Remove RC4 assembly language optimizations.
This commit is contained in:
parent
00168a0987
commit
ddde8768c1
@ -161,14 +161,6 @@ static void aead_rc4_md5_tls_cleanup(EVP_AEAD_CTX *ctx) {
|
||||
OPENSSL_free(rc4_ctx);
|
||||
}
|
||||
|
||||
#if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64)
|
||||
#define STITCHED_CALL
|
||||
|
||||
/* rc4_md5_enc is defined in rc4_md5-x86_64.pl */
|
||||
void rc4_md5_enc(RC4_KEY *key, const void *in0, void *out, MD5_CTX *ctx,
|
||||
const void *inp, size_t blocks);
|
||||
#endif
|
||||
|
||||
static int aead_rc4_md5_tls_seal(const EVP_AEAD_CTX *ctx, uint8_t *out,
|
||||
size_t *out_len, size_t max_out_len,
|
||||
const uint8_t *nonce, size_t nonce_len,
|
||||
@ -216,38 +208,6 @@ static int aead_rc4_md5_tls_seal(const EVP_AEAD_CTX *ctx, uint8_t *out,
|
||||
ad_extra[1] = (uint8_t)(in_len & 0xff);
|
||||
MD5_Update(&md, ad_extra, sizeof(ad_extra));
|
||||
|
||||
#if defined(STITCHED_CALL)
|
||||
/* 32 is $MOD from rc4_md5-x86_64.pl. */
|
||||
rc4_off = 32 - 1 - (rc4_ctx->rc4.x & (32 - 1));
|
||||
md5_off = MD5_CBLOCK - md.num;
|
||||
/* Ensure RC4 is behind MD5. */
|
||||
if (rc4_off > md5_off) {
|
||||
md5_off += MD5_CBLOCK;
|
||||
}
|
||||
assert(md5_off >= rc4_off);
|
||||
|
||||
if (in_len > md5_off && (blocks = (in_len - md5_off) / MD5_CBLOCK) &&
|
||||
(OPENSSL_ia32cap_P[0] & (1 << 20)) == 0) {
|
||||
/* Process the initial portions of the plaintext normally. */
|
||||
MD5_Update(&md, in, md5_off);
|
||||
RC4(&rc4_ctx->rc4, rc4_off, in, out);
|
||||
|
||||
/* Process the next |blocks| blocks of plaintext with stitched routines. */
|
||||
rc4_md5_enc(&rc4_ctx->rc4, in + rc4_off, out + rc4_off, &md, in + md5_off,
|
||||
blocks);
|
||||
blocks *= MD5_CBLOCK;
|
||||
rc4_off += blocks;
|
||||
md5_off += blocks;
|
||||
md.Nh += blocks >> 29;
|
||||
md.Nl += blocks <<= 3;
|
||||
if (md.Nl < (unsigned int)blocks) {
|
||||
md.Nh++;
|
||||
}
|
||||
} else {
|
||||
rc4_off = 0;
|
||||
md5_off = 0;
|
||||
}
|
||||
#endif
|
||||
/* Finish computing the MAC. */
|
||||
MD5_Update(&md, in + md5_off, in_len - md5_off);
|
||||
MD5_Final(digest, &md);
|
||||
@ -318,43 +278,6 @@ static int aead_rc4_md5_tls_open(const EVP_AEAD_CTX *ctx, uint8_t *out,
|
||||
ad_extra[1] = (uint8_t)(plaintext_len & 0xff);
|
||||
MD5_Update(&md, ad_extra, sizeof(ad_extra));
|
||||
|
||||
#if defined(STITCHED_CALL)
|
||||
rc4_off = 32 - 1 - (rc4_ctx->rc4.x & (32 - 1));
|
||||
md5_off = MD5_CBLOCK - md.num;
|
||||
/* Ensure MD5 is a full block behind RC4 so it has plaintext to operate on in
|
||||
* both normal and stitched routines. */
|
||||
if (md5_off > rc4_off) {
|
||||
rc4_off += 2 * MD5_CBLOCK;
|
||||
} else {
|
||||
rc4_off += MD5_CBLOCK;
|
||||
}
|
||||
|
||||
if (in_len > rc4_off && (blocks = (in_len - rc4_off) / MD5_CBLOCK) &&
|
||||
(OPENSSL_ia32cap_P[0] & (1 << 20)) == 0) {
|
||||
/* Decrypt the initial portion of the ciphertext and digest the plaintext
|
||||
* normally. */
|
||||
RC4(&rc4_ctx->rc4, rc4_off, in, out);
|
||||
MD5_Update(&md, out, md5_off);
|
||||
|
||||
/* Decrypt and digest the next |blocks| blocks of ciphertext with the
|
||||
* stitched routines. */
|
||||
rc4_md5_enc(&rc4_ctx->rc4, in + rc4_off, out + rc4_off, &md, out + md5_off,
|
||||
blocks);
|
||||
blocks *= MD5_CBLOCK;
|
||||
rc4_off += blocks;
|
||||
md5_off += blocks;
|
||||
l = (md.Nl + (blocks << 3)) & 0xffffffffU;
|
||||
if (l < md.Nl) {
|
||||
md.Nh++;
|
||||
}
|
||||
md.Nl = l;
|
||||
md.Nh += blocks >> 29;
|
||||
} else {
|
||||
md5_off = 0;
|
||||
rc4_off = 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Process the remainder of the input. */
|
||||
RC4(&rc4_ctx->rc4, in_len - rc4_off, in + rc4_off, out + rc4_off);
|
||||
MD5_Update(&md, out + md5_off, plaintext_len - md5_off);
|
||||
|
@ -1,31 +1,9 @@
|
||||
include_directories(../../include)
|
||||
|
||||
if (${ARCH} STREQUAL "x86_64")
|
||||
set(
|
||||
RC4_ARCH_SOURCES
|
||||
|
||||
rc4-x86_64.${ASM_EXT}
|
||||
rc4-md5-x86_64.${ASM_EXT}
|
||||
)
|
||||
endif()
|
||||
|
||||
if (${ARCH} STREQUAL "x86")
|
||||
set(
|
||||
RC4_ARCH_SOURCES
|
||||
|
||||
rc4-586.${ASM_EXT}
|
||||
)
|
||||
endif()
|
||||
|
||||
add_library(
|
||||
rc4
|
||||
|
||||
OBJECT
|
||||
|
||||
rc4.c
|
||||
${RC4_ARCH_SOURCES}
|
||||
)
|
||||
|
||||
perlasm(rc4-x86_64.${ASM_EXT} asm/rc4-x86_64.pl)
|
||||
perlasm(rc4-md5-x86_64.${ASM_EXT} asm/rc4-md5-x86_64.pl)
|
||||
perlasm(rc4-586.${ASM_EXT} asm/rc4-586.pl)
|
||||
|
@ -1,414 +0,0 @@
|
||||
#!/usr/bin/env perl
|
||||
|
||||
# ====================================================================
|
||||
# [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
|
||||
# project. The module is, however, dual licensed under OpenSSL and
|
||||
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
||||
# details see http://www.openssl.org/~appro/cryptogams/.
|
||||
# ====================================================================
|
||||
|
||||
# At some point it became apparent that the original SSLeay RC4
|
||||
# assembler implementation performs suboptimally on latest IA-32
|
||||
# microarchitectures. After re-tuning performance has changed as
|
||||
# following:
|
||||
#
|
||||
# Pentium -10%
|
||||
# Pentium III +12%
|
||||
# AMD +50%(*)
|
||||
# P4 +250%(**)
|
||||
#
|
||||
# (*) This number is actually a trade-off:-) It's possible to
|
||||
# achieve +72%, but at the cost of -48% off PIII performance.
|
||||
# In other words code performing further 13% faster on AMD
|
||||
# would perform almost 2 times slower on Intel PIII...
|
||||
# For reference! This code delivers ~80% of rc4-amd64.pl
|
||||
# performance on the same Opteron machine.
|
||||
# (**) This number requires compressed key schedule set up by
|
||||
# RC4_set_key [see commentary below for further details].
|
||||
#
|
||||
# <appro@fy.chalmers.se>
|
||||
|
||||
# May 2011
|
||||
#
|
||||
# Optimize for Core2 and Westmere [and incidentally Opteron]. Current
|
||||
# performance in cycles per processed byte (less is better) and
|
||||
# improvement relative to previous version of this module is:
|
||||
#
|
||||
# Pentium 10.2 # original numbers
|
||||
# Pentium III 7.8(*)
|
||||
# Intel P4 7.5
|
||||
#
|
||||
# Opteron 6.1/+20% # new MMX numbers
|
||||
# Core2 5.3/+67%(**)
|
||||
# Westmere 5.1/+94%(**)
|
||||
# Sandy Bridge 5.0/+8%
|
||||
# Atom 12.6/+6%
|
||||
#
|
||||
# (*) PIII can actually deliver 6.6 cycles per byte with MMX code,
|
||||
# but this specific code performs poorly on Core2. And vice
|
||||
# versa, below MMX/SSE code delivering 5.8/7.1 on Core2 performs
|
||||
# poorly on PIII, at 8.0/14.5:-( As PIII is not a "hot" CPU
|
||||
# [anymore], I chose to discard PIII-specific code path and opt
|
||||
# for original IALU-only code, which is why MMX/SSE code path
|
||||
# is guarded by SSE2 bit (see below), not MMX/SSE.
|
||||
# (**) Performance vs. block size on Core2 and Westmere had a maximum
|
||||
# at ... 64 bytes block size. And it was quite a maximum, 40-60%
|
||||
# in comparison to largest 8KB block size. Above improvement
|
||||
# coefficients are for the largest block size.
|
||||
|
||||
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
|
||||
push(@INC,"${dir}","${dir}../../perlasm");
|
||||
require "x86asm.pl";
|
||||
|
||||
&asm_init($ARGV[0],"rc4-586.pl",$x86only = $ARGV[$#ARGV] eq "386");
|
||||
|
||||
$xx="eax";
|
||||
$yy="ebx";
|
||||
$tx="ecx";
|
||||
$ty="edx";
|
||||
$inp="esi";
|
||||
$out="ebp";
|
||||
$dat="edi";
|
||||
|
||||
sub RC4_loop {
|
||||
my $i=shift;
|
||||
my $func = ($i==0)?*mov:*or;
|
||||
|
||||
&add (&LB($yy),&LB($tx));
|
||||
&mov ($ty,&DWP(0,$dat,$yy,4));
|
||||
&mov (&DWP(0,$dat,$yy,4),$tx);
|
||||
&mov (&DWP(0,$dat,$xx,4),$ty);
|
||||
&add ($ty,$tx);
|
||||
&inc (&LB($xx));
|
||||
&and ($ty,0xff);
|
||||
&ror ($out,8) if ($i!=0);
|
||||
if ($i<3) {
|
||||
&mov ($tx,&DWP(0,$dat,$xx,4));
|
||||
} else {
|
||||
&mov ($tx,&wparam(3)); # reload [re-biased] out
|
||||
}
|
||||
&$func ($out,&DWP(0,$dat,$ty,4));
|
||||
}
|
||||
|
||||
if ($alt=0) {
|
||||
# >20% faster on Atom and Sandy Bridge[!], 8% faster on Opteron,
|
||||
# but ~40% slower on Core2 and Westmere... Attempt to add movz
|
||||
# brings down Opteron by 25%, Atom and Sandy Bridge by 15%, yet
|
||||
# on Core2 with movz it's almost 20% slower than below alternative
|
||||
# code... Yes, it's a total mess...
|
||||
my @XX=($xx,$out);
|
||||
$RC4_loop_mmx = sub { # SSE actually...
|
||||
my $i=shift;
|
||||
my $j=$i<=0?0:$i>>1;
|
||||
my $mm=$i<=0?"mm0":"mm".($i&1);
|
||||
|
||||
&add (&LB($yy),&LB($tx));
|
||||
&lea (@XX[1],&DWP(1,@XX[0]));
|
||||
&pxor ("mm2","mm0") if ($i==0);
|
||||
&psllq ("mm1",8) if ($i==0);
|
||||
&and (@XX[1],0xff);
|
||||
&pxor ("mm0","mm0") if ($i<=0);
|
||||
&mov ($ty,&DWP(0,$dat,$yy,4));
|
||||
&mov (&DWP(0,$dat,$yy,4),$tx);
|
||||
&pxor ("mm1","mm2") if ($i==0);
|
||||
&mov (&DWP(0,$dat,$XX[0],4),$ty);
|
||||
&add (&LB($ty),&LB($tx));
|
||||
&movd (@XX[0],"mm7") if ($i==0);
|
||||
&mov ($tx,&DWP(0,$dat,@XX[1],4));
|
||||
&pxor ("mm1","mm1") if ($i==1);
|
||||
&movq ("mm2",&QWP(0,$inp)) if ($i==1);
|
||||
&movq (&QWP(-8,(@XX[0],$inp)),"mm1") if ($i==0);
|
||||
&pinsrw ($mm,&DWP(0,$dat,$ty,4),$j);
|
||||
|
||||
push (@XX,shift(@XX)) if ($i>=0);
|
||||
}
|
||||
} else {
|
||||
# Using pinsrw here improves performane on Intel CPUs by 2-3%, but
|
||||
# brings down AMD by 7%...
|
||||
$RC4_loop_mmx = sub {
|
||||
my $i=shift;
|
||||
|
||||
&add (&LB($yy),&LB($tx));
|
||||
&psllq ("mm1",8*(($i-1)&7)) if (abs($i)!=1);
|
||||
&mov ($ty,&DWP(0,$dat,$yy,4));
|
||||
&mov (&DWP(0,$dat,$yy,4),$tx);
|
||||
&mov (&DWP(0,$dat,$xx,4),$ty);
|
||||
&inc ($xx);
|
||||
&add ($ty,$tx);
|
||||
&movz ($xx,&LB($xx)); # (*)
|
||||
&movz ($ty,&LB($ty)); # (*)
|
||||
&pxor ("mm2",$i==1?"mm0":"mm1") if ($i>=0);
|
||||
&movq ("mm0",&QWP(0,$inp)) if ($i<=0);
|
||||
&movq (&QWP(-8,($out,$inp)),"mm2") if ($i==0);
|
||||
&mov ($tx,&DWP(0,$dat,$xx,4));
|
||||
&movd ($i>0?"mm1":"mm2",&DWP(0,$dat,$ty,4));
|
||||
|
||||
# (*) This is the key to Core2 and Westmere performance.
|
||||
# Whithout movz out-of-order execution logic confuses
|
||||
# itself and fails to reorder loads and stores. Problem
|
||||
# appears to be fixed in Sandy Bridge...
|
||||
}
|
||||
}
|
||||
|
||||
&external_label("OPENSSL_ia32cap_P");
|
||||
|
||||
# void asm_RC4(RC4_KEY *key,size_t len,const unsigned char *inp,unsigned char *out);
|
||||
&function_begin("asm_RC4");
|
||||
&mov ($dat,&wparam(0)); # load key schedule pointer
|
||||
&mov ($ty, &wparam(1)); # load len
|
||||
&mov ($inp,&wparam(2)); # load inp
|
||||
&mov ($out,&wparam(3)); # load out
|
||||
|
||||
&xor ($xx,$xx); # avoid partial register stalls
|
||||
&xor ($yy,$yy);
|
||||
|
||||
&cmp ($ty,0); # safety net
|
||||
&je (&label("abort"));
|
||||
|
||||
&mov (&LB($xx),&BP(0,$dat)); # load key->x
|
||||
&mov (&LB($yy),&BP(4,$dat)); # load key->y
|
||||
&add ($dat,8);
|
||||
|
||||
&lea ($tx,&DWP(0,$inp,$ty));
|
||||
&sub ($out,$inp); # re-bias out
|
||||
&mov (&wparam(1),$tx); # save input+len
|
||||
|
||||
&inc (&LB($xx));
|
||||
|
||||
# detect compressed key schedule...
|
||||
&cmp (&DWP(256,$dat),-1);
|
||||
&je (&label("RC4_CHAR"));
|
||||
|
||||
&mov ($tx,&DWP(0,$dat,$xx,4));
|
||||
|
||||
&and ($ty,-4); # how many 4-byte chunks?
|
||||
&jz (&label("loop1"));
|
||||
|
||||
&mov (&wparam(3),$out); # $out as accumulator in these loops
|
||||
if ($x86only) {
|
||||
&jmp (&label("go4loop4"));
|
||||
} else {
|
||||
&test ($ty,-8);
|
||||
&jz (&label("go4loop4"));
|
||||
|
||||
&picmeup($out,"OPENSSL_ia32cap_P");
|
||||
&bt (&DWP(0,$out),26); # check SSE2 bit [could have been MMX]
|
||||
&jnc (&label("go4loop4"));
|
||||
|
||||
&mov ($out,&wparam(3)) if (!$alt);
|
||||
&movd ("mm7",&wparam(3)) if ($alt);
|
||||
&and ($ty,-8);
|
||||
&lea ($ty,&DWP(-8,$inp,$ty));
|
||||
&mov (&DWP(-4,$dat),$ty); # save input+(len/8)*8-8
|
||||
|
||||
&$RC4_loop_mmx(-1);
|
||||
&jmp(&label("loop_mmx_enter"));
|
||||
|
||||
&set_label("loop_mmx",16);
|
||||
&$RC4_loop_mmx(0);
|
||||
&set_label("loop_mmx_enter");
|
||||
for ($i=1;$i<8;$i++) { &$RC4_loop_mmx($i); }
|
||||
&mov ($ty,$yy);
|
||||
&xor ($yy,$yy); # this is second key to Core2
|
||||
&mov (&LB($yy),&LB($ty)); # and Westmere performance...
|
||||
&cmp ($inp,&DWP(-4,$dat));
|
||||
&lea ($inp,&DWP(8,$inp));
|
||||
&jb (&label("loop_mmx"));
|
||||
|
||||
if ($alt) {
|
||||
&movd ($out,"mm7");
|
||||
&pxor ("mm2","mm0");
|
||||
&psllq ("mm1",8);
|
||||
&pxor ("mm1","mm2");
|
||||
&movq (&QWP(-8,$out,$inp),"mm1");
|
||||
} else {
|
||||
&psllq ("mm1",56);
|
||||
&pxor ("mm2","mm1");
|
||||
&movq (&QWP(-8,$out,$inp),"mm2");
|
||||
}
|
||||
&emms ();
|
||||
|
||||
&cmp ($inp,&wparam(1)); # compare to input+len
|
||||
&je (&label("done"));
|
||||
&jmp (&label("loop1"));
|
||||
}
|
||||
|
||||
&set_label("go4loop4",16);
|
||||
&lea ($ty,&DWP(-4,$inp,$ty));
|
||||
&mov (&wparam(2),$ty); # save input+(len/4)*4-4
|
||||
|
||||
&set_label("loop4");
|
||||
for ($i=0;$i<4;$i++) { RC4_loop($i); }
|
||||
&ror ($out,8);
|
||||
&xor ($out,&DWP(0,$inp));
|
||||
&cmp ($inp,&wparam(2)); # compare to input+(len/4)*4-4
|
||||
&mov (&DWP(0,$tx,$inp),$out);# $tx holds re-biased out here
|
||||
&lea ($inp,&DWP(4,$inp));
|
||||
&mov ($tx,&DWP(0,$dat,$xx,4));
|
||||
&jb (&label("loop4"));
|
||||
|
||||
&cmp ($inp,&wparam(1)); # compare to input+len
|
||||
&je (&label("done"));
|
||||
&mov ($out,&wparam(3)); # restore $out
|
||||
|
||||
&set_label("loop1",16);
|
||||
&add (&LB($yy),&LB($tx));
|
||||
&mov ($ty,&DWP(0,$dat,$yy,4));
|
||||
&mov (&DWP(0,$dat,$yy,4),$tx);
|
||||
&mov (&DWP(0,$dat,$xx,4),$ty);
|
||||
&add ($ty,$tx);
|
||||
&inc (&LB($xx));
|
||||
&and ($ty,0xff);
|
||||
&mov ($ty,&DWP(0,$dat,$ty,4));
|
||||
&xor (&LB($ty),&BP(0,$inp));
|
||||
&lea ($inp,&DWP(1,$inp));
|
||||
&mov ($tx,&DWP(0,$dat,$xx,4));
|
||||
&cmp ($inp,&wparam(1)); # compare to input+len
|
||||
&mov (&BP(-1,$out,$inp),&LB($ty));
|
||||
&jb (&label("loop1"));
|
||||
|
||||
&jmp (&label("done"));
|
||||
|
||||
# this is essentially Intel P4 specific codepath...
|
||||
&set_label("RC4_CHAR",16);
|
||||
&movz ($tx,&BP(0,$dat,$xx));
|
||||
# strangely enough unrolled loop performs over 20% slower...
|
||||
&set_label("cloop1");
|
||||
&add (&LB($yy),&LB($tx));
|
||||
&movz ($ty,&BP(0,$dat,$yy));
|
||||
&mov (&BP(0,$dat,$yy),&LB($tx));
|
||||
&mov (&BP(0,$dat,$xx),&LB($ty));
|
||||
&add (&LB($ty),&LB($tx));
|
||||
&movz ($ty,&BP(0,$dat,$ty));
|
||||
&add (&LB($xx),1);
|
||||
&xor (&LB($ty),&BP(0,$inp));
|
||||
&lea ($inp,&DWP(1,$inp));
|
||||
&movz ($tx,&BP(0,$dat,$xx));
|
||||
&cmp ($inp,&wparam(1));
|
||||
&mov (&BP(-1,$out,$inp),&LB($ty));
|
||||
&jb (&label("cloop1"));
|
||||
|
||||
&set_label("done");
|
||||
&dec (&LB($xx));
|
||||
&mov (&DWP(-4,$dat),$yy); # save key->y
|
||||
&mov (&BP(-8,$dat),&LB($xx)); # save key->x
|
||||
&set_label("abort");
|
||||
&function_end("asm_RC4");
|
||||
|
||||
########################################################################
|
||||
|
||||
$inp="esi";
|
||||
$out="edi";
|
||||
$idi="ebp";
|
||||
$ido="ecx";
|
||||
$idx="edx";
|
||||
|
||||
# void asm_RC4_set_key(RC4_KEY *key,int len,const unsigned char *data);
|
||||
&function_begin("asm_RC4_set_key");
|
||||
&mov ($out,&wparam(0)); # load key
|
||||
&mov ($idi,&wparam(1)); # load len
|
||||
&mov ($inp,&wparam(2)); # load data
|
||||
&picmeup($idx,"OPENSSL_ia32cap_P");
|
||||
|
||||
&lea ($out,&DWP(2*4,$out)); # &key->data
|
||||
&lea ($inp,&DWP(0,$inp,$idi)); # $inp to point at the end
|
||||
&neg ($idi);
|
||||
&xor ("eax","eax");
|
||||
&mov (&DWP(-4,$out),$idi); # borrow key->y
|
||||
|
||||
&bt (&DWP(0,$idx),20); # check for bit#20
|
||||
&jc (&label("c1stloop"));
|
||||
|
||||
&set_label("w1stloop",16);
|
||||
&mov (&DWP(0,$out,"eax",4),"eax"); # key->data[i]=i;
|
||||
&add (&LB("eax"),1); # i++;
|
||||
&jnc (&label("w1stloop"));
|
||||
|
||||
&xor ($ido,$ido);
|
||||
&xor ($idx,$idx);
|
||||
|
||||
&set_label("w2ndloop",16);
|
||||
&mov ("eax",&DWP(0,$out,$ido,4));
|
||||
&add (&LB($idx),&BP(0,$inp,$idi));
|
||||
&add (&LB($idx),&LB("eax"));
|
||||
&add ($idi,1);
|
||||
&mov ("ebx",&DWP(0,$out,$idx,4));
|
||||
&jnz (&label("wnowrap"));
|
||||
&mov ($idi,&DWP(-4,$out));
|
||||
&set_label("wnowrap");
|
||||
&mov (&DWP(0,$out,$idx,4),"eax");
|
||||
&mov (&DWP(0,$out,$ido,4),"ebx");
|
||||
&add (&LB($ido),1);
|
||||
&jnc (&label("w2ndloop"));
|
||||
&jmp (&label("exit"));
|
||||
|
||||
# Unlike all other x86 [and x86_64] implementations, Intel P4 core
|
||||
# [including EM64T] was found to perform poorly with above "32-bit" key
|
||||
# schedule, a.k.a. RC4_INT. Performance improvement for IA-32 hand-coded
|
||||
# assembler turned out to be 3.5x if re-coded for compressed 8-bit one,
|
||||
# a.k.a. RC4_CHAR! It's however inappropriate to just switch to 8-bit
|
||||
# schedule for x86[_64], because non-P4 implementations suffer from
|
||||
# significant performance losses then, e.g. PIII exhibits >2x
|
||||
# deterioration, and so does Opteron. In order to assure optimal
|
||||
# all-round performance, we detect P4 at run-time and set up compressed
|
||||
# key schedule, which is recognized by RC4 procedure.
|
||||
|
||||
&set_label("c1stloop",16);
|
||||
&mov (&BP(0,$out,"eax"),&LB("eax")); # key->data[i]=i;
|
||||
&add (&LB("eax"),1); # i++;
|
||||
&jnc (&label("c1stloop"));
|
||||
|
||||
&xor ($ido,$ido);
|
||||
&xor ($idx,$idx);
|
||||
&xor ("ebx","ebx");
|
||||
|
||||
&set_label("c2ndloop",16);
|
||||
&mov (&LB("eax"),&BP(0,$out,$ido));
|
||||
&add (&LB($idx),&BP(0,$inp,$idi));
|
||||
&add (&LB($idx),&LB("eax"));
|
||||
&add ($idi,1);
|
||||
&mov (&LB("ebx"),&BP(0,$out,$idx));
|
||||
&jnz (&label("cnowrap"));
|
||||
&mov ($idi,&DWP(-4,$out));
|
||||
&set_label("cnowrap");
|
||||
&mov (&BP(0,$out,$idx),&LB("eax"));
|
||||
&mov (&BP(0,$out,$ido),&LB("ebx"));
|
||||
&add (&LB($ido),1);
|
||||
&jnc (&label("c2ndloop"));
|
||||
|
||||
&mov (&DWP(256,$out),-1); # mark schedule as compressed
|
||||
|
||||
&set_label("exit");
|
||||
&xor ("eax","eax");
|
||||
&mov (&DWP(-8,$out),"eax"); # key->x=0;
|
||||
&mov (&DWP(-4,$out),"eax"); # key->y=0;
|
||||
&function_end("asm_RC4_set_key");
|
||||
|
||||
# const char *RC4_options(void);
|
||||
&function_begin_B("RC4_options");
|
||||
&call (&label("pic_point"));
|
||||
&set_label("pic_point");
|
||||
&blindpop("eax");
|
||||
&lea ("eax",&DWP(&label("opts")."-".&label("pic_point"),"eax"));
|
||||
&picmeup("edx","OPENSSL_ia32cap_P");
|
||||
&mov ("edx",&DWP(0,"edx"));
|
||||
&bt ("edx",20);
|
||||
&jc (&label("1xchar"));
|
||||
&bt ("edx",26);
|
||||
&jnc (&label("ret"));
|
||||
&add ("eax",25);
|
||||
&ret ();
|
||||
&set_label("1xchar");
|
||||
&add ("eax",12);
|
||||
&set_label("ret");
|
||||
&ret ();
|
||||
&set_label("opts",64);
|
||||
&asciz ("rc4(4x,int)");
|
||||
&asciz ("rc4(1x,char)");
|
||||
&asciz ("rc4(8x,mmx)");
|
||||
&asciz ("RC4 for x86, CRYPTOGAMS by <appro\@openssl.org>");
|
||||
&align (64);
|
||||
&function_end_B("RC4_options");
|
||||
|
||||
&asm_finish();
|
||||
|
@ -1,632 +0,0 @@
|
||||
#!/usr/bin/env perl
|
||||
#
|
||||
# ====================================================================
|
||||
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
|
||||
# project. The module is, however, dual licensed under OpenSSL and
|
||||
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
||||
# details see http://www.openssl.org/~appro/cryptogams/.
|
||||
# ====================================================================
|
||||
|
||||
# June 2011
|
||||
#
|
||||
# This is RC4+MD5 "stitch" implementation. The idea, as spelled in
|
||||
# http://download.intel.com/design/intarch/papers/323686.pdf, is that
|
||||
# since both algorithms exhibit instruction-level parallelism, ILP,
|
||||
# below theoretical maximum, interleaving them would allow to utilize
|
||||
# processor resources better and achieve better performance. RC4
|
||||
# instruction sequence is virtually identical to rc4-x86_64.pl, which
|
||||
# is heavily based on submission by Maxim Perminov, Maxim Locktyukhin
|
||||
# and Jim Guilford of Intel. MD5 is fresh implementation aiming to
|
||||
# minimize register usage, which was used as "main thread" with RC4
|
||||
# weaved into it, one RC4 round per one MD5 round. In addition to the
|
||||
# stiched subroutine the script can generate standalone replacement
|
||||
# md5_block_asm_data_order and RC4. Below are performance numbers in
|
||||
# cycles per processed byte, less is better, for these the standalone
|
||||
# subroutines, sum of them, and stitched one:
|
||||
#
|
||||
# RC4 MD5 RC4+MD5 stitch gain
|
||||
# Opteron 6.5(*) 5.4 11.9 7.0 +70%(*)
|
||||
# Core2 6.5 5.8 12.3 7.7 +60%
|
||||
# Westmere 4.3 5.2 9.5 7.0 +36%
|
||||
# Sandy Bridge 4.2 5.5 9.7 6.8 +43%
|
||||
# Atom 9.3 6.5 15.8 11.1 +42%
|
||||
#
|
||||
# (*) rc4-x86_64.pl delivers 5.3 on Opteron, so real improvement
|
||||
# is +53%...
|
||||
|
||||
my ($rc4,$md5)=(1,1); # what to generate?
|
||||
my $D="#" if (!$md5); # if set to "#", MD5 is stitched into RC4(),
|
||||
# but its result is discarded. Idea here is
|
||||
# to be able to use 'openssl speed rc4' for
|
||||
# benchmarking the stitched subroutine...
|
||||
|
||||
my $flavour = shift;
|
||||
my $output = shift;
|
||||
if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
|
||||
|
||||
my $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
|
||||
|
||||
$0 =~ m/(.*[\/\\])[^\/\\]+$/; my $dir=$1; my $xlate;
|
||||
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
|
||||
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
|
||||
die "can't locate x86_64-xlate.pl";
|
||||
|
||||
open OUT,"| \"$^X\" $xlate $flavour $output";
|
||||
*STDOUT=*OUT;
|
||||
|
||||
my ($dat,$in0,$out,$ctx,$inp,$len, $func,$nargs);
|
||||
|
||||
if ($rc4 && !$md5) {
|
||||
($dat,$len,$in0,$out) = ("%rdi","%rsi","%rdx","%rcx");
|
||||
$func="RC4"; $nargs=4;
|
||||
} elsif ($md5 && !$rc4) {
|
||||
($ctx,$inp,$len) = ("%rdi","%rsi","%rdx");
|
||||
$func="md5_block_asm_data_order"; $nargs=3;
|
||||
} else {
|
||||
($dat,$in0,$out,$ctx,$inp,$len) = ("%rdi","%rsi","%rdx","%rcx","%r8","%r9");
|
||||
$func="rc4_md5_enc"; $nargs=6;
|
||||
# void rc4_md5_enc(
|
||||
# RC4_KEY *key, #
|
||||
# const void *in0, # RC4 input
|
||||
# void *out, # RC4 output
|
||||
# MD5_CTX *ctx, #
|
||||
# const void *inp, # MD5 input
|
||||
# size_t len); # number of 64-byte blocks
|
||||
}
|
||||
|
||||
my @K=( 0xd76aa478,0xe8c7b756,0x242070db,0xc1bdceee,
|
||||
0xf57c0faf,0x4787c62a,0xa8304613,0xfd469501,
|
||||
0x698098d8,0x8b44f7af,0xffff5bb1,0x895cd7be,
|
||||
0x6b901122,0xfd987193,0xa679438e,0x49b40821,
|
||||
|
||||
0xf61e2562,0xc040b340,0x265e5a51,0xe9b6c7aa,
|
||||
0xd62f105d,0x02441453,0xd8a1e681,0xe7d3fbc8,
|
||||
0x21e1cde6,0xc33707d6,0xf4d50d87,0x455a14ed,
|
||||
0xa9e3e905,0xfcefa3f8,0x676f02d9,0x8d2a4c8a,
|
||||
|
||||
0xfffa3942,0x8771f681,0x6d9d6122,0xfde5380c,
|
||||
0xa4beea44,0x4bdecfa9,0xf6bb4b60,0xbebfbc70,
|
||||
0x289b7ec6,0xeaa127fa,0xd4ef3085,0x04881d05,
|
||||
0xd9d4d039,0xe6db99e5,0x1fa27cf8,0xc4ac5665,
|
||||
|
||||
0xf4292244,0x432aff97,0xab9423a7,0xfc93a039,
|
||||
0x655b59c3,0x8f0ccc92,0xffeff47d,0x85845dd1,
|
||||
0x6fa87e4f,0xfe2ce6e0,0xa3014314,0x4e0811a1,
|
||||
0xf7537e82,0xbd3af235,0x2ad7d2bb,0xeb86d391 );
|
||||
|
||||
my @V=("%r8d","%r9d","%r10d","%r11d"); # MD5 registers
|
||||
my $tmp="%r12d";
|
||||
|
||||
my @XX=("%rbp","%rsi"); # RC4 registers
|
||||
my @TX=("%rax","%rbx");
|
||||
my $YY="%rcx";
|
||||
my $TY="%rdx";
|
||||
|
||||
my $MOD=32; # 16, 32 or 64
|
||||
|
||||
$code.=<<___;
|
||||
.text
|
||||
.align 16
|
||||
|
||||
.globl $func
|
||||
.type $func,\@function,$nargs
|
||||
$func:
|
||||
cmp \$0,$len
|
||||
je .Labort
|
||||
push %rbx
|
||||
push %rbp
|
||||
push %r12
|
||||
push %r13
|
||||
push %r14
|
||||
push %r15
|
||||
sub \$40,%rsp
|
||||
.Lbody:
|
||||
___
|
||||
if ($rc4) {
|
||||
$code.=<<___;
|
||||
$D#md5# mov $ctx,%r11 # reassign arguments
|
||||
mov $len,%r12
|
||||
mov $in0,%r13
|
||||
mov $out,%r14
|
||||
$D#md5# mov $inp,%r15
|
||||
___
|
||||
$ctx="%r11" if ($md5); # reassign arguments
|
||||
$len="%r12";
|
||||
$in0="%r13";
|
||||
$out="%r14";
|
||||
$inp="%r15" if ($md5);
|
||||
$inp=$in0 if (!$md5);
|
||||
$code.=<<___;
|
||||
xor $XX[0],$XX[0]
|
||||
xor $YY,$YY
|
||||
|
||||
lea 8($dat),$dat
|
||||
mov -8($dat),$XX[0]#b
|
||||
mov -4($dat),$YY#b
|
||||
|
||||
inc $XX[0]#b
|
||||
sub $in0,$out
|
||||
movl ($dat,$XX[0],4),$TX[0]#d
|
||||
___
|
||||
$code.=<<___ if (!$md5);
|
||||
xor $TX[1],$TX[1]
|
||||
test \$-128,$len
|
||||
jz .Loop1
|
||||
sub $XX[0],$TX[1]
|
||||
and \$`$MOD-1`,$TX[1]
|
||||
jz .Loop${MOD}_is_hot
|
||||
sub $TX[1],$len
|
||||
.Loop${MOD}_warmup:
|
||||
add $TX[0]#b,$YY#b
|
||||
movl ($dat,$YY,4),$TY#d
|
||||
movl $TX[0]#d,($dat,$YY,4)
|
||||
movl $TY#d,($dat,$XX[0],4)
|
||||
add $TY#b,$TX[0]#b
|
||||
inc $XX[0]#b
|
||||
movl ($dat,$TX[0],4),$TY#d
|
||||
movl ($dat,$XX[0],4),$TX[0]#d
|
||||
xorb ($in0),$TY#b
|
||||
movb $TY#b,($out,$in0)
|
||||
lea 1($in0),$in0
|
||||
dec $TX[1]
|
||||
jnz .Loop${MOD}_warmup
|
||||
|
||||
mov $YY,$TX[1]
|
||||
xor $YY,$YY
|
||||
mov $TX[1]#b,$YY#b
|
||||
|
||||
.Loop${MOD}_is_hot:
|
||||
mov $len,32(%rsp) # save original $len
|
||||
shr \$6,$len # number of 64-byte blocks
|
||||
___
|
||||
if ($D && !$md5) { # stitch in dummy MD5
|
||||
$md5=1;
|
||||
$ctx="%r11";
|
||||
$inp="%r15";
|
||||
$code.=<<___;
|
||||
mov %rsp,$ctx
|
||||
mov $in0,$inp
|
||||
___
|
||||
}
|
||||
}
|
||||
$code.=<<___;
|
||||
#rc4# add $TX[0]#b,$YY#b
|
||||
#rc4# lea ($dat,$XX[0],4),$XX[1]
|
||||
shl \$6,$len
|
||||
add $inp,$len # pointer to the end of input
|
||||
mov $len,16(%rsp)
|
||||
|
||||
#md5# mov $ctx,24(%rsp) # save pointer to MD5_CTX
|
||||
#md5# mov 0*4($ctx),$V[0] # load current hash value from MD5_CTX
|
||||
#md5# mov 1*4($ctx),$V[1]
|
||||
#md5# mov 2*4($ctx),$V[2]
|
||||
#md5# mov 3*4($ctx),$V[3]
|
||||
jmp .Loop
|
||||
|
||||
.align 16
|
||||
.Loop:
|
||||
#md5# mov $V[0],0*4(%rsp) # put aside current hash value
|
||||
#md5# mov $V[1],1*4(%rsp)
|
||||
#md5# mov $V[2],2*4(%rsp)
|
||||
#md5# mov $V[3],$tmp # forward reference
|
||||
#md5# mov $V[3],3*4(%rsp)
|
||||
___
|
||||
|
||||
sub R0 {
|
||||
my ($i,$a,$b,$c,$d)=@_;
|
||||
my @rot0=(7,12,17,22);
|
||||
my $j=$i%16;
|
||||
my $k=$i%$MOD;
|
||||
my $xmm="%xmm".($j&1);
|
||||
$code.=" movdqu ($in0),%xmm2\n" if ($rc4 && $j==15);
|
||||
$code.=" add \$$MOD,$XX[0]#b\n" if ($rc4 && $j==15 && $k==$MOD-1);
|
||||
$code.=" pxor $xmm,$xmm\n" if ($rc4 && $j<=1);
|
||||
$code.=<<___;
|
||||
#rc4# movl ($dat,$YY,4),$TY#d
|
||||
#md5# xor $c,$tmp
|
||||
#rc4# movl $TX[0]#d,($dat,$YY,4)
|
||||
#md5# and $b,$tmp
|
||||
#md5# add 4*`$j`($inp),$a
|
||||
#rc4# add $TY#b,$TX[0]#b
|
||||
#rc4# movl `4*(($k+1)%$MOD)`(`$k==$MOD-1?"$dat,$XX[0],4":"$XX[1]"`),$TX[1]#d
|
||||
#md5# add \$$K[$i],$a
|
||||
#md5# xor $d,$tmp
|
||||
#rc4# movz $TX[0]#b,$TX[0]#d
|
||||
#rc4# movl $TY#d,4*$k($XX[1])
|
||||
#md5# add $tmp,$a
|
||||
#rc4# add $TX[1]#b,$YY#b
|
||||
#md5# rol \$$rot0[$j%4],$a
|
||||
#md5# mov `$j==15?"$b":"$c"`,$tmp # forward reference
|
||||
#rc4# pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n
|
||||
#md5# add $b,$a
|
||||
___
|
||||
$code.=<<___ if ($rc4 && $j==15 && $k==$MOD-1);
|
||||
mov $YY,$XX[1]
|
||||
xor $YY,$YY # keyword to partial register
|
||||
mov $XX[1]#b,$YY#b
|
||||
lea ($dat,$XX[0],4),$XX[1]
|
||||
___
|
||||
$code.=<<___ if ($rc4 && $j==15);
|
||||
psllq \$8,%xmm1
|
||||
pxor %xmm0,%xmm2
|
||||
pxor %xmm1,%xmm2
|
||||
___
|
||||
}
|
||||
sub R1 {
|
||||
my ($i,$a,$b,$c,$d)=@_;
|
||||
my @rot1=(5,9,14,20);
|
||||
my $j=$i%16;
|
||||
my $k=$i%$MOD;
|
||||
my $xmm="%xmm".($j&1);
|
||||
$code.=" movdqu 16($in0),%xmm3\n" if ($rc4 && $j==15);
|
||||
$code.=" add \$$MOD,$XX[0]#b\n" if ($rc4 && $j==15 && $k==$MOD-1);
|
||||
$code.=" pxor $xmm,$xmm\n" if ($rc4 && $j<=1);
|
||||
$code.=<<___;
|
||||
#rc4# movl ($dat,$YY,4),$TY#d
|
||||
#md5# xor $b,$tmp
|
||||
#rc4# movl $TX[0]#d,($dat,$YY,4)
|
||||
#md5# and $d,$tmp
|
||||
#md5# add 4*`((1+5*$j)%16)`($inp),$a
|
||||
#rc4# add $TY#b,$TX[0]#b
|
||||
#rc4# movl `4*(($k+1)%$MOD)`(`$k==$MOD-1?"$dat,$XX[0],4":"$XX[1]"`),$TX[1]#d
|
||||
#md5# add \$$K[$i],$a
|
||||
#md5# xor $c,$tmp
|
||||
#rc4# movz $TX[0]#b,$TX[0]#d
|
||||
#rc4# movl $TY#d,4*$k($XX[1])
|
||||
#md5# add $tmp,$a
|
||||
#rc4# add $TX[1]#b,$YY#b
|
||||
#md5# rol \$$rot1[$j%4],$a
|
||||
#md5# mov `$j==15?"$c":"$b"`,$tmp # forward reference
|
||||
#rc4# pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n
|
||||
#md5# add $b,$a
|
||||
___
|
||||
$code.=<<___ if ($rc4 && $j==15 && $k==$MOD-1);
|
||||
mov $YY,$XX[1]
|
||||
xor $YY,$YY # keyword to partial register
|
||||
mov $XX[1]#b,$YY#b
|
||||
lea ($dat,$XX[0],4),$XX[1]
|
||||
___
|
||||
$code.=<<___ if ($rc4 && $j==15);
|
||||
psllq \$8,%xmm1
|
||||
pxor %xmm0,%xmm3
|
||||
pxor %xmm1,%xmm3
|
||||
___
|
||||
}
|
||||
sub R2 {
|
||||
my ($i,$a,$b,$c,$d)=@_;
|
||||
my @rot2=(4,11,16,23);
|
||||
my $j=$i%16;
|
||||
my $k=$i%$MOD;
|
||||
my $xmm="%xmm".($j&1);
|
||||
$code.=" movdqu 32($in0),%xmm4\n" if ($rc4 && $j==15);
|
||||
$code.=" add \$$MOD,$XX[0]#b\n" if ($rc4 && $j==15 && $k==$MOD-1);
|
||||
$code.=" pxor $xmm,$xmm\n" if ($rc4 && $j<=1);
|
||||
$code.=<<___;
|
||||
#rc4# movl ($dat,$YY,4),$TY#d
|
||||
#md5# xor $c,$tmp
|
||||
#rc4# movl $TX[0]#d,($dat,$YY,4)
|
||||
#md5# xor $b,$tmp
|
||||
#md5# add 4*`((5+3*$j)%16)`($inp),$a
|
||||
#rc4# add $TY#b,$TX[0]#b
|
||||
#rc4# movl `4*(($k+1)%$MOD)`(`$k==$MOD-1?"$dat,$XX[0],4":"$XX[1]"`),$TX[1]#d
|
||||
#md5# add \$$K[$i],$a
|
||||
#rc4# movz $TX[0]#b,$TX[0]#d
|
||||
#md5# add $tmp,$a
|
||||
#rc4# movl $TY#d,4*$k($XX[1])
|
||||
#rc4# add $TX[1]#b,$YY#b
|
||||
#md5# rol \$$rot2[$j%4],$a
|
||||
#md5# mov `$j==15?"\\\$-1":"$c"`,$tmp # forward reference
|
||||
#rc4# pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n
|
||||
#md5# add $b,$a
|
||||
___
|
||||
$code.=<<___ if ($rc4 && $j==15 && $k==$MOD-1);
|
||||
mov $YY,$XX[1]
|
||||
xor $YY,$YY # keyword to partial register
|
||||
mov $XX[1]#b,$YY#b
|
||||
lea ($dat,$XX[0],4),$XX[1]
|
||||
___
|
||||
$code.=<<___ if ($rc4 && $j==15);
|
||||
psllq \$8,%xmm1
|
||||
pxor %xmm0,%xmm4
|
||||
pxor %xmm1,%xmm4
|
||||
___
|
||||
}
|
||||
sub R3 {
|
||||
my ($i,$a,$b,$c,$d)=@_;
|
||||
my @rot3=(6,10,15,21);
|
||||
my $j=$i%16;
|
||||
my $k=$i%$MOD;
|
||||
my $xmm="%xmm".($j&1);
|
||||
$code.=" movdqu 48($in0),%xmm5\n" if ($rc4 && $j==15);
|
||||
$code.=" add \$$MOD,$XX[0]#b\n" if ($rc4 && $j==15 && $k==$MOD-1);
|
||||
$code.=" pxor $xmm,$xmm\n" if ($rc4 && $j<=1);
|
||||
$code.=<<___;
|
||||
#rc4# movl ($dat,$YY,4),$TY#d
|
||||
#md5# xor $d,$tmp
|
||||
#rc4# movl $TX[0]#d,($dat,$YY,4)
|
||||
#md5# or $b,$tmp
|
||||
#md5# add 4*`((7*$j)%16)`($inp),$a
|
||||
#rc4# add $TY#b,$TX[0]#b
|
||||
#rc4# movl `4*(($k+1)%$MOD)`(`$k==$MOD-1?"$dat,$XX[0],4":"$XX[1]"`),$TX[1]#d
|
||||
#md5# add \$$K[$i],$a
|
||||
#rc4# movz $TX[0]#b,$TX[0]#d
|
||||
#md5# xor $c,$tmp
|
||||
#rc4# movl $TY#d,4*$k($XX[1])
|
||||
#md5# add $tmp,$a
|
||||
#rc4# add $TX[1]#b,$YY#b
|
||||
#md5# rol \$$rot3[$j%4],$a
|
||||
#md5# mov \$-1,$tmp # forward reference
|
||||
#rc4# pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n
|
||||
#md5# add $b,$a
|
||||
___
|
||||
$code.=<<___ if ($rc4 && $j==15);
|
||||
mov $XX[0],$XX[1]
|
||||
xor $XX[0],$XX[0] # keyword to partial register
|
||||
mov $XX[1]#b,$XX[0]#b
|
||||
mov $YY,$XX[1]
|
||||
xor $YY,$YY # keyword to partial register
|
||||
mov $XX[1]#b,$YY#b
|
||||
lea ($dat,$XX[0],4),$XX[1]
|
||||
psllq \$8,%xmm1
|
||||
pxor %xmm0,%xmm5
|
||||
pxor %xmm1,%xmm5
|
||||
___
|
||||
}
|
||||
|
||||
my $i=0;
|
||||
for(;$i<16;$i++) { R0($i,@V); unshift(@V,pop(@V)); push(@TX,shift(@TX)); }
|
||||
for(;$i<32;$i++) { R1($i,@V); unshift(@V,pop(@V)); push(@TX,shift(@TX)); }
|
||||
for(;$i<48;$i++) { R2($i,@V); unshift(@V,pop(@V)); push(@TX,shift(@TX)); }
|
||||
for(;$i<64;$i++) { R3($i,@V); unshift(@V,pop(@V)); push(@TX,shift(@TX)); }
|
||||
|
||||
$code.=<<___;
|
||||
#md5# add 0*4(%rsp),$V[0] # accumulate hash value
|
||||
#md5# add 1*4(%rsp),$V[1]
|
||||
#md5# add 2*4(%rsp),$V[2]
|
||||
#md5# add 3*4(%rsp),$V[3]
|
||||
|
||||
#rc4# movdqu %xmm2,($out,$in0) # write RC4 output
|
||||
#rc4# movdqu %xmm3,16($out,$in0)
|
||||
#rc4# movdqu %xmm4,32($out,$in0)
|
||||
#rc4# movdqu %xmm5,48($out,$in0)
|
||||
#md5# lea 64($inp),$inp
|
||||
#rc4# lea 64($in0),$in0
|
||||
cmp 16(%rsp),$inp # are we done?
|
||||
jb .Loop
|
||||
|
||||
#md5# mov 24(%rsp),$len # restore pointer to MD5_CTX
|
||||
#rc4# sub $TX[0]#b,$YY#b # correct $YY
|
||||
#md5# mov $V[0],0*4($len) # write MD5_CTX
|
||||
#md5# mov $V[1],1*4($len)
|
||||
#md5# mov $V[2],2*4($len)
|
||||
#md5# mov $V[3],3*4($len)
|
||||
___
|
||||
$code.=<<___ if ($rc4 && (!$md5 || $D));
|
||||
mov 32(%rsp),$len # restore original $len
|
||||
and \$63,$len # remaining bytes
|
||||
jnz .Loop1
|
||||
jmp .Ldone
|
||||
|
||||
.align 16
|
||||
.Loop1:
|
||||
add $TX[0]#b,$YY#b
|
||||
movl ($dat,$YY,4),$TY#d
|
||||
movl $TX[0]#d,($dat,$YY,4)
|
||||
movl $TY#d,($dat,$XX[0],4)
|
||||
add $TY#b,$TX[0]#b
|
||||
inc $XX[0]#b
|
||||
movl ($dat,$TX[0],4),$TY#d
|
||||
movl ($dat,$XX[0],4),$TX[0]#d
|
||||
xorb ($in0),$TY#b
|
||||
movb $TY#b,($out,$in0)
|
||||
lea 1($in0),$in0
|
||||
dec $len
|
||||
jnz .Loop1
|
||||
|
||||
.Ldone:
|
||||
___
|
||||
$code.=<<___;
|
||||
#rc4# sub \$1,$XX[0]#b
|
||||
#rc4# movl $XX[0]#d,-8($dat)
|
||||
#rc4# movl $YY#d,-4($dat)
|
||||
|
||||
mov 40(%rsp),%r15
|
||||
mov 48(%rsp),%r14
|
||||
mov 56(%rsp),%r13
|
||||
mov 64(%rsp),%r12
|
||||
mov 72(%rsp),%rbp
|
||||
mov 80(%rsp),%rbx
|
||||
lea 88(%rsp),%rsp
|
||||
.Lepilogue:
|
||||
.Labort:
|
||||
ret
|
||||
.size $func,.-$func
|
||||
___
|
||||
|
||||
if ($rc4 && $D) { # sole purpose of this section is to provide
|
||||
# option to use the generated module as drop-in
|
||||
# replacement for rc4-x86_64.pl for debugging
|
||||
# and testing purposes...
|
||||
my ($idx,$ido)=("%r8","%r9");
|
||||
my ($dat,$len,$inp)=("%rdi","%rsi","%rdx");
|
||||
|
||||
$code.=<<___;
|
||||
.globl RC4_set_key
|
||||
.type RC4_set_key,\@function,3
|
||||
.align 16
|
||||
RC4_set_key:
|
||||
lea 8($dat),$dat
|
||||
lea ($inp,$len),$inp
|
||||
neg $len
|
||||
mov $len,%rcx
|
||||
xor %eax,%eax
|
||||
xor $ido,$ido
|
||||
xor %r10,%r10
|
||||
xor %r11,%r11
|
||||
jmp .Lw1stloop
|
||||
|
||||
.align 16
|
||||
.Lw1stloop:
|
||||
mov %eax,($dat,%rax,4)
|
||||
add \$1,%al
|
||||
jnc .Lw1stloop
|
||||
|
||||
xor $ido,$ido
|
||||
xor $idx,$idx
|
||||
.align 16
|
||||
.Lw2ndloop:
|
||||
mov ($dat,$ido,4),%r10d
|
||||
add ($inp,$len,1),$idx#b
|
||||
add %r10b,$idx#b
|
||||
add \$1,$len
|
||||
mov ($dat,$idx,4),%r11d
|
||||
cmovz %rcx,$len
|
||||
mov %r10d,($dat,$idx,4)
|
||||
mov %r11d,($dat,$ido,4)
|
||||
add \$1,$ido#b
|
||||
jnc .Lw2ndloop
|
||||
|
||||
xor %eax,%eax
|
||||
mov %eax,-8($dat)
|
||||
mov %eax,-4($dat)
|
||||
ret
|
||||
.size RC4_set_key,.-RC4_set_key
|
||||
|
||||
.globl RC4_options
|
||||
.type RC4_options,\@abi-omnipotent
|
||||
.align 16
|
||||
RC4_options:
|
||||
lea .Lopts(%rip),%rax
|
||||
ret
|
||||
.align 64
|
||||
.Lopts:
|
||||
.asciz "rc4(64x,int)"
|
||||
.align 64
|
||||
.size RC4_options,.-RC4_options
|
||||
___
|
||||
}
|
||||
# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
|
||||
# CONTEXT *context,DISPATCHER_CONTEXT *disp)
|
||||
if ($win64) {
|
||||
my $rec="%rcx";
|
||||
my $frame="%rdx";
|
||||
my $context="%r8";
|
||||
my $disp="%r9";
|
||||
|
||||
$code.=<<___;
|
||||
.extern __imp_RtlVirtualUnwind
|
||||
.type se_handler,\@abi-omnipotent
|
||||
.align 16
|
||||
se_handler:
|
||||
push %rsi
|
||||
push %rdi
|
||||
push %rbx
|
||||
push %rbp
|
||||
push %r12
|
||||
push %r13
|
||||
push %r14
|
||||
push %r15
|
||||
pushfq
|
||||
sub \$64,%rsp
|
||||
|
||||
mov 120($context),%rax # pull context->Rax
|
||||
mov 248($context),%rbx # pull context->Rip
|
||||
|
||||
lea .Lbody(%rip),%r10
|
||||
cmp %r10,%rbx # context->Rip<.Lbody
|
||||
jb .Lin_prologue
|
||||
|
||||
mov 152($context),%rax # pull context->Rsp
|
||||
|
||||
lea .Lepilogue(%rip),%r10
|
||||
cmp %r10,%rbx # context->Rip>=.Lepilogue
|
||||
jae .Lin_prologue
|
||||
|
||||
mov 40(%rax),%r15
|
||||
mov 48(%rax),%r14
|
||||
mov 56(%rax),%r13
|
||||
mov 64(%rax),%r12
|
||||
mov 72(%rax),%rbp
|
||||
mov 80(%rax),%rbx
|
||||
lea 88(%rax),%rax
|
||||
|
||||
mov %rbx,144($context) # restore context->Rbx
|
||||
mov %rbp,160($context) # restore context->Rbp
|
||||
mov %r12,216($context) # restore context->R12
|
||||
mov %r13,224($context) # restore context->R12
|
||||
mov %r14,232($context) # restore context->R14
|
||||
mov %r15,240($context) # restore context->R15
|
||||
|
||||
.Lin_prologue:
|
||||
mov 8(%rax),%rdi
|
||||
mov 16(%rax),%rsi
|
||||
mov %rax,152($context) # restore context->Rsp
|
||||
mov %rsi,168($context) # restore context->Rsi
|
||||
mov %rdi,176($context) # restore context->Rdi
|
||||
|
||||
mov 40($disp),%rdi # disp->ContextRecord
|
||||
mov $context,%rsi # context
|
||||
mov \$154,%ecx # sizeof(CONTEXT)
|
||||
.long 0xa548f3fc # cld; rep movsq
|
||||
|
||||
mov $disp,%rsi
|
||||
xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
|
||||
mov 8(%rsi),%rdx # arg2, disp->ImageBase
|
||||
mov 0(%rsi),%r8 # arg3, disp->ControlPc
|
||||
mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
|
||||
mov 40(%rsi),%r10 # disp->ContextRecord
|
||||
lea 56(%rsi),%r11 # &disp->HandlerData
|
||||
lea 24(%rsi),%r12 # &disp->EstablisherFrame
|
||||
mov %r10,32(%rsp) # arg5
|
||||
mov %r11,40(%rsp) # arg6
|
||||
mov %r12,48(%rsp) # arg7
|
||||
mov %rcx,56(%rsp) # arg8, (NULL)
|
||||
call *__imp_RtlVirtualUnwind(%rip)
|
||||
|
||||
mov \$1,%eax # ExceptionContinueSearch
|
||||
add \$64,%rsp
|
||||
popfq
|
||||
pop %r15
|
||||
pop %r14
|
||||
pop %r13
|
||||
pop %r12
|
||||
pop %rbp
|
||||
pop %rbx
|
||||
pop %rdi
|
||||
pop %rsi
|
||||
ret
|
||||
.size se_handler,.-se_handler
|
||||
|
||||
.section .pdata
|
||||
.align 4
|
||||
.rva .LSEH_begin_$func
|
||||
.rva .LSEH_end_$func
|
||||
.rva .LSEH_info_$func
|
||||
|
||||
.section .xdata
|
||||
.align 8
|
||||
.LSEH_info_$func:
|
||||
.byte 9,0,0,0
|
||||
.rva se_handler
|
||||
___
|
||||
}
|
||||
|
||||
sub reg_part {
|
||||
my ($reg,$conv)=@_;
|
||||
if ($reg =~ /%r[0-9]+/) { $reg .= $conv; }
|
||||
elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; }
|
||||
elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; }
|
||||
elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; }
|
||||
return $reg;
|
||||
}
|
||||
|
||||
$code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem;
|
||||
$code =~ s/\`([^\`]*)\`/eval $1/gem;
|
||||
$code =~ s/pinsrw\s+\$0,/movd /gm;
|
||||
|
||||
$code =~ s/#md5#//gm if ($md5);
|
||||
$code =~ s/#rc4#//gm if ($rc4);
|
||||
|
||||
print $code;
|
||||
|
||||
close STDOUT;
|
@ -1,653 +0,0 @@
|
||||
#!/usr/bin/env perl
|
||||
#
|
||||
# ====================================================================
|
||||
# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
|
||||
# project. The module is, however, dual licensed under OpenSSL and
|
||||
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
||||
# details see http://www.openssl.org/~appro/cryptogams/.
|
||||
# ====================================================================
|
||||
#
|
||||
# July 2004
|
||||
#
|
||||
# 2.22x RC4 tune-up:-) It should be noted though that my hand [as in
|
||||
# "hand-coded assembler"] doesn't stand for the whole improvement
|
||||
# coefficient. It turned out that eliminating RC4_CHAR from config
|
||||
# line results in ~40% improvement (yes, even for C implementation).
|
||||
# Presumably it has everything to do with AMD cache architecture and
|
||||
# RAW or whatever penalties. Once again! The module *requires* config
|
||||
# line *without* RC4_CHAR! As for coding "secret," I bet on partial
|
||||
# register arithmetics. For example instead of 'inc %r8; and $255,%r8'
|
||||
# I simply 'inc %r8b'. Even though optimization manual discourages
|
||||
# to operate on partial registers, it turned out to be the best bet.
|
||||
# At least for AMD... How IA32E would perform remains to be seen...
|
||||
|
||||
# November 2004
|
||||
#
|
||||
# As was shown by Marc Bevand reordering of couple of load operations
|
||||
# results in even higher performance gain of 3.3x:-) At least on
|
||||
# Opteron... For reference, 1x in this case is RC4_CHAR C-code
|
||||
# compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock.
|
||||
# Latter means that if you want to *estimate* what to expect from
|
||||
# *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz.
|
||||
|
||||
# November 2004
|
||||
#
|
||||
# Intel P4 EM64T core was found to run the AMD64 code really slow...
|
||||
# The only way to achieve comparable performance on P4 was to keep
|
||||
# RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to
|
||||
# compose blended code, which would perform even within 30% marginal
|
||||
# on either AMD and Intel platforms, I implement both cases. See
|
||||
# rc4_skey.c for further details...
|
||||
|
||||
# April 2005
|
||||
#
|
||||
# P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing
|
||||
# those with add/sub results in 50% performance improvement of folded
|
||||
# loop...
|
||||
|
||||
# May 2005
|
||||
#
|
||||
# As was shown by Zou Nanhai loop unrolling can improve Intel EM64T
|
||||
# performance by >30% [unlike P4 32-bit case that is]. But this is
|
||||
# provided that loads are reordered even more aggressively! Both code
|
||||
# pathes, AMD64 and EM64T, reorder loads in essentially same manner
|
||||
# as my IA-64 implementation. On Opteron this resulted in modest 5%
|
||||
# improvement [I had to test it], while final Intel P4 performance
|
||||
# achieves respectful 432MBps on 2.8GHz processor now. For reference.
|
||||
# If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than
|
||||
# RC4_INT code-path. While if executed on Opteron, it's only 25%
|
||||
# slower than the RC4_INT one [meaning that if CPU µ-arch detection
|
||||
# is not implemented, then this final RC4_CHAR code-path should be
|
||||
# preferred, as it provides better *all-round* performance].
|
||||
|
||||
# March 2007
|
||||
#
|
||||
# Intel Core2 was observed to perform poorly on both code paths:-( It
|
||||
# apparently suffers from some kind of partial register stall, which
|
||||
# occurs in 64-bit mode only [as virtually identical 32-bit loop was
|
||||
# observed to outperform 64-bit one by almost 50%]. Adding two movzb to
|
||||
# cloop1 boosts its performance by 80%! This loop appears to be optimal
|
||||
# fit for Core2 and therefore the code was modified to skip cloop8 on
|
||||
# this CPU.
|
||||
|
||||
# May 2010
|
||||
#
|
||||
# Intel Westmere was observed to perform suboptimally. Adding yet
|
||||
# another movzb to cloop1 improved performance by almost 50%! Core2
|
||||
# performance is improved too, but nominally...
|
||||
|
||||
# May 2011
|
||||
#
|
||||
# The only code path that was not modified is P4-specific one. Non-P4
|
||||
# Intel code path optimization is heavily based on submission by Maxim
|
||||
# Perminov, Maxim Locktyukhin and Jim Guilford of Intel. I've used
|
||||
# some of the ideas even in attempt to optmize the original RC4_INT
|
||||
# code path... Current performance in cycles per processed byte (less
|
||||
# is better) and improvement coefficients relative to previous
|
||||
# version of this module are:
|
||||
#
|
||||
# Opteron 5.3/+0%(*)
|
||||
# P4 6.5
|
||||
# Core2 6.2/+15%(**)
|
||||
# Westmere 4.2/+60%
|
||||
# Sandy Bridge 4.2/+120%
|
||||
# Atom 9.3/+80%
|
||||
#
|
||||
# (*) But corresponding loop has less instructions, which should have
|
||||
# positive effect on upcoming Bulldozer, which has one less ALU.
|
||||
# For reference, Intel code runs at 6.8 cpb rate on Opteron.
|
||||
# (**) Note that Core2 result is ~15% lower than corresponding result
|
||||
# for 32-bit code, meaning that it's possible to improve it,
|
||||
# but more than likely at the cost of the others (see rc4-586.pl
|
||||
# to get the idea)...
|
||||
|
||||
$flavour = shift;
|
||||
$output = shift;
|
||||
if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
|
||||
|
||||
$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
|
||||
|
||||
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
|
||||
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
|
||||
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
|
||||
die "can't locate x86_64-xlate.pl";
|
||||
|
||||
open OUT,"| \"$^X\" $xlate $flavour $output";
|
||||
*STDOUT=*OUT;
|
||||
|
||||
$dat="%rdi"; # arg1
|
||||
$len="%rsi"; # arg2
|
||||
$inp="%rdx"; # arg3
|
||||
$out="%rcx"; # arg4
|
||||
|
||||
{
|
||||
$code=<<___;
|
||||
.text
|
||||
.extern OPENSSL_ia32cap_P
|
||||
|
||||
.globl asm_RC4
|
||||
.type asm_RC4,\@function,4
|
||||
.align 16
|
||||
asm_RC4:
|
||||
or $len,$len
|
||||
jne .Lentry
|
||||
ret
|
||||
.Lentry:
|
||||
push %rbx
|
||||
push %r12
|
||||
push %r13
|
||||
.Lprologue:
|
||||
mov $len,%r11
|
||||
mov $inp,%r12
|
||||
mov $out,%r13
|
||||
___
|
||||
my $len="%r11"; # reassign input arguments
|
||||
my $inp="%r12";
|
||||
my $out="%r13";
|
||||
|
||||
my @XX=("%r10","%rsi");
|
||||
my @TX=("%rax","%rbx");
|
||||
my $YY="%rcx";
|
||||
my $TY="%rdx";
|
||||
|
||||
$code.=<<___;
|
||||
xor $XX[0],$XX[0]
|
||||
xor $YY,$YY
|
||||
|
||||
lea 8($dat),$dat
|
||||
mov -8($dat),$XX[0]#b
|
||||
mov -4($dat),$YY#b
|
||||
cmpl \$-1,256($dat)
|
||||
je .LRC4_CHAR
|
||||
mov OPENSSL_ia32cap_P(%rip),%r8d
|
||||
xor $TX[1],$TX[1]
|
||||
inc $XX[0]#b
|
||||
sub $XX[0],$TX[1]
|
||||
sub $inp,$out
|
||||
movl ($dat,$XX[0],4),$TX[0]#d
|
||||
test \$-16,$len
|
||||
jz .Lloop1
|
||||
bt \$30,%r8d # Intel CPU?
|
||||
jc .Lintel
|
||||
and \$7,$TX[1]
|
||||
lea 1($XX[0]),$XX[1]
|
||||
jz .Loop8
|
||||
sub $TX[1],$len
|
||||
.Loop8_warmup:
|
||||
add $TX[0]#b,$YY#b
|
||||
movl ($dat,$YY,4),$TY#d
|
||||
movl $TX[0]#d,($dat,$YY,4)
|
||||
movl $TY#d,($dat,$XX[0],4)
|
||||
add $TY#b,$TX[0]#b
|
||||
inc $XX[0]#b
|
||||
movl ($dat,$TX[0],4),$TY#d
|
||||
movl ($dat,$XX[0],4),$TX[0]#d
|
||||
xorb ($inp),$TY#b
|
||||
movb $TY#b,($out,$inp)
|
||||
lea 1($inp),$inp
|
||||
dec $TX[1]
|
||||
jnz .Loop8_warmup
|
||||
|
||||
lea 1($XX[0]),$XX[1]
|
||||
jmp .Loop8
|
||||
.align 16
|
||||
.Loop8:
|
||||
___
|
||||
for ($i=0;$i<8;$i++) {
|
||||
$code.=<<___ if ($i==7);
|
||||
add \$8,$XX[1]#b
|
||||
___
|
||||
$code.=<<___;
|
||||
add $TX[0]#b,$YY#b
|
||||
movl ($dat,$YY,4),$TY#d
|
||||
movl $TX[0]#d,($dat,$YY,4)
|
||||
movl `4*($i==7?-1:$i)`($dat,$XX[1],4),$TX[1]#d
|
||||
ror \$8,%r8 # ror is redundant when $i=0
|
||||
movl $TY#d,4*$i($dat,$XX[0],4)
|
||||
add $TX[0]#b,$TY#b
|
||||
movb ($dat,$TY,4),%r8b
|
||||
___
|
||||
push(@TX,shift(@TX)); #push(@XX,shift(@XX)); # "rotate" registers
|
||||
}
|
||||
$code.=<<___;
|
||||
add \$8,$XX[0]#b
|
||||
ror \$8,%r8
|
||||
sub \$8,$len
|
||||
|
||||
xor ($inp),%r8
|
||||
mov %r8,($out,$inp)
|
||||
lea 8($inp),$inp
|
||||
|
||||
test \$-8,$len
|
||||
jnz .Loop8
|
||||
cmp \$0,$len
|
||||
jne .Lloop1
|
||||
jmp .Lexit
|
||||
|
||||
.align 16
|
||||
.Lintel:
|
||||
test \$-32,$len
|
||||
jz .Lloop1
|
||||
and \$15,$TX[1]
|
||||
jz .Loop16_is_hot
|
||||
sub $TX[1],$len
|
||||
.Loop16_warmup:
|
||||
add $TX[0]#b,$YY#b
|
||||
movl ($dat,$YY,4),$TY#d
|
||||
movl $TX[0]#d,($dat,$YY,4)
|
||||
movl $TY#d,($dat,$XX[0],4)
|
||||
add $TY#b,$TX[0]#b
|
||||
inc $XX[0]#b
|
||||
movl ($dat,$TX[0],4),$TY#d
|
||||
movl ($dat,$XX[0],4),$TX[0]#d
|
||||
xorb ($inp),$TY#b
|
||||
movb $TY#b,($out,$inp)
|
||||
lea 1($inp),$inp
|
||||
dec $TX[1]
|
||||
jnz .Loop16_warmup
|
||||
|
||||
mov $YY,$TX[1]
|
||||
xor $YY,$YY
|
||||
mov $TX[1]#b,$YY#b
|
||||
|
||||
.Loop16_is_hot:
|
||||
lea ($dat,$XX[0],4),$XX[1]
|
||||
___
|
||||
sub RC4_loop {
|
||||
my $i=shift;
|
||||
my $j=$i<0?0:$i;
|
||||
my $xmm="%xmm".($j&1);
|
||||
|
||||
$code.=" add \$16,$XX[0]#b\n" if ($i==15);
|
||||
$code.=" movdqu ($inp),%xmm2\n" if ($i==15);
|
||||
$code.=" add $TX[0]#b,$YY#b\n" if ($i<=0);
|
||||
$code.=" movl ($dat,$YY,4),$TY#d\n";
|
||||
$code.=" pxor %xmm0,%xmm2\n" if ($i==0);
|
||||
$code.=" psllq \$8,%xmm1\n" if ($i==0);
|
||||
$code.=" pxor $xmm,$xmm\n" if ($i<=1);
|
||||
$code.=" movl $TX[0]#d,($dat,$YY,4)\n";
|
||||
$code.=" add $TY#b,$TX[0]#b\n";
|
||||
$code.=" movl `4*($j+1)`($XX[1]),$TX[1]#d\n" if ($i<15);
|
||||
$code.=" movz $TX[0]#b,$TX[0]#d\n";
|
||||
$code.=" movl $TY#d,4*$j($XX[1])\n";
|
||||
$code.=" pxor %xmm1,%xmm2\n" if ($i==0);
|
||||
$code.=" lea ($dat,$XX[0],4),$XX[1]\n" if ($i==15);
|
||||
$code.=" add $TX[1]#b,$YY#b\n" if ($i<15);
|
||||
$code.=" pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n";
|
||||
$code.=" movdqu %xmm2,($out,$inp)\n" if ($i==0);
|
||||
$code.=" lea 16($inp),$inp\n" if ($i==0);
|
||||
$code.=" movl ($XX[1]),$TX[1]#d\n" if ($i==15);
|
||||
}
|
||||
RC4_loop(-1);
|
||||
$code.=<<___;
|
||||
jmp .Loop16_enter
|
||||
.align 16
|
||||
.Loop16:
|
||||
___
|
||||
|
||||
for ($i=0;$i<16;$i++) {
|
||||
$code.=".Loop16_enter:\n" if ($i==1);
|
||||
RC4_loop($i);
|
||||
push(@TX,shift(@TX)); # "rotate" registers
|
||||
}
|
||||
$code.=<<___;
|
||||
mov $YY,$TX[1]
|
||||
xor $YY,$YY # keyword to partial register
|
||||
sub \$16,$len
|
||||
mov $TX[1]#b,$YY#b
|
||||
test \$-16,$len
|
||||
jnz .Loop16
|
||||
|
||||
psllq \$8,%xmm1
|
||||
pxor %xmm0,%xmm2
|
||||
pxor %xmm1,%xmm2
|
||||
movdqu %xmm2,($out,$inp)
|
||||
lea 16($inp),$inp
|
||||
|
||||
cmp \$0,$len
|
||||
jne .Lloop1
|
||||
jmp .Lexit
|
||||
|
||||
.align 16
|
||||
.Lloop1:
|
||||
add $TX[0]#b,$YY#b
|
||||
movl ($dat,$YY,4),$TY#d
|
||||
movl $TX[0]#d,($dat,$YY,4)
|
||||
movl $TY#d,($dat,$XX[0],4)
|
||||
add $TY#b,$TX[0]#b
|
||||
inc $XX[0]#b
|
||||
movl ($dat,$TX[0],4),$TY#d
|
||||
movl ($dat,$XX[0],4),$TX[0]#d
|
||||
xorb ($inp),$TY#b
|
||||
movb $TY#b,($out,$inp)
|
||||
lea 1($inp),$inp
|
||||
dec $len
|
||||
jnz .Lloop1
|
||||
jmp .Lexit
|
||||
|
||||
.align 16
|
||||
.LRC4_CHAR:
|
||||
add \$1,$XX[0]#b
|
||||
movzb ($dat,$XX[0]),$TX[0]#d
|
||||
test \$-8,$len
|
||||
jz .Lcloop1
|
||||
jmp .Lcloop8
|
||||
.align 16
|
||||
.Lcloop8:
|
||||
mov ($inp),%r8d
|
||||
mov 4($inp),%r9d
|
||||
___
|
||||
# unroll 2x4-wise, because 64-bit rotates kill Intel P4...
|
||||
for ($i=0;$i<4;$i++) {
|
||||
$code.=<<___;
|
||||
add $TX[0]#b,$YY#b
|
||||
lea 1($XX[0]),$XX[1]
|
||||
movzb ($dat,$YY),$TY#d
|
||||
movzb $XX[1]#b,$XX[1]#d
|
||||
movzb ($dat,$XX[1]),$TX[1]#d
|
||||
movb $TX[0]#b,($dat,$YY)
|
||||
cmp $XX[1],$YY
|
||||
movb $TY#b,($dat,$XX[0])
|
||||
jne .Lcmov$i # Intel cmov is sloooow...
|
||||
mov $TX[0],$TX[1]
|
||||
.Lcmov$i:
|
||||
add $TX[0]#b,$TY#b
|
||||
xor ($dat,$TY),%r8b
|
||||
ror \$8,%r8d
|
||||
___
|
||||
push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
|
||||
}
|
||||
for ($i=4;$i<8;$i++) {
|
||||
$code.=<<___;
|
||||
add $TX[0]#b,$YY#b
|
||||
lea 1($XX[0]),$XX[1]
|
||||
movzb ($dat,$YY),$TY#d
|
||||
movzb $XX[1]#b,$XX[1]#d
|
||||
movzb ($dat,$XX[1]),$TX[1]#d
|
||||
movb $TX[0]#b,($dat,$YY)
|
||||
cmp $XX[1],$YY
|
||||
movb $TY#b,($dat,$XX[0])
|
||||
jne .Lcmov$i # Intel cmov is sloooow...
|
||||
mov $TX[0],$TX[1]
|
||||
.Lcmov$i:
|
||||
add $TX[0]#b,$TY#b
|
||||
xor ($dat,$TY),%r9b
|
||||
ror \$8,%r9d
|
||||
___
|
||||
push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
|
||||
}
|
||||
$code.=<<___;
|
||||
lea -8($len),$len
|
||||
mov %r8d,($out)
|
||||
lea 8($inp),$inp
|
||||
mov %r9d,4($out)
|
||||
lea 8($out),$out
|
||||
|
||||
test \$-8,$len
|
||||
jnz .Lcloop8
|
||||
cmp \$0,$len
|
||||
jne .Lcloop1
|
||||
jmp .Lexit
|
||||
___
|
||||
$code.=<<___;
|
||||
.align 16
|
||||
.Lcloop1:
|
||||
add $TX[0]#b,$YY#b
|
||||
movzb $YY#b,$YY#d
|
||||
movzb ($dat,$YY),$TY#d
|
||||
movb $TX[0]#b,($dat,$YY)
|
||||
movb $TY#b,($dat,$XX[0])
|
||||
add $TX[0]#b,$TY#b
|
||||
add \$1,$XX[0]#b
|
||||
movzb $TY#b,$TY#d
|
||||
movzb $XX[0]#b,$XX[0]#d
|
||||
movzb ($dat,$TY),$TY#d
|
||||
movzb ($dat,$XX[0]),$TX[0]#d
|
||||
xorb ($inp),$TY#b
|
||||
lea 1($inp),$inp
|
||||
movb $TY#b,($out)
|
||||
lea 1($out),$out
|
||||
sub \$1,$len
|
||||
jnz .Lcloop1
|
||||
jmp .Lexit
|
||||
|
||||
.align 16
|
||||
.Lexit:
|
||||
sub \$1,$XX[0]#b
|
||||
movl $XX[0]#d,-8($dat)
|
||||
movl $YY#d,-4($dat)
|
||||
|
||||
mov (%rsp),%r13
|
||||
mov 8(%rsp),%r12
|
||||
mov 16(%rsp),%rbx
|
||||
add \$24,%rsp
|
||||
.Lepilogue:
|
||||
ret
|
||||
.size asm_RC4,.-asm_RC4
|
||||
___
|
||||
}
|
||||
|
||||
$idx="%r8";
|
||||
$ido="%r9";
|
||||
|
||||
$code.=<<___;
|
||||
.globl asm_RC4_set_key
|
||||
.type asm_RC4_set_key,\@function,3
|
||||
.align 16
|
||||
asm_RC4_set_key:
|
||||
lea 8($dat),$dat
|
||||
lea ($inp,$len),$inp
|
||||
neg $len
|
||||
mov $len,%rcx
|
||||
xor %eax,%eax
|
||||
xor $ido,$ido
|
||||
xor %r10,%r10
|
||||
xor %r11,%r11
|
||||
|
||||
mov OPENSSL_ia32cap_P(%rip),$idx#d
|
||||
bt \$20,$idx#d # RC4_CHAR?
|
||||
jc .Lc1stloop
|
||||
jmp .Lw1stloop
|
||||
|
||||
.align 16
|
||||
.Lw1stloop:
|
||||
mov %eax,($dat,%rax,4)
|
||||
add \$1,%al
|
||||
jnc .Lw1stloop
|
||||
|
||||
xor $ido,$ido
|
||||
xor $idx,$idx
|
||||
.align 16
|
||||
.Lw2ndloop:
|
||||
mov ($dat,$ido,4),%r10d
|
||||
add ($inp,$len,1),$idx#b
|
||||
add %r10b,$idx#b
|
||||
add \$1,$len
|
||||
mov ($dat,$idx,4),%r11d
|
||||
cmovz %rcx,$len
|
||||
mov %r10d,($dat,$idx,4)
|
||||
mov %r11d,($dat,$ido,4)
|
||||
add \$1,$ido#b
|
||||
jnc .Lw2ndloop
|
||||
jmp .Lexit_key
|
||||
|
||||
.align 16
|
||||
.Lc1stloop:
|
||||
mov %al,($dat,%rax)
|
||||
add \$1,%al
|
||||
jnc .Lc1stloop
|
||||
|
||||
xor $ido,$ido
|
||||
xor $idx,$idx
|
||||
.align 16
|
||||
.Lc2ndloop:
|
||||
mov ($dat,$ido),%r10b
|
||||
add ($inp,$len),$idx#b
|
||||
add %r10b,$idx#b
|
||||
add \$1,$len
|
||||
mov ($dat,$idx),%r11b
|
||||
jnz .Lcnowrap
|
||||
mov %rcx,$len
|
||||
.Lcnowrap:
|
||||
mov %r10b,($dat,$idx)
|
||||
mov %r11b,($dat,$ido)
|
||||
add \$1,$ido#b
|
||||
jnc .Lc2ndloop
|
||||
movl \$-1,256($dat)
|
||||
|
||||
.align 16
|
||||
.Lexit_key:
|
||||
xor %eax,%eax
|
||||
mov %eax,-8($dat)
|
||||
mov %eax,-4($dat)
|
||||
ret
|
||||
.size asm_RC4_set_key,.-asm_RC4_set_key
|
||||
___
|
||||
|
||||
# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
|
||||
# CONTEXT *context,DISPATCHER_CONTEXT *disp)
|
||||
if ($win64) {
|
||||
$rec="%rcx";
|
||||
$frame="%rdx";
|
||||
$context="%r8";
|
||||
$disp="%r9";
|
||||
|
||||
$code.=<<___;
|
||||
.extern __imp_RtlVirtualUnwind
|
||||
.type stream_se_handler,\@abi-omnipotent
|
||||
.align 16
|
||||
stream_se_handler:
|
||||
push %rsi
|
||||
push %rdi
|
||||
push %rbx
|
||||
push %rbp
|
||||
push %r12
|
||||
push %r13
|
||||
push %r14
|
||||
push %r15
|
||||
pushfq
|
||||
sub \$64,%rsp
|
||||
|
||||
mov 120($context),%rax # pull context->Rax
|
||||
mov 248($context),%rbx # pull context->Rip
|
||||
|
||||
lea .Lprologue(%rip),%r10
|
||||
cmp %r10,%rbx # context->Rip<prologue label
|
||||
jb .Lin_prologue
|
||||
|
||||
mov 152($context),%rax # pull context->Rsp
|
||||
|
||||
lea .Lepilogue(%rip),%r10
|
||||
cmp %r10,%rbx # context->Rip>=epilogue label
|
||||
jae .Lin_prologue
|
||||
|
||||
lea 24(%rax),%rax
|
||||
|
||||
mov -8(%rax),%rbx
|
||||
mov -16(%rax),%r12
|
||||
mov -24(%rax),%r13
|
||||
mov %rbx,144($context) # restore context->Rbx
|
||||
mov %r12,216($context) # restore context->R12
|
||||
mov %r13,224($context) # restore context->R13
|
||||
|
||||
.Lin_prologue:
|
||||
mov 8(%rax),%rdi
|
||||
mov 16(%rax),%rsi
|
||||
mov %rax,152($context) # restore context->Rsp
|
||||
mov %rsi,168($context) # restore context->Rsi
|
||||
mov %rdi,176($context) # restore context->Rdi
|
||||
|
||||
jmp .Lcommon_seh_exit
|
||||
.size stream_se_handler,.-stream_se_handler
|
||||
|
||||
.type key_se_handler,\@abi-omnipotent
|
||||
.align 16
|
||||
key_se_handler:
|
||||
push %rsi
|
||||
push %rdi
|
||||
push %rbx
|
||||
push %rbp
|
||||
push %r12
|
||||
push %r13
|
||||
push %r14
|
||||
push %r15
|
||||
pushfq
|
||||
sub \$64,%rsp
|
||||
|
||||
mov 152($context),%rax # pull context->Rsp
|
||||
mov 8(%rax),%rdi
|
||||
mov 16(%rax),%rsi
|
||||
mov %rsi,168($context) # restore context->Rsi
|
||||
mov %rdi,176($context) # restore context->Rdi
|
||||
|
||||
.Lcommon_seh_exit:
|
||||
|
||||
mov 40($disp),%rdi # disp->ContextRecord
|
||||
mov $context,%rsi # context
|
||||
mov \$154,%ecx # sizeof(CONTEXT)
|
||||
.long 0xa548f3fc # cld; rep movsq
|
||||
|
||||
mov $disp,%rsi
|
||||
xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
|
||||
mov 8(%rsi),%rdx # arg2, disp->ImageBase
|
||||
mov 0(%rsi),%r8 # arg3, disp->ControlPc
|
||||
mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
|
||||
mov 40(%rsi),%r10 # disp->ContextRecord
|
||||
lea 56(%rsi),%r11 # &disp->HandlerData
|
||||
lea 24(%rsi),%r12 # &disp->EstablisherFrame
|
||||
mov %r10,32(%rsp) # arg5
|
||||
mov %r11,40(%rsp) # arg6
|
||||
mov %r12,48(%rsp) # arg7
|
||||
mov %rcx,56(%rsp) # arg8, (NULL)
|
||||
call *__imp_RtlVirtualUnwind(%rip)
|
||||
|
||||
mov \$1,%eax # ExceptionContinueSearch
|
||||
add \$64,%rsp
|
||||
popfq
|
||||
pop %r15
|
||||
pop %r14
|
||||
pop %r13
|
||||
pop %r12
|
||||
pop %rbp
|
||||
pop %rbx
|
||||
pop %rdi
|
||||
pop %rsi
|
||||
ret
|
||||
.size key_se_handler,.-key_se_handler
|
||||
|
||||
.section .pdata
|
||||
.align 4
|
||||
.rva .LSEH_begin_asm_RC4
|
||||
.rva .LSEH_end_asm_RC4
|
||||
.rva .LSEH_info_asm_RC4
|
||||
|
||||
.rva .LSEH_begin_asm_RC4_set_key
|
||||
.rva .LSEH_end_asm_RC4_set_key
|
||||
.rva .LSEH_info_asm_RC4_set_key
|
||||
|
||||
.section .xdata
|
||||
.align 8
|
||||
.LSEH_info_asm_RC4:
|
||||
.byte 9,0,0,0
|
||||
.rva stream_se_handler
|
||||
.LSEH_info_asm_RC4_set_key:
|
||||
.byte 9,0,0,0
|
||||
.rva key_se_handler
|
||||
___
|
||||
}
|
||||
|
||||
sub reg_part {
|
||||
my ($reg,$conv)=@_;
|
||||
if ($reg =~ /%r[0-9]+/) { $reg .= $conv; }
|
||||
elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; }
|
||||
elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; }
|
||||
elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; }
|
||||
return $reg;
|
||||
}
|
||||
|
||||
$code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem;
|
||||
$code =~ s/\`([^\`]*)\`/eval $1/gem;
|
||||
|
||||
print $code;
|
||||
|
||||
close STDOUT;
|
@ -56,9 +56,6 @@
|
||||
|
||||
#include <openssl/rc4.h>
|
||||
|
||||
#if defined(OPENSSL_NO_ASM) || \
|
||||
(!defined(OPENSSL_X86_64) && !defined(OPENSSL_X86))
|
||||
|
||||
#if defined(OPENSSL_64_BIT)
|
||||
#define RC4_CHUNK uint64_t
|
||||
#elif defined(OPENSSL_32_BIT)
|
||||
@ -263,22 +260,3 @@ void RC4_set_key(RC4_KEY *rc4key, unsigned len, const uint8_t *key) {
|
||||
SK_LOOP(d, i + 3);
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* In this case several functions are provided by asm code. However, one cannot
|
||||
* control asm symbol visibility with command line flags and such so they are
|
||||
* always hidden and wrapped by these C functions, which can be so
|
||||
* controlled. */
|
||||
|
||||
void asm_RC4(RC4_KEY *key, size_t len, const uint8_t *in, uint8_t *out);
|
||||
void RC4(RC4_KEY *key, size_t len, const uint8_t *in, uint8_t *out) {
|
||||
asm_RC4(key, len, in, out);
|
||||
}
|
||||
|
||||
void asm_RC4_set_key(RC4_KEY *rc4key, unsigned len, const uint8_t *key);
|
||||
void RC4_set_key(RC4_KEY *rc4key, unsigned len, const uint8_t *key) {
|
||||
asm_RC4_set_key(rc4key, len, key);
|
||||
}
|
||||
|
||||
#endif /* OPENSSL_NO_ASM || (!OPENSSL_X86_64 && !OPENSSL_X86) */
|
||||
|
Loading…
x
Reference in New Issue
Block a user