The dynamic checks should never fail but since they are added in already-fallible functions they won't cause any trouble. This facilitates future changes where the dynmic checks are required.
659 lines
25 KiB
Rust
659 lines
25 KiB
Rust
// Copyright 2015-2016 Brian Smith.
|
|
//
|
|
// Permission to use, copy, modify, and/or distribute this software for any
|
|
// purpose with or without fee is hereby granted, provided that the above
|
|
// copyright notice and this permission notice appear in all copies.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
|
|
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
|
|
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
|
|
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
|
|
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
|
|
use super::{
|
|
padding::RsaEncoding, KeyPairComponents, PublicExponent, PublicKey, PublicKeyComponents, N,
|
|
};
|
|
|
|
/// RSA PKCS#1 1.5 signatures.
|
|
use crate::{
|
|
arithmetic::{
|
|
bigint,
|
|
montgomery::{R, RR, RRR},
|
|
},
|
|
bits::BitLength,
|
|
cpu, digest,
|
|
error::{self, KeyRejected},
|
|
io::der,
|
|
pkcs8, rand, signature,
|
|
};
|
|
|
|
/// An RSA key pair, used for signing.
|
|
pub struct KeyPair {
|
|
p: PrivateCrtPrime<P>,
|
|
q: PrivateCrtPrime<Q>,
|
|
qInv: bigint::Elem<P, R>,
|
|
public: PublicKey,
|
|
}
|
|
|
|
derive_debug_via_field!(KeyPair, stringify!(RsaKeyPair), public);
|
|
|
|
impl KeyPair {
|
|
/// Parses an unencrypted PKCS#8-encoded RSA private key.
|
|
///
|
|
/// This will generate a 2048-bit RSA private key of the correct form using
|
|
/// OpenSSL's command line tool:
|
|
///
|
|
/// ```sh
|
|
/// openssl genpkey -algorithm RSA \
|
|
/// -pkeyopt rsa_keygen_bits:2048 \
|
|
/// -pkeyopt rsa_keygen_pubexp:65537 | \
|
|
/// openssl pkcs8 -topk8 -nocrypt -outform der > rsa-2048-private-key.pk8
|
|
/// ```
|
|
///
|
|
/// This will generate a 3072-bit RSA private key of the correct form:
|
|
///
|
|
/// ```sh
|
|
/// openssl genpkey -algorithm RSA \
|
|
/// -pkeyopt rsa_keygen_bits:3072 \
|
|
/// -pkeyopt rsa_keygen_pubexp:65537 | \
|
|
/// openssl pkcs8 -topk8 -nocrypt -outform der > rsa-3072-private-key.pk8
|
|
/// ```
|
|
///
|
|
/// Often, keys generated for use in OpenSSL-based software are stored in
|
|
/// the Base64 “PEM” format without the PKCS#8 wrapper. Such keys can be
|
|
/// converted to binary PKCS#8 form using the OpenSSL command line tool like
|
|
/// this:
|
|
///
|
|
/// ```sh
|
|
/// openssl pkcs8 -topk8 -nocrypt -outform der \
|
|
/// -in rsa-2048-private-key.pem > rsa-2048-private-key.pk8
|
|
/// ```
|
|
///
|
|
/// Base64 (“PEM”) PKCS#8-encoded keys can be converted to the binary PKCS#8
|
|
/// form like this:
|
|
///
|
|
/// ```sh
|
|
/// openssl pkcs8 -nocrypt -outform der \
|
|
/// -in rsa-2048-private-key.pem > rsa-2048-private-key.pk8
|
|
/// ```
|
|
///
|
|
/// See [`Self::from_components`] for more details on how the input is
|
|
/// validated.
|
|
///
|
|
/// See [RFC 5958] and [RFC 3447 Appendix A.1.2] for more details of the
|
|
/// encoding of the key.
|
|
///
|
|
/// [NIST SP-800-56B rev. 1]:
|
|
/// http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br1.pdf
|
|
///
|
|
/// [RFC 3447 Appendix A.1.2]:
|
|
/// https://tools.ietf.org/html/rfc3447#appendix-A.1.2
|
|
///
|
|
/// [RFC 5958]:
|
|
/// https://tools.ietf.org/html/rfc5958
|
|
pub fn from_pkcs8(pkcs8: &[u8]) -> Result<Self, KeyRejected> {
|
|
const RSA_ENCRYPTION: &[u8] = include_bytes!("../data/alg-rsa-encryption.der");
|
|
let (der, _) = pkcs8::unwrap_key_(
|
|
untrusted::Input::from(RSA_ENCRYPTION),
|
|
pkcs8::Version::V1Only,
|
|
untrusted::Input::from(pkcs8),
|
|
)?;
|
|
Self::from_der(der.as_slice_less_safe())
|
|
}
|
|
|
|
/// Parses an RSA private key that is not inside a PKCS#8 wrapper.
|
|
///
|
|
/// The private key must be encoded as a binary DER-encoded ASN.1
|
|
/// `RSAPrivateKey` as described in [RFC 3447 Appendix A.1.2]). In all other
|
|
/// respects, this is just like `from_pkcs8()`. See the documentation for
|
|
/// `from_pkcs8()` for more details.
|
|
///
|
|
/// It is recommended to use `from_pkcs8()` (with a PKCS#8-encoded key)
|
|
/// instead.
|
|
///
|
|
/// See [`Self::from_components()`] for more details on how the input is
|
|
/// validated.
|
|
///
|
|
/// [RFC 3447 Appendix A.1.2]:
|
|
/// https://tools.ietf.org/html/rfc3447#appendix-A.1.2
|
|
///
|
|
/// [NIST SP-800-56B rev. 1]:
|
|
/// http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br1.pdf
|
|
pub fn from_der(input: &[u8]) -> Result<Self, KeyRejected> {
|
|
untrusted::Input::from(input).read_all(KeyRejected::invalid_encoding(), |input| {
|
|
der::nested(
|
|
input,
|
|
der::Tag::Sequence,
|
|
error::KeyRejected::invalid_encoding(),
|
|
Self::from_der_reader,
|
|
)
|
|
})
|
|
}
|
|
|
|
fn from_der_reader(input: &mut untrusted::Reader) -> Result<Self, KeyRejected> {
|
|
let version = der::small_nonnegative_integer(input)
|
|
.map_err(|error::Unspecified| KeyRejected::invalid_encoding())?;
|
|
if version != 0 {
|
|
return Err(KeyRejected::version_not_supported());
|
|
}
|
|
|
|
fn nonnegative_integer<'a>(
|
|
input: &mut untrusted::Reader<'a>,
|
|
) -> Result<&'a [u8], KeyRejected> {
|
|
der::nonnegative_integer(input)
|
|
.map(|input| input.as_slice_less_safe())
|
|
.map_err(|error::Unspecified| KeyRejected::invalid_encoding())
|
|
}
|
|
|
|
let n = nonnegative_integer(input)?;
|
|
let e = nonnegative_integer(input)?;
|
|
let d = nonnegative_integer(input)?;
|
|
let p = nonnegative_integer(input)?;
|
|
let q = nonnegative_integer(input)?;
|
|
let dP = nonnegative_integer(input)?;
|
|
let dQ = nonnegative_integer(input)?;
|
|
let qInv = nonnegative_integer(input)?;
|
|
|
|
let components = KeyPairComponents {
|
|
public_key: PublicKeyComponents { n, e },
|
|
d,
|
|
p,
|
|
q,
|
|
dP,
|
|
dQ,
|
|
qInv,
|
|
};
|
|
|
|
Self::from_components(&components)
|
|
}
|
|
|
|
/// Constructs an RSA private key from its big-endian-encoded components.
|
|
///
|
|
/// Only two-prime (not multi-prime) keys are supported. The public modulus
|
|
/// (n) must be at least 2047 bits. The public modulus must be no larger
|
|
/// than 4096 bits. It is recommended that the public modulus be exactly
|
|
/// 2048 or 3072 bits. The public exponent must be at least 65537 and must
|
|
/// be no more than 33 bits long.
|
|
///
|
|
/// The private key is validated according to [NIST SP-800-56B rev. 1]
|
|
/// section 6.4.1.4.3, crt_pkv (Intended Exponent-Creation Method Unknown),
|
|
/// with the following exceptions:
|
|
///
|
|
/// * Section 6.4.1.2.1, Step 1: Neither a target security level nor an
|
|
/// expected modulus length is provided as a parameter, so checks
|
|
/// regarding these expectations are not done.
|
|
/// * Section 6.4.1.2.1, Step 3: Since neither the public key nor the
|
|
/// expected modulus length is provided as a parameter, the consistency
|
|
/// check between these values and the private key's value of n isn't
|
|
/// done.
|
|
/// * Section 6.4.1.2.1, Step 5: No primality tests are done, both for
|
|
/// performance reasons and to avoid any side channels that such tests
|
|
/// would provide.
|
|
/// * Section 6.4.1.2.1, Step 6, and 6.4.1.4.3, Step 7:
|
|
/// * *ring* has a slightly looser lower bound for the values of `p`
|
|
/// and `q` than what the NIST document specifies. This looser lower
|
|
/// bound matches what most other crypto libraries do. The check might
|
|
/// be tightened to meet NIST's requirements in the future. Similarly,
|
|
/// the check that `p` and `q` are not too close together is skipped
|
|
/// currently, but may be added in the future.
|
|
/// - The validity of the mathematical relationship of `dP`, `dQ`, `e`
|
|
/// and `n` is verified only during signing. Some size checks of `d`,
|
|
/// `dP` and `dQ` are performed at construction, but some NIST checks
|
|
/// are skipped because they would be expensive and/or they would leak
|
|
/// information through side channels. If a preemptive check of the
|
|
/// consistency of `dP`, `dQ`, `e` and `n` with each other is
|
|
/// necessary, that can be done by signing any message with the key
|
|
/// pair.
|
|
///
|
|
/// * `d` is not fully validated, neither at construction nor during
|
|
/// signing. This is OK as far as *ring*'s usage of the key is
|
|
/// concerned because *ring* never uses the value of `d` (*ring* always
|
|
/// uses `p`, `q`, `dP` and `dQ` via the Chinese Remainder Theorem,
|
|
/// instead). However, *ring*'s checks would not be sufficient for
|
|
/// validating a key pair for use by some other system; that other
|
|
/// system must check the value of `d` itself if `d` is to be used.
|
|
pub fn from_components<Public, Private>(
|
|
components: &KeyPairComponents<Public, Private>,
|
|
) -> Result<Self, KeyRejected>
|
|
where
|
|
Public: AsRef<[u8]>,
|
|
Private: AsRef<[u8]>,
|
|
{
|
|
let components = KeyPairComponents {
|
|
public_key: PublicKeyComponents {
|
|
n: components.public_key.n.as_ref(),
|
|
e: components.public_key.e.as_ref(),
|
|
},
|
|
d: components.d.as_ref(),
|
|
p: components.p.as_ref(),
|
|
q: components.q.as_ref(),
|
|
dP: components.dP.as_ref(),
|
|
dQ: components.dQ.as_ref(),
|
|
qInv: components.qInv.as_ref(),
|
|
};
|
|
Self::from_components_(&components, cpu::features())
|
|
}
|
|
|
|
fn from_components_(
|
|
&KeyPairComponents {
|
|
public_key,
|
|
d,
|
|
p,
|
|
q,
|
|
dP,
|
|
dQ,
|
|
qInv,
|
|
}: &KeyPairComponents<&[u8]>,
|
|
cpu_features: cpu::Features,
|
|
) -> Result<Self, KeyRejected> {
|
|
let d = untrusted::Input::from(d);
|
|
let p = untrusted::Input::from(p);
|
|
let q = untrusted::Input::from(q);
|
|
let dP = untrusted::Input::from(dP);
|
|
let dQ = untrusted::Input::from(dQ);
|
|
let qInv = untrusted::Input::from(qInv);
|
|
|
|
// XXX: Some steps are done out of order, but the NIST steps are worded
|
|
// in such a way that it is clear that NIST intends for them to be done
|
|
// in order. TODO: Does this matter at all?
|
|
|
|
// 6.4.1.4.3/6.4.1.2.1 - Step 1.
|
|
|
|
// Step 1.a is omitted, as explained above.
|
|
|
|
// Step 1.b is omitted per above. Instead, we check that the public
|
|
// modulus is 2048 to `PRIVATE_KEY_PUBLIC_MODULUS_MAX_BITS` bits.
|
|
// XXX: The maximum limit of 4096 bits is primarily due to lack of
|
|
// testing of larger key sizes; see, in particular,
|
|
// https://www.mail-archive.com/openssl-dev@openssl.org/msg44586.html
|
|
// and
|
|
// https://www.mail-archive.com/openssl-dev@openssl.org/msg44759.html.
|
|
// Also, this limit might help with memory management decisions later.
|
|
|
|
// Step 1.c. We validate e >= 65537.
|
|
let n = untrusted::Input::from(public_key.n);
|
|
let e = untrusted::Input::from(public_key.e);
|
|
let public_key = PublicKey::from_modulus_and_exponent(
|
|
n,
|
|
e,
|
|
BitLength::from_usize_bits(2048),
|
|
super::PRIVATE_KEY_PUBLIC_MODULUS_MAX_BITS,
|
|
PublicExponent::_65537,
|
|
cpu_features,
|
|
)?;
|
|
|
|
let n_one = public_key.inner().n().oneRR();
|
|
let n = &public_key.inner().n().value();
|
|
|
|
// 6.4.1.4.3 says to skip 6.4.1.2.1 Step 2.
|
|
|
|
// 6.4.1.4.3 Step 3.
|
|
|
|
// Step 3.a is done below, out of order.
|
|
// Step 3.b is unneeded since `n_bits` is derived here from `n`.
|
|
|
|
// 6.4.1.4.3 says to skip 6.4.1.2.1 Step 4. (We don't need to recover
|
|
// the prime factors since they are already given.)
|
|
|
|
// 6.4.1.4.3 - Step 5.
|
|
|
|
// Steps 5.a and 5.b are omitted, as explained above.
|
|
|
|
let n_bits = public_key.inner().n().len_bits();
|
|
|
|
let p = PrivatePrime::new(p, n_bits, cpu_features)?;
|
|
let q = PrivatePrime::new(q, n_bits, cpu_features)?;
|
|
|
|
// TODO: Step 5.i
|
|
//
|
|
// 3.b is unneeded since `n_bits` is derived here from `n`.
|
|
|
|
// 6.4.1.4.3 - Step 3.a (out of order).
|
|
//
|
|
// Verify that p * q == n. We restrict ourselves to modular
|
|
// multiplication. We rely on the fact that we've verified
|
|
// 0 < q < p < n. We check that q and p are close to sqrt(n) and then
|
|
// assume that these preconditions are enough to let us assume that
|
|
// checking p * q == 0 (mod n) is equivalent to checking p * q == n.
|
|
let q_mod_n = q
|
|
.modulus
|
|
.to_elem(n)
|
|
.map_err(|error::Unspecified| KeyRejected::inconsistent_components())?;
|
|
let p_mod_n = p
|
|
.modulus
|
|
.to_elem(n)
|
|
.map_err(|error::Unspecified| KeyRejected::inconsistent_components())?;
|
|
let p_mod_n = bigint::elem_mul(n_one, p_mod_n, n);
|
|
let pq_mod_n = bigint::elem_mul(&q_mod_n, p_mod_n, n);
|
|
if !pq_mod_n.is_zero() {
|
|
return Err(KeyRejected::inconsistent_components());
|
|
}
|
|
|
|
// 6.4.1.4.3/6.4.1.2.1 - Step 6.
|
|
|
|
// Step 6.a, partial.
|
|
//
|
|
// First, validate `2**half_n_bits < d`. Since 2**half_n_bits has a bit
|
|
// length of half_n_bits + 1, this check gives us 2**half_n_bits <= d,
|
|
// and knowing d is odd makes the inequality strict.
|
|
let (d, d_bits) = bigint::Nonnegative::from_be_bytes_with_bit_length(d)
|
|
.map_err(|_| error::KeyRejected::invalid_encoding())?;
|
|
if !(n_bits.half_rounded_up() < d_bits) {
|
|
return Err(KeyRejected::inconsistent_components());
|
|
}
|
|
// XXX: This check should be `d < LCM(p - 1, q - 1)`, but we don't have
|
|
// a good way of calculating LCM, so it is omitted, as explained above.
|
|
d.verify_less_than_modulus(n)
|
|
.map_err(|error::Unspecified| KeyRejected::inconsistent_components())?;
|
|
if !d.is_odd() {
|
|
return Err(KeyRejected::invalid_component());
|
|
}
|
|
|
|
// Step 6.b is omitted as explained above.
|
|
|
|
let pm = &p.modulus.modulus();
|
|
|
|
// 6.4.1.4.3 - Step 7.
|
|
|
|
// Step 7.c.
|
|
let qInv = bigint::Elem::from_be_bytes_padded(qInv, pm)
|
|
.map_err(|error::Unspecified| KeyRejected::invalid_component())?;
|
|
|
|
// Steps 7.d and 7.e are omitted per the documentation above, and
|
|
// because we don't (in the long term) have a good way to do modulo
|
|
// with an even modulus.
|
|
|
|
// Step 7.f.
|
|
let qInv = bigint::elem_mul(p.oneRR.as_ref(), qInv, pm);
|
|
let q_mod_p = bigint::elem_reduced(&q_mod_n, pm, q.modulus.len_bits());
|
|
let q_mod_p = bigint::elem_mul(p.oneRR.as_ref(), q_mod_p, pm);
|
|
bigint::verify_inverses_consttime(&qInv, q_mod_p, pm)
|
|
.map_err(|error::Unspecified| KeyRejected::inconsistent_components())?;
|
|
|
|
// This should never fail since `n` and `e` were validated above.
|
|
|
|
let p = PrivateCrtPrime::new(p, dP)?;
|
|
let q = PrivateCrtPrime::new(q, dQ)?;
|
|
|
|
Ok(Self {
|
|
p,
|
|
q,
|
|
qInv,
|
|
public: public_key,
|
|
})
|
|
}
|
|
|
|
/// Returns a reference to the public key.
|
|
pub fn public(&self) -> &PublicKey {
|
|
&self.public
|
|
}
|
|
|
|
/// Returns the length in bytes of the key pair's public modulus.
|
|
///
|
|
/// A signature has the same length as the public modulus.
|
|
#[deprecated = "Use `public().modulus_len()`"]
|
|
#[inline]
|
|
pub fn public_modulus_len(&self) -> usize {
|
|
self.public().modulus_len()
|
|
}
|
|
}
|
|
|
|
impl signature::KeyPair for KeyPair {
|
|
type PublicKey = PublicKey;
|
|
|
|
fn public_key(&self) -> &Self::PublicKey {
|
|
self.public()
|
|
}
|
|
}
|
|
|
|
struct PrivatePrime<M> {
|
|
modulus: bigint::OwnedModulus<M>,
|
|
oneRR: bigint::One<M, RR>,
|
|
}
|
|
|
|
impl<M> PrivatePrime<M> {
|
|
fn new(
|
|
p: untrusted::Input,
|
|
n_bits: BitLength,
|
|
cpu_features: cpu::Features,
|
|
) -> Result<Self, KeyRejected> {
|
|
let p = bigint::OwnedModulus::from_be_bytes(p, cpu_features)?;
|
|
|
|
// 5.c / 5.g:
|
|
//
|
|
// TODO: First, stop if `p < (√2) * 2**((nBits/2) - 1)`.
|
|
// TODO: First, stop if `q < (√2) * 2**((nBits/2) - 1)`.
|
|
//
|
|
// Second, stop if `p > 2**(nBits/2) - 1`.
|
|
// Second, stop if `q > 2**(nBits/2) - 1`.
|
|
if p.len_bits() != n_bits.half_rounded_up() {
|
|
return Err(KeyRejected::inconsistent_components());
|
|
}
|
|
|
|
if p.len_bits().as_usize_bits() % 512 != 0 {
|
|
return Err(error::KeyRejected::private_modulus_len_not_multiple_of_512_bits());
|
|
}
|
|
|
|
// TODO: Step 5.d: Verify GCD(p - 1, e) == 1.
|
|
// TODO: Step 5.h: Verify GCD(q - 1, e) == 1.
|
|
|
|
// Steps 5.e and 5.f are omitted as explained above.
|
|
|
|
let oneRR = bigint::One::newRR(&p.modulus());
|
|
|
|
Ok(Self { modulus: p, oneRR })
|
|
}
|
|
}
|
|
|
|
struct PrivateCrtPrime<M> {
|
|
modulus: bigint::OwnedModulus<M>,
|
|
oneRRR: bigint::One<M, RRR>,
|
|
exponent: bigint::PrivateExponent,
|
|
}
|
|
|
|
impl<M> PrivateCrtPrime<M> {
|
|
/// Constructs a `PrivateCrtPrime` from the private prime `p` and `dP` where
|
|
/// dP == d % (p - 1).
|
|
fn new(p: PrivatePrime<M>, dP: untrusted::Input) -> Result<Self, KeyRejected> {
|
|
let m = &p.modulus.modulus();
|
|
// [NIST SP-800-56B rev. 1] 6.4.1.4.3 - Steps 7.a & 7.b.
|
|
let dP = bigint::PrivateExponent::from_be_bytes_padded(dP, m)
|
|
.map_err(|error::Unspecified| KeyRejected::inconsistent_components())?;
|
|
|
|
// XXX: Steps 7.d and 7.e are omitted. We don't check that
|
|
// `dP == d % (p - 1)` because we don't (in the long term) have a good
|
|
// way to do modulo with an even modulus. Instead we just check that
|
|
// `1 <= dP < p - 1`. We'll check it, to some unknown extent, when we
|
|
// do the private key operation, since we verify that the result of the
|
|
// private key operation using the CRT parameters is consistent with `n`
|
|
// and `e`. TODO: Either prove that what we do is sufficient, or make
|
|
// it so.
|
|
|
|
let oneRRR = bigint::One::newRRR(p.oneRR, m);
|
|
|
|
Ok(Self {
|
|
modulus: p.modulus,
|
|
oneRRR,
|
|
exponent: dP,
|
|
})
|
|
}
|
|
}
|
|
|
|
fn elem_exp_consttime<M>(
|
|
c: &bigint::Elem<N>,
|
|
p: &PrivateCrtPrime<M>,
|
|
other_prime_len_bits: BitLength,
|
|
) -> Result<bigint::Elem<M>, error::Unspecified> {
|
|
let m = &p.modulus.modulus();
|
|
let c_mod_m = bigint::elem_reduced(c, m, other_prime_len_bits);
|
|
let c_mod_m = bigint::elem_mul(p.oneRRR.as_ref(), c_mod_m, m);
|
|
bigint::elem_exp_consttime(c_mod_m, &p.exponent, m)
|
|
}
|
|
|
|
// Type-level representations of the different moduli used in RSA signing, in
|
|
// addition to `super::N`. See `super::bigint`'s modulue-level documentation.
|
|
|
|
#[derive(Copy, Clone)]
|
|
enum P {}
|
|
unsafe impl bigint::SmallerModulus<N> for P {}
|
|
|
|
#[derive(Copy, Clone)]
|
|
enum Q {}
|
|
unsafe impl bigint::SmallerModulus<N> for Q {}
|
|
|
|
impl KeyPair {
|
|
/// Computes the signature of `msg` and writes it into `signature`.
|
|
///
|
|
/// `msg` is digested using the digest algorithm from `padding_alg` and the
|
|
/// digest is then padded using the padding algorithm from `padding_alg`.
|
|
///
|
|
/// The signature it written into `signature`; `signature`'s length must be
|
|
/// exactly the length returned by `self::public().modulus_len()` or else
|
|
/// an error will be returned. On failure, `signature` may contain
|
|
/// intermediate results, but won't contain anything that would endanger the
|
|
/// private key.
|
|
///
|
|
/// `rng` may be used to randomize the padding (e.g. for PSS).
|
|
///
|
|
/// Many other crypto libraries have signing functions that takes a
|
|
/// precomputed digest as input, instead of the message to digest. This
|
|
/// function does *not* take a precomputed digest; instead, `sign`
|
|
/// calculates the digest itself.
|
|
pub fn sign(
|
|
&self,
|
|
padding_alg: &'static dyn RsaEncoding,
|
|
rng: &dyn rand::SecureRandom,
|
|
msg: &[u8],
|
|
signature: &mut [u8],
|
|
) -> Result<(), error::Unspecified> {
|
|
if signature.len() != self.public().modulus_len() {
|
|
return Err(error::Unspecified);
|
|
}
|
|
|
|
let m_hash = digest::digest(padding_alg.digest_alg(), msg);
|
|
|
|
// Use the output buffer as the scratch space for the signature to
|
|
// reduce the required stack space.
|
|
padding_alg.encode(m_hash, signature, self.public().inner().n().len_bits(), rng)?;
|
|
|
|
// RFC 8017 Section 5.1.2: RSADP, using the Chinese Remainder Theorem
|
|
// with Garner's algorithm.
|
|
|
|
// Steps 1 and 2.
|
|
let m = self.private_exponentiate(signature)?;
|
|
|
|
// Step 3.
|
|
m.fill_be_bytes(signature);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Returns base**d (mod n).
|
|
///
|
|
/// This does not return or write any intermediate results into any buffers
|
|
/// that are provided by the caller so that no intermediate state will be
|
|
/// leaked that would endanger the private key.
|
|
///
|
|
/// Panics if `in_out` is not `self.public().modulus_len()`.
|
|
fn private_exponentiate(&self, base: &[u8]) -> Result<bigint::Elem<N>, error::Unspecified> {
|
|
assert_eq!(base.len(), self.public().modulus_len());
|
|
|
|
// RFC 8017 Section 5.1.2: RSADP, using the Chinese Remainder Theorem
|
|
// with Garner's algorithm.
|
|
|
|
let n = &self.public.inner().n().value();
|
|
let n_one = self.public.inner().n().oneRR();
|
|
|
|
// Step 1. The value zero is also rejected.
|
|
let base = bigint::Elem::from_be_bytes_padded(untrusted::Input::from(base), n)?;
|
|
|
|
// Step 2
|
|
let c = base;
|
|
|
|
// Step 2.b.i.
|
|
let q_bits = self.q.modulus.len_bits();
|
|
let m_1 = elem_exp_consttime(&c, &self.p, q_bits)?;
|
|
let m_2 = elem_exp_consttime(&c, &self.q, self.p.modulus.len_bits())?;
|
|
|
|
// Step 2.b.ii isn't needed since there are only two primes.
|
|
|
|
// Step 2.b.iii.
|
|
let h = {
|
|
let p = &self.p.modulus.modulus();
|
|
let m_2 = bigint::elem_reduced_once(&m_2, p, q_bits);
|
|
let m_1_minus_m_2 = bigint::elem_sub(m_1, &m_2, p);
|
|
bigint::elem_mul(&self.qInv, m_1_minus_m_2, p)
|
|
};
|
|
|
|
// Step 2.b.iv. The reduction in the modular multiplication isn't
|
|
// necessary because `h < p` and `p * q == n` implies `h * q < n`.
|
|
// Modular arithmetic is used simply to avoid implementing
|
|
// non-modular arithmetic.
|
|
let h = bigint::elem_widen(h, n);
|
|
let q_mod_n = self.q.modulus.to_elem(n)?;
|
|
let q_mod_n = bigint::elem_mul(n_one, q_mod_n, n);
|
|
let q_times_h = bigint::elem_mul(&q_mod_n, h, n);
|
|
let m_2 = bigint::elem_widen(m_2, n);
|
|
let m = bigint::elem_add(m_2, q_times_h, n);
|
|
|
|
// Step 2.b.v isn't needed since there are only two primes.
|
|
|
|
// Verify the result to protect against fault attacks as described
|
|
// in "On the Importance of Checking Cryptographic Protocols for
|
|
// Faults" by Dan Boneh, Richard A. DeMillo, and Richard J. Lipton.
|
|
// This check is cheap assuming `e` is small, which is ensured during
|
|
// `KeyPair` construction. Note that this is the only validation of `e`
|
|
// that is done other than basic checks on its size, oddness, and
|
|
// minimum value, since the relationship of `e` to `d`, `p`, and `q` is
|
|
// not verified during `KeyPair` construction.
|
|
{
|
|
let verify = self.public.inner().exponentiate_elem(&m);
|
|
bigint::elem_verify_equal_consttime(&verify, &c)?;
|
|
}
|
|
|
|
// Step 3 will be done by the caller.
|
|
|
|
Ok(m)
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
use crate::test;
|
|
use alloc::vec;
|
|
|
|
#[test]
|
|
fn test_rsakeypair_private_exponentiate() {
|
|
test::run(
|
|
test_file!("keypair_private_exponentiate_tests.txt"),
|
|
|section, test_case| {
|
|
assert_eq!(section, "");
|
|
|
|
let key = test_case.consume_bytes("Key");
|
|
let key = KeyPair::from_pkcs8(&key).unwrap();
|
|
let test_cases = &[
|
|
test_case.consume_bytes("p"),
|
|
test_case.consume_bytes("p_plus_1"),
|
|
test_case.consume_bytes("p_minus_1"),
|
|
test_case.consume_bytes("q"),
|
|
test_case.consume_bytes("q_plus_1"),
|
|
test_case.consume_bytes("q_minus_1"),
|
|
];
|
|
for test_case in test_cases {
|
|
// THe call to `elem_verify_equal_consttime` will cause
|
|
// `private_exponentiate` to fail if the computation is
|
|
// incorrect.
|
|
let mut padded = vec![0; key.public.modulus_len()];
|
|
let zeroes = padded.len() - test_case.len();
|
|
padded[zeroes..].copy_from_slice(test_case);
|
|
let _: bigint::Elem<_> = key.private_exponentiate(&padded).unwrap();
|
|
}
|
|
Ok(())
|
|
},
|
|
);
|
|
}
|
|
}
|