabel[] = "derive EC key ";
|
||||
char info[sizeof(kLabel) + EC_KEY_DERIVE_MAX_NAME_LEN];
|
||||
BUF_strlcpy(info, kLabel, sizeof(info));
|
||||
BUF_strlcat(info, name, sizeof(info));
|
||||
|
||||
// Generate 128 bits beyond the group order so the bias is at most 2^-128.
|
||||
#define EC_KEY_DERIVE_EXTRA_BITS 128
|
||||
#define EC_KEY_DERIVE_EXTRA_BYTES (EC_KEY_DERIVE_EXTRA_BITS / 8)
|
||||
|
||||
if (EC_GROUP_order_bits(group) <= EC_KEY_DERIVE_EXTRA_BITS + 8) {
|
||||
// The reduction strategy below requires the group order be large enough.
|
||||
// (The actual bound is a bit tighter, but our curves are much larger than
|
||||
// 128-bit.)
|
||||
OPENSSL_PUT_ERROR(EC, ERR_R_INTERNAL_ERROR);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
uint8_t derived[EC_KEY_DERIVE_EXTRA_BYTES + EC_MAX_BYTES];
|
||||
size_t derived_len = BN_num_bytes(&group->order) + EC_KEY_DERIVE_EXTRA_BYTES;
|
||||
assert(derived_len <= sizeof(derived));
|
||||
if (!HKDF(derived, derived_len, EVP_sha256(), secret, secret_len,
|
||||
/*salt=*/NULL, /*salt_len=*/0, (const uint8_t *)info,
|
||||
strlen(info))) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
EC_KEY *key = EC_KEY_new();
|
||||
BN_CTX *ctx = BN_CTX_new();
|
||||
BIGNUM *priv = BN_bin2bn(derived, derived_len, NULL);
|
||||
EC_POINT *pub = EC_POINT_new(group);
|
||||
if (key == NULL || ctx == NULL || priv == NULL || pub == NULL ||
|
||||
// Reduce |priv| with Montgomery reduction. First, convert "from"
|
||||
// Montgomery form to compute |priv| * R^-1 mod |order|. This requires
|
||||
// |priv| be under order * R, which is true if the group order is large
|
||||
// enough. 2^(num_bytes(order)) < 2^8 * order, so:
|
||||
//
|
||||
// priv < 2^8 * order * 2^128 < order * order < order * R
|
||||
!BN_from_montgomery(priv, priv, group->order_mont, ctx) ||
|
||||
// Multiply by R^2 and do another Montgomery reduction to compute
|
||||
// priv * R^-1 * R^2 * R^-1 = priv mod order.
|
||||
!BN_to_montgomery(priv, priv, group->order_mont, ctx) ||
|
||||
!EC_POINT_mul(group, pub, priv, NULL, NULL, ctx) ||
|
||||
!EC_KEY_set_group(key, group) || !EC_KEY_set_public_key(key, pub) ||
|
||||
!EC_KEY_set_private_key(key, priv)) {
|
||||
EC_KEY_free(key);
|
||||
key = NULL;
|
||||
goto err;
|
||||
}
|
||||
|
||||
err:
|
||||
OPENSSL_cleanse(derived, sizeof(derived));
|
||||
BN_CTX_free(ctx);
|
||||
BN_free(priv);
|
||||
EC_POINT_free(pub);
|
||||
return key;
|
||||
}
|
@ -912,3 +912,87 @@ TEST(ECTest, ScalarBaseMultVectors) {
|
||||
#endif
|
||||
});
|
||||
}
|
||||
|
||||
static uint8_t FromHexChar(char c) {
|
||||
if ('0' <= c && c <= '9') {
|
||||
return c - '0';
|
||||
}
|
||||
if ('a' <= c && c <= 'f') {
|
||||
return c - 'a' + 10;
|
||||
}
|
||||
abort();
|
||||
}
|
||||
|
||||
static std::vector<uint8_t> HexToBytes(const char *str) {
|
||||
std::vector<uint8_t> ret;
|
||||
while (str[0] != '\0') {
|
||||
ret.push_back((FromHexChar(str[0]) << 4) | FromHexChar(str[1]));
|
||||
str += 2;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
TEST(ECTest, DeriveFromSecret) {
|
||||
struct DeriveTest {
|
||||
int curve;
|
||||
std::vector<uint8_t> secret;
|
||||
std::vector<uint8_t> expected_priv;
|
||||
std::vector<uint8_t> expected_pub;
|
||||
};
|
||||
const DeriveTest kDeriveTests[] = {
|
||||
{NID_X9_62_prime256v1, HexToBytes(""),
|
||||
HexToBytes(
|
||||
"b98a86a71efb51ebdac4759937b977e9b0c05224675bb2b6a58ba306e237f4b8"),
|
||||
HexToBytes(
|
||||
"04fbe6cab439918e00231a2ff073cdc25823998864a9eb36f809095a1a919ece875"
|
||||
"a145803fbe89a6cde53936e3c6d9c253ed3d38f5f58cae455c27e95645ceda9")},
|
||||
{NID_X9_62_prime256v1, HexToBytes("123456"),
|
||||
HexToBytes(
|
||||
"44a72bc62087b88e5ab7126766177ed0d8f1ed09ad066cd746527fc201105a7e"),
|
||||
HexToBytes(
|
||||
"04ec0555cd76e991fef7f5504343937d0f38696db3360a4854052cb0d84a377a5a0"
|
||||
"ff64c352755c28692b4ae085c2b817db9a1eddbd22e9cf39c12751e0870791b")},
|
||||
{NID_X9_62_prime256v1, HexToBytes("00000000000000000000000000000000"),
|
||||
HexToBytes(
|
||||
"7ca1e2c83e6a5f2c1b3e7d58180226f269930c4b9fbe2a275096079630b7c57d"),
|
||||
HexToBytes(
|
||||
"0442ef70c8fc0fbe383ed0a0da36f39f9a590f3feebc07863cc858c9a8ef0465731"
|
||||
"0408c249bd4d61929c54b71ffe056e6b4fa1eb537039b43d1c175f0ceab0f89")},
|
||||
{NID_X9_62_prime256v1,
|
||||
HexToBytes(
|
||||
"de9c9b35543aaa0fba039e34e8ca9695da3225c7161c9e3a8c70356cac28c780"),
|
||||
HexToBytes(
|
||||
"659f5abf3b62b9931c29d6ed0722efd2349fa56f54e708cf3272f620f1bc44d0"),
|
||||
HexToBytes(
|
||||
"046741f806b593bf3a3d4a9d76bdcb9b0d7874633cbea8f42c05e78561f7e8ec362"
|
||||
"b9b6f1913ded796fbdafe7f210cea897ac22a4e580c06a60f2659fd09f1830f")},
|
||||
{NID_secp384r1, HexToBytes("123456"),
|
||||
HexToBytes("95cd90d548997de090c7622708eccb7edc1b1bd78d2422235ad97406dada"
|
||||
"076555309da200096f6e4b36c46002beee89"),
|
||||
HexToBytes(
|
||||
"04007b2d026aa7636fa912c3f970d62bb6c10fa81c8f3290ed90b2d701696d1c6b9"
|
||||
"5af88ce13e962996a7ac37e16527cb5d69bd081b8641d07634cf84b438600ec9434"
|
||||
"15ac6bd7a0236f7ab0ea31ece67df03fa11646ea2b75e73d1b5e45b75c18")},
|
||||
};
|
||||
|
||||
for (const auto &test : kDeriveTests) {
|
||||
SCOPED_TRACE(Bytes(test.secret));
|
||||
bssl::UniquePtr<EC_GROUP> group(EC_GROUP_new_by_curve_name(test.curve));
|
||||
ASSERT_TRUE(group);
|
||||
bssl::UniquePtr<EC_KEY> key(EC_KEY_derive_from_secret(
|
||||
group.get(), test.secret.data(), test.secret.size()));
|
||||
ASSERT_TRUE(key);
|
||||
|
||||
std::vector<uint8_t> priv(BN_num_bytes(EC_GROUP_get0_order(group.get())));
|
||||
ASSERT_TRUE(BN_bn2bin_padded(priv.data(), priv.size(),
|
||||
EC_KEY_get0_private_key(key.get())));
|
||||
EXPECT_EQ(Bytes(priv), Bytes(test.expected_priv));
|
||||
|
||||
uint8_t *pub = nullptr;
|
||||
size_t pub_len =
|
||||
EC_KEY_key2buf(key.get(), POINT_CONVERSION_UNCOMPRESSED, &pub, nullptr);
|
||||
bssl::UniquePtr<uint8_t> free_pub(pub);
|
||||
EXPECT_NE(pub_len, 0u);
|
||||
EXPECT_EQ(Bytes(pub, pub_len), Bytes(test.expected_pub));
|
||||
}
|
||||
}
|
||||
|
@ -846,8 +846,9 @@ OPENSSL_EXPORT int BN_to_montgomery(BIGNUM *ret, const BIGNUM *a,
|
||||
const BN_MONT_CTX *mont, BN_CTX *ctx);
|
||||
|
||||
// BN_from_montgomery sets |ret| equal to |a| * R^-1, i.e. translates values out
|
||||
// of the Montgomery domain. |a| is assumed to be in the range [0, n), where |n|
|
||||
// is the Montgomery modulus. It returns one on success or zero on error.
|
||||
// of the Montgomery domain. |a| is assumed to be in the range [0, n*R), where
|
||||
// |n| is the Montgomery modulus. Note n < R, so inputs in the range [0, n*n)
|
||||
// are valid. This function returns one on success or zero on error.
|
||||
OPENSSL_EXPORT int BN_from_montgomery(BIGNUM *ret, const BIGNUM *a,
|
||||
const BN_MONT_CTX *mont, BN_CTX *ctx);
|
||||
|
||||
|
@ -130,7 +130,7 @@ OPENSSL_EXPORT const BIGNUM *EC_KEY_get0_private_key(const EC_KEY *key);
|
||||
// EC_KEY_set_private_key sets the private key of |key| to |priv|. It returns
|
||||
// one on success and zero otherwise. |key| must already have had a group
|
||||
// configured (see |EC_KEY_set_group| and |EC_KEY_new_by_curve_name|).
|
||||
OPENSSL_EXPORT int EC_KEY_set_private_key(EC_KEY *key, const BIGNUM *prv);
|
||||
OPENSSL_EXPORT int EC_KEY_set_private_key(EC_KEY *key, const BIGNUM *priv);
|
||||
|
||||
// EC_KEY_get0_public_key returns a pointer to the public key point inside
|
||||
// |key|.
|
||||
@ -195,6 +195,20 @@ OPENSSL_EXPORT int EC_KEY_generate_key(EC_KEY *key);
|
||||
// additional checks for FIPS compliance.
|
||||
OPENSSL_EXPORT int EC_KEY_generate_key_fips(EC_KEY *key);
|
||||
|
||||
// EC_KEY_derive_from_secret deterministically derives a private key for |group|
|
||||
// from an input secret using HKDF-SHA256. It returns a newly-allocated |EC_KEY|
|
||||
// on success or NULL on error. |secret| must not be used in any other
|
||||
// algorithm. If using a base secret for multiple operations, derive separate
|
||||
// values with a KDF such as HKDF first.
|
||||
//
|
||||
// Note this function implements an arbitrary derivation scheme, rather than any
|
||||
// particular standard one. New protocols are recommended to use X25519 and
|
||||
// Ed25519, which have standard byte import functions. See
|
||||
// |X25519_public_from_private| and |ED25519_keypair_from_seed|.
|
||||
OPENSSL_EXPORT EC_KEY *EC_KEY_derive_from_secret(const EC_GROUP *group,
|
||||
const uint8_t *secret,
|
||||
size_t secret_len);
|
||||
|
||||
|
||||
// Serialisation.
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user