ring/src/arithmetic/bigint.rs
Brian Smith 6de27244ff bigint: NFC: Take oneRR out of OwnedModulus.
`PublicModulus` and `PrivatePrime` are basically duplicates of
`OwnedModulusWithOne`. In the future we would like to create an
`OwnedModulus` that doesn't need 1RR to be calculated. Also in the
future we'd like to be able to "take" 1RR from a public modulus.
This change is a step towards those ends.
2023-11-22 18:07:16 -08:00

991 lines
31 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2015-2023 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
//! Multi-precision integers.
//!
//! # Modular Arithmetic.
//!
//! Modular arithmetic is done in finite commutative rings /m for some
//! modulus *m*. We work in finite commutative rings instead of finite fields
//! because the RSA public modulus *n* is not prime, which means /n contains
//! nonzero elements that have no multiplicative inverse, so /n is not a
//! finite field.
//!
//! In some calculations we need to deal with multiple rings at once. For
//! example, RSA private key operations operate in the rings /n, /p, and
//! /q. Types and functions dealing with such rings are all parameterized
//! over a type `M` to ensure that we don't wrongly mix up the math, e.g. by
//! multiplying an element of /p by an element of /q modulo q. This follows
//! the "unit" pattern described in [Static checking of units in Servo].
//!
//! `Elem` also uses the static unit checking pattern to statically track the
//! Montgomery factors that need to be canceled out in each value using it's
//! `E` parameter.
//!
//! [Static checking of units in Servo]:
//! https://blog.mozilla.org/research/2014/06/23/static-checking-of-units-in-servo/
use self::boxed_limbs::BoxedLimbs;
pub(crate) use self::{
modulus::{Modulus, OwnedModulus, MODULUS_MAX_LIMBS},
private_exponent::PrivateExponent,
};
use super::n0::N0;
pub(crate) use super::nonnegative::Nonnegative;
use crate::{
arithmetic::montgomery::*,
bits::BitLength,
c, cpu, error,
limb::{self, Limb, LimbMask, LIMB_BITS},
};
use alloc::vec;
use core::{marker::PhantomData, num::NonZeroU64};
mod boxed_limbs;
mod modulus;
mod private_exponent;
/// A modulus *s* that is smaller than another modulus *l* so every element of
/// /s is also an element of /l.
///
/// # Safety
///
/// Some logic may assume that the invariant holds when accessing limbs within
/// a value, e.g. by assuming the larger modulus has at least as many limbs.
/// TODO: Any such logic should be encapsulated here, or this trait should be
/// made non-`unsafe`. (In retrospect, this shouldn't have been made an `unsafe`
/// trait preemptively.)
pub unsafe trait SmallerModulus<L> {}
pub trait PublicModulus {}
/// Elements of /m for some modulus *m*.
//
// Defaulting `E` to `Unencoded` is a convenience for callers from outside this
// submodule. However, for maximum clarity, we always explicitly use
// `Unencoded` within the `bigint` submodule.
pub struct Elem<M, E = Unencoded> {
limbs: BoxedLimbs<M>,
/// The number of Montgomery factors that need to be canceled out from
/// `value` to get the actual value.
encoding: PhantomData<E>,
}
// TODO: `derive(Clone)` after https://github.com/rust-lang/rust/issues/26925
// is resolved or restrict `M: Clone` and `E: Clone`.
impl<M, E> Clone for Elem<M, E> {
fn clone(&self) -> Self {
Self {
limbs: self.limbs.clone(),
encoding: self.encoding,
}
}
}
impl<M, E> Elem<M, E> {
#[inline]
pub fn is_zero(&self) -> bool {
self.limbs.is_zero()
}
}
/// Does a Montgomery reduction on `limbs` assuming they are Montgomery-encoded ('R') and assuming
/// they are the same size as `m`, but perhaps not reduced mod `m`. The result will be
/// fully reduced mod `m`.
fn from_montgomery_amm<M>(limbs: BoxedLimbs<M>, m: &Modulus<M>) -> Elem<M, Unencoded> {
debug_assert_eq!(limbs.len(), m.limbs().len());
let mut limbs = limbs;
let mut one = [0; MODULUS_MAX_LIMBS];
one[0] = 1;
let one = &one[..m.limbs().len()];
limbs_mont_mul(&mut limbs, one, m.limbs(), m.n0(), m.cpu_features());
Elem {
limbs,
encoding: PhantomData,
}
}
#[cfg(any(test, not(target_arch = "x86_64")))]
impl<M> Elem<M, R> {
#[inline]
pub fn into_unencoded(self, m: &Modulus<M>) -> Elem<M, Unencoded> {
from_montgomery_amm(self.limbs, m)
}
}
impl<M> Elem<M, Unencoded> {
pub fn from_be_bytes_padded(
input: untrusted::Input,
m: &Modulus<M>,
) -> Result<Self, error::Unspecified> {
Ok(Self {
limbs: BoxedLimbs::from_be_bytes_padded_less_than(input, m)?,
encoding: PhantomData,
})
}
#[inline]
pub fn fill_be_bytes(&self, out: &mut [u8]) {
// See Falko Strenzke, "Manger's Attack revisited", ICICS 2010.
limb::big_endian_from_limbs(&self.limbs, out)
}
fn is_one(&self) -> bool {
limb::limbs_equal_limb_constant_time(&self.limbs, 1) == LimbMask::True
}
}
pub fn elem_mul<M, AF, BF>(
a: &Elem<M, AF>,
mut b: Elem<M, BF>,
m: &Modulus<M>,
) -> Elem<M, <(AF, BF) as ProductEncoding>::Output>
where
(AF, BF): ProductEncoding,
{
limbs_mont_mul(&mut b.limbs, &a.limbs, m.limbs(), m.n0(), m.cpu_features());
Elem {
limbs: b.limbs,
encoding: PhantomData,
}
}
// r *= 2.
fn elem_double<M, AF>(r: &mut Elem<M, AF>, m: &Modulus<M>) {
limb::limbs_double_mod(&mut r.limbs, m.limbs())
}
// TODO: This is currently unused, but we intend to eventually use this to
// reduce elements (x mod q) mod p in the RSA CRT. If/when we do so, we
// should update the testing so it is reflective of that usage, instead of
// the old usage.
pub fn elem_reduced_once<A, M>(
a: &Elem<A, Unencoded>,
m: &Modulus<M>,
other_modulus_len_bits: BitLength,
) -> Elem<M, Unencoded> {
assert_eq!(m.len_bits(), other_modulus_len_bits);
let mut r = a.limbs.clone();
limb::limbs_reduce_once_constant_time(&mut r, m.limbs());
Elem {
limbs: BoxedLimbs::new_unchecked(r.into_limbs()),
encoding: PhantomData,
}
}
#[inline]
pub fn elem_reduced<Larger, Smaller>(
a: &Elem<Larger, Unencoded>,
m: &Modulus<Smaller>,
other_prime_len_bits: BitLength,
) -> Elem<Smaller, RInverse> {
// This is stricter than required mathematically but this is what we
// guarantee and this is easier to check. The real requirement is that
// that `a < m*R` where `R` is the Montgomery `R` for `m`.
assert_eq!(other_prime_len_bits, m.len_bits());
// `limbs_from_mont_in_place` requires this.
assert_eq!(a.limbs.len(), m.limbs().len() * 2);
let mut tmp = [0; MODULUS_MAX_LIMBS];
let tmp = &mut tmp[..a.limbs.len()];
tmp.copy_from_slice(&a.limbs);
let mut r = m.zero();
limbs_from_mont_in_place(&mut r.limbs, tmp, m.limbs(), m.n0());
r
}
fn elem_squared<M, E>(
mut a: Elem<M, E>,
m: &Modulus<M>,
) -> Elem<M, <(E, E) as ProductEncoding>::Output>
where
(E, E): ProductEncoding,
{
limbs_mont_square(&mut a.limbs, m.limbs(), m.n0(), m.cpu_features());
Elem {
limbs: a.limbs,
encoding: PhantomData,
}
}
pub fn elem_widen<Larger, Smaller: SmallerModulus<Larger>>(
a: Elem<Smaller, Unencoded>,
m: &Modulus<Larger>,
) -> Elem<Larger, Unencoded> {
let mut r = m.zero();
r.limbs[..a.limbs.len()].copy_from_slice(&a.limbs);
r
}
// TODO: Document why this works for all Montgomery factors.
pub fn elem_add<M, E>(mut a: Elem<M, E>, b: Elem<M, E>, m: &Modulus<M>) -> Elem<M, E> {
limb::limbs_add_assign_mod(&mut a.limbs, &b.limbs, m.limbs());
a
}
// TODO: Document why this works for all Montgomery factors.
pub fn elem_sub<M, E>(mut a: Elem<M, E>, b: &Elem<M, E>, m: &Modulus<M>) -> Elem<M, E> {
prefixed_extern! {
// `r` and `a` may alias.
fn LIMBS_sub_mod(
r: *mut Limb,
a: *const Limb,
b: *const Limb,
m: *const Limb,
num_limbs: c::size_t,
);
}
unsafe {
LIMBS_sub_mod(
a.limbs.as_mut_ptr(),
a.limbs.as_ptr(),
b.limbs.as_ptr(),
m.limbs().as_ptr(),
m.limbs().len(),
);
}
a
}
// The value 1, Montgomery-encoded some number of times.
pub struct One<M, E>(Elem<M, E>);
impl<M> One<M, RR> {
// Returns RR = = R**2 (mod n) where R = 2**r is the smallest power of
// 2**LIMB_BITS such that R > m.
//
// Even though the assembly on some 32-bit platforms works with 64-bit
// values, using `LIMB_BITS` here, rather than `N0::LIMBS_USED * LIMB_BITS`,
// is correct because R**2 will still be a multiple of the latter as
// `N0::LIMBS_USED` is either one or two.
pub(crate) fn newRR(m: &Modulus<M>) -> Self {
// The number of limbs in the numbers involved.
let w = m.limbs().len();
// The length of the numbers involved, in bits. R = 2**r.
let r = w * LIMB_BITS;
let mut acc: Elem<M, R> = m.zero();
m.oneR(&mut acc.limbs);
// 2**t * R can be calculated by t doublings starting with R.
//
// Choose a t that divides r and where t doublings are cheaper than 1 squaring.
//
// We could choose other values of t than w. But if t < d then the exponentiation that
// follows would require multiplications. Normally d is 1 (i.e. the modulus length is a
// power of two: RSA 1024, 2048, 4097, 8192) or 3 (RSA 1536, 3072).
//
// XXX(perf): Currently t = w / 2 is slightly faster. TODO(perf): Optimize `elem_double`
// and re-run benchmarks to rebalance this.
let t = w;
let z = w.trailing_zeros();
let d = w >> z;
debug_assert_eq!(w, d * (1 << z));
debug_assert!(d <= t);
debug_assert!(t < r);
for _ in 0..t {
elem_double(&mut acc, m);
}
// Because t | r:
//
// MontExp(2**t * R, r / t)
// = (2**t)**(r / t) * R (mod m) by definition of MontExp.
// = (2**t)**(1/t * r) * R (mod m)
// = (2**(t * 1/t))**r * R (mod m)
// = (2**1)**r * R (mod m)
// = 2**r * R (mod m)
// = R * R (mod m)
// = RR
//
// Like BoringSSL, use t = w (`m.limbs.len()`) which ensures that the exponent is a power
// of two. Consequently, there will be no multiplications in the Montgomery exponentiation;
// there will only be lg(r / t) squarings.
//
// lg(r / t)
// = lg((w * 2**b) / t)
// = lg((t * 2**b) / t)
// = lg(2**b)
// = b
// TODO(MSRV:1.67): const B: u32 = LIMB_BITS.ilog2();
const B: u32 = if cfg!(target_pointer_width = "64") {
6
} else if cfg!(target_pointer_width = "32") {
5
} else {
panic!("unsupported target_pointer_width")
};
#[allow(clippy::assertions_on_constants)]
const _LIMB_BITS_IS_2_POW_B: () = assert!(LIMB_BITS == 1 << B);
debug_assert_eq!(r, t * (1 << B));
for _ in 0..B {
acc = elem_squared(acc, m);
}
Self(Elem {
limbs: acc.limbs,
encoding: PhantomData, // PhantomData<RR>
})
}
}
impl<M, E> AsRef<Elem<M, E>> for One<M, E> {
fn as_ref(&self) -> &Elem<M, E> {
&self.0
}
}
impl<M: PublicModulus, E> Clone for One<M, E> {
fn clone(&self) -> Self {
Self(self.0.clone())
}
}
/// Calculates base**exponent (mod m).
///
/// The run time is a function of the number of limbs in `m` and the bit
/// length and Hamming Weight of `exponent`. The bounds on `m` are pretty
/// obvious but the bounds on `exponent` are less obvious. Callers should
/// document the bounds they place on the maximum value and maximum Hamming
/// weight of `exponent`.
// TODO: The test coverage needs to be expanded, e.g. test with the largest
// accepted exponent and with the most common values of 65537 and 3.
pub(crate) fn elem_exp_vartime<M>(
base: Elem<M, R>,
exponent: NonZeroU64,
m: &Modulus<M>,
) -> Elem<M, R> {
// Use what [Knuth] calls the "S-and-X binary method", i.e. variable-time
// square-and-multiply that scans the exponent from the most significant
// bit to the least significant bit (left-to-right). Left-to-right requires
// less storage compared to right-to-left scanning, at the cost of needing
// to compute `exponent.leading_zeros()`, which we assume to be cheap.
//
// As explained in [Knuth], exponentiation by squaring is the most
// efficient algorithm when the Hamming weight is 2 or less. It isn't the
// most efficient for all other, uncommon, exponent values but any
// suboptimality is bounded at least by the small bit length of `exponent`
// as enforced by its type.
//
// This implementation is slightly simplified by taking advantage of the
// fact that we require the exponent to be a positive integer.
//
// [Knuth]: The Art of Computer Programming, Volume 2: Seminumerical
// Algorithms (3rd Edition), Section 4.6.3.
let exponent = exponent.get();
let mut acc = base.clone();
let mut bit = 1 << (64 - 1 - exponent.leading_zeros());
debug_assert!((exponent & bit) != 0);
while bit > 1 {
bit >>= 1;
acc = elem_squared(acc, m);
if (exponent & bit) != 0 {
acc = elem_mul(&base, acc, m);
}
}
acc
}
#[cfg(not(target_arch = "x86_64"))]
pub fn elem_exp_consttime<M>(
base: Elem<M, R>,
exponent: &PrivateExponent,
m: &Modulus<M>,
) -> Result<Elem<M, Unencoded>, error::Unspecified> {
use crate::{bssl, limb::Window};
const WINDOW_BITS: usize = 5;
const TABLE_ENTRIES: usize = 1 << WINDOW_BITS;
let num_limbs = m.limbs().len();
let mut table = vec![0; TABLE_ENTRIES * num_limbs];
fn gather<M>(table: &[Limb], acc: &mut Elem<M, R>, i: Window) {
prefixed_extern! {
fn LIMBS_select_512_32(
r: *mut Limb,
table: *const Limb,
num_limbs: c::size_t,
i: Window,
) -> bssl::Result;
}
Result::from(unsafe {
LIMBS_select_512_32(acc.limbs.as_mut_ptr(), table.as_ptr(), acc.limbs.len(), i)
})
.unwrap();
}
fn power<M>(
table: &[Limb],
mut acc: Elem<M, R>,
m: &Modulus<M>,
i: Window,
mut tmp: Elem<M, R>,
) -> (Elem<M, R>, Elem<M, R>) {
for _ in 0..WINDOW_BITS {
acc = elem_squared(acc, m);
}
gather(table, &mut tmp, i);
let acc = elem_mul(&tmp, acc, m);
(acc, tmp)
}
fn entry(table: &[Limb], i: usize, num_limbs: usize) -> &[Limb] {
&table[(i * num_limbs)..][..num_limbs]
}
fn entry_mut(table: &mut [Limb], i: usize, num_limbs: usize) -> &mut [Limb] {
&mut table[(i * num_limbs)..][..num_limbs]
}
// table[0] = base**0 (i.e. 1).
m.oneR(entry_mut(&mut table, 0, num_limbs));
entry_mut(&mut table, 1, num_limbs).copy_from_slice(&base.limbs);
for i in 2..TABLE_ENTRIES {
let (src1, src2) = if i % 2 == 0 {
(i / 2, i / 2)
} else {
(i - 1, 1)
};
let (previous, rest) = table.split_at_mut(num_limbs * i);
let src1 = entry(previous, src1, num_limbs);
let src2 = entry(previous, src2, num_limbs);
let dst = entry_mut(rest, 0, num_limbs);
limbs_mont_product(dst, src1, src2, m.limbs(), m.n0(), m.cpu_features());
}
let tmp = m.zero();
let mut acc = Elem {
limbs: base.limbs,
encoding: PhantomData,
};
let (acc, _) = limb::fold_5_bit_windows(
exponent.limbs(),
|initial_window| {
gather(&table, &mut acc, initial_window);
(acc, tmp)
},
|(acc, tmp), window| power(&table, acc, m, window, tmp),
);
Ok(acc.into_unencoded(m))
}
#[cfg(target_arch = "x86_64")]
pub fn elem_exp_consttime<M>(
base: Elem<M, R>,
exponent: &PrivateExponent,
m: &Modulus<M>,
) -> Result<Elem<M, Unencoded>, error::Unspecified> {
use crate::limb::LIMB_BYTES;
// Pretty much all the math here requires CPU feature detection to have
// been done. `cpu_features` isn't threaded through all the internal
// functions, so just make it clear that it has been done at this point.
let cpu_features = m.cpu_features();
// The x86_64 assembly was written under the assumption that the input data
// is aligned to `MOD_EXP_CTIME_ALIGN` bytes, which was/is 64 in OpenSSL.
// Similarly, OpenSSL uses the x86_64 assembly functions by giving it only
// inputs `tmp`, `am`, and `np` that immediately follow the table. All the
// awkwardness here stems from trying to use the assembly code like OpenSSL
// does.
use crate::limb::Window;
const WINDOW_BITS: usize = 5;
const TABLE_ENTRIES: usize = 1 << WINDOW_BITS;
let num_limbs = m.limbs().len();
const ALIGNMENT: usize = 64;
assert_eq!(ALIGNMENT % LIMB_BYTES, 0);
let mut table = vec![0; ((TABLE_ENTRIES + 3) * num_limbs) + ALIGNMENT];
let (table, state) = {
let misalignment = (table.as_ptr() as usize) % ALIGNMENT;
let table = &mut table[((ALIGNMENT - misalignment) / LIMB_BYTES)..];
assert_eq!((table.as_ptr() as usize) % ALIGNMENT, 0);
table.split_at_mut(TABLE_ENTRIES * num_limbs)
};
fn scatter(table: &mut [Limb], acc: &[Limb], i: Window, num_limbs: usize) {
prefixed_extern! {
fn bn_scatter5(a: *const Limb, a_len: c::size_t, table: *mut Limb, i: Window);
}
unsafe { bn_scatter5(acc.as_ptr(), num_limbs, table.as_mut_ptr(), i) }
}
fn gather(table: &[Limb], acc: &mut [Limb], i: Window, num_limbs: usize) {
prefixed_extern! {
fn bn_gather5(r: *mut Limb, a_len: c::size_t, table: *const Limb, i: Window);
}
unsafe { bn_gather5(acc.as_mut_ptr(), num_limbs, table.as_ptr(), i) }
}
fn limbs_mul_mont_gather5_amm(
table: &[Limb],
acc: &mut [Limb],
base: &[Limb],
m: &[Limb],
n0: &N0,
i: Window,
num_limbs: usize,
) {
prefixed_extern! {
fn bn_mul_mont_gather5(
rp: *mut Limb,
ap: *const Limb,
table: *const Limb,
np: *const Limb,
n0: &N0,
num: c::size_t,
power: Window,
);
}
unsafe {
bn_mul_mont_gather5(
acc.as_mut_ptr(),
base.as_ptr(),
table.as_ptr(),
m.as_ptr(),
n0,
num_limbs,
i,
);
}
}
fn power_amm(
table: &[Limb],
acc: &mut [Limb],
m_cached: &[Limb],
n0: &N0,
i: Window,
num_limbs: usize,
) {
prefixed_extern! {
fn bn_power5(
r: *mut Limb,
a: *const Limb,
table: *const Limb,
n: *const Limb,
n0: &N0,
num: c::size_t,
i: Window,
);
}
unsafe {
bn_power5(
acc.as_mut_ptr(),
acc.as_ptr(),
table.as_ptr(),
m_cached.as_ptr(),
n0,
num_limbs,
i,
);
}
}
// These are named `(tmp, am, np)` in BoringSSL.
let (acc, base_cached, m_cached): (&mut [Limb], &[Limb], &[Limb]) = {
let (acc, rest) = state.split_at_mut(num_limbs);
let (base_cached, rest) = rest.split_at_mut(num_limbs);
// Upstream, the input `base` is not Montgomery-encoded, so they compute a
// Montgomery-encoded copy and store it here.
base_cached.copy_from_slice(&base.limbs);
let m_cached = &mut rest[..num_limbs];
// "To improve cache locality" according to upstream.
m_cached.copy_from_slice(m.limbs());
(acc, base_cached, m_cached)
};
let n0 = m.n0();
// Fill in all the powers of 2 of `acc` into the table using only squaring and without any
// gathering, storing the last calculated power into `acc`.
fn scatter_powers_of_2(
table: &mut [Limb],
acc: &mut [Limb],
m_cached: &[Limb],
n0: &N0,
mut i: Window,
num_limbs: usize,
cpu_features: cpu::Features,
) {
loop {
scatter(table, acc, i, num_limbs);
i *= 2;
if i >= (TABLE_ENTRIES as Window) {
break;
}
limbs_mont_square(acc, m_cached, n0, cpu_features);
}
}
// All entries in `table` will be Montgomery encoded.
// acc = table[0] = base**0 (i.e. 1).
m.oneR(acc);
scatter(table, acc, 0, num_limbs);
// acc = base**1 (i.e. base).
acc.copy_from_slice(base_cached);
// Fill in entries 1, 2, 4, 8, 16.
scatter_powers_of_2(table, acc, m_cached, n0, 1, num_limbs, cpu_features);
// Fill in entries 3, 6, 12, 24; 5, 10, 20, 30; 7, 14, 28; 9, 18; 11, 22; 13, 26; 15, 30;
// 17; 19; 21; 23; 25; 27; 29; 31.
for i in (3..(TABLE_ENTRIES as Window)).step_by(2) {
limbs_mul_mont_gather5_amm(table, acc, base_cached, m_cached, n0, i - 1, num_limbs);
scatter_powers_of_2(table, acc, m_cached, n0, i, num_limbs, cpu_features);
}
let acc = limb::fold_5_bit_windows(
exponent.limbs(),
|initial_window| {
gather(table, acc, initial_window, num_limbs);
acc
},
|acc, window| {
power_amm(table, acc, m_cached, n0, window, num_limbs);
acc
},
);
let mut r_amm = base.limbs;
r_amm.copy_from_slice(acc);
Ok(from_montgomery_amm(r_amm, m))
}
/// Verified a == b**-1 (mod m), i.e. a**-1 == b (mod m).
pub fn verify_inverses_consttime<M>(
a: &Elem<M, R>,
b: Elem<M, Unencoded>,
m: &Modulus<M>,
) -> Result<(), error::Unspecified> {
if elem_mul(a, b, m).is_one() {
Ok(())
} else {
Err(error::Unspecified)
}
}
#[inline]
pub fn elem_verify_equal_consttime<M, E>(
a: &Elem<M, E>,
b: &Elem<M, E>,
) -> Result<(), error::Unspecified> {
if limb::limbs_equal_limbs_consttime(&a.limbs, &b.limbs) == LimbMask::True {
Ok(())
} else {
Err(error::Unspecified)
}
}
// TODO: Move these methods from `Nonnegative` to `Modulus`.
impl Nonnegative {
pub fn verify_less_than_modulus<M>(&self, m: &Modulus<M>) -> Result<(), error::Unspecified> {
if self.limbs().len() > m.limbs().len() {
return Err(error::Unspecified);
}
if self.limbs().len() == m.limbs().len() {
if limb::limbs_less_than_limbs_consttime(self.limbs(), m.limbs()) != LimbMask::True {
return Err(error::Unspecified);
}
}
Ok(())
}
}
/// r *= a
fn limbs_mont_mul(r: &mut [Limb], a: &[Limb], m: &[Limb], n0: &N0, _cpu_features: cpu::Features) {
debug_assert_eq!(r.len(), m.len());
debug_assert_eq!(a.len(), m.len());
unsafe {
bn_mul_mont(
r.as_mut_ptr(),
r.as_ptr(),
a.as_ptr(),
m.as_ptr(),
n0,
r.len(),
)
}
}
/// r = a * b
#[cfg(not(target_arch = "x86_64"))]
fn limbs_mont_product(
r: &mut [Limb],
a: &[Limb],
b: &[Limb],
m: &[Limb],
n0: &N0,
_cpu_features: cpu::Features,
) {
debug_assert_eq!(r.len(), m.len());
debug_assert_eq!(a.len(), m.len());
debug_assert_eq!(b.len(), m.len());
unsafe {
bn_mul_mont(
r.as_mut_ptr(),
a.as_ptr(),
b.as_ptr(),
m.as_ptr(),
n0,
r.len(),
)
}
}
/// r = r**2
fn limbs_mont_square(r: &mut [Limb], m: &[Limb], n0: &N0, _cpu_features: cpu::Features) {
debug_assert_eq!(r.len(), m.len());
unsafe {
bn_mul_mont(
r.as_mut_ptr(),
r.as_ptr(),
r.as_ptr(),
m.as_ptr(),
n0,
r.len(),
)
}
}
prefixed_extern! {
// `r` and/or 'a' and/or 'b' may alias.
fn bn_mul_mont(
r: *mut Limb,
a: *const Limb,
b: *const Limb,
n: *const Limb,
n0: &N0,
num_limbs: c::size_t,
);
}
#[cfg(test)]
mod tests {
use super::{modulus::MODULUS_MIN_LIMBS, *};
use crate::{limb::LIMB_BYTES, test};
use alloc::format;
// Type-level representation of an arbitrary modulus.
struct M {}
impl PublicModulus for M {}
#[test]
fn test_elem_exp_consttime() {
let cpu_features = cpu::features();
test::run(
test_file!("../../crypto/fipsmodule/bn/test/mod_exp_tests.txt"),
|section, test_case| {
assert_eq!(section, "");
let m = consume_modulus::<M>(test_case, "M", cpu_features);
let m = m.modulus();
let expected_result = consume_elem(test_case, "ModExp", &m);
let base = consume_elem(test_case, "A", &m);
let e = {
let bytes = test_case.consume_bytes("E");
PrivateExponent::from_be_bytes_for_test_only(untrusted::Input::from(&bytes), &m)
.expect("valid exponent")
};
let base = into_encoded(base, &m);
let actual_result = elem_exp_consttime(base, &e, &m).unwrap();
assert_elem_eq(&actual_result, &expected_result);
Ok(())
},
)
}
// TODO: fn test_elem_exp_vartime() using
// "src/rsa/bigint_elem_exp_vartime_tests.txt". See that file for details.
// In the meantime, the function is tested indirectly via the RSA
// verification and signing tests.
#[test]
fn test_elem_mul() {
let cpu_features = cpu::features();
test::run(
test_file!("../../crypto/fipsmodule/bn/test/mod_mul_tests.txt"),
|section, test_case| {
assert_eq!(section, "");
let m = consume_modulus::<M>(test_case, "M", cpu_features);
let m = m.modulus();
let expected_result = consume_elem(test_case, "ModMul", &m);
let a = consume_elem(test_case, "A", &m);
let b = consume_elem(test_case, "B", &m);
let b = into_encoded(b, &m);
let a = into_encoded(a, &m);
let actual_result = elem_mul(&a, b, &m);
let actual_result = actual_result.into_unencoded(&m);
assert_elem_eq(&actual_result, &expected_result);
Ok(())
},
)
}
#[test]
fn test_elem_squared() {
let cpu_features = cpu::features();
test::run(
test_file!("bigint_elem_squared_tests.txt"),
|section, test_case| {
assert_eq!(section, "");
let m = consume_modulus::<M>(test_case, "M", cpu_features);
let m = m.modulus();
let expected_result = consume_elem(test_case, "ModSquare", &m);
let a = consume_elem(test_case, "A", &m);
let a = into_encoded(a, &m);
let actual_result = elem_squared(a, &m);
let actual_result = actual_result.into_unencoded(&m);
assert_elem_eq(&actual_result, &expected_result);
Ok(())
},
)
}
#[test]
fn test_elem_reduced() {
let cpu_features = cpu::features();
test::run(
test_file!("bigint_elem_reduced_tests.txt"),
|section, test_case| {
assert_eq!(section, "");
struct M {}
let m_ = consume_modulus::<M>(test_case, "M", cpu_features);
let m = m_.modulus();
let expected_result = consume_elem(test_case, "R", &m);
let a =
consume_elem_unchecked::<M>(test_case, "A", expected_result.limbs.len() * 2);
let other_modulus_len_bits = m_.len_bits();
let actual_result = elem_reduced(&a, &m, other_modulus_len_bits);
let oneRR = One::newRR(&m);
let actual_result = elem_mul(oneRR.as_ref(), actual_result, &m);
assert_elem_eq(&actual_result, &expected_result);
Ok(())
},
)
}
#[test]
fn test_elem_reduced_once() {
let cpu_features = cpu::features();
test::run(
test_file!("bigint_elem_reduced_once_tests.txt"),
|section, test_case| {
assert_eq!(section, "");
struct M {}
struct O {}
let m = consume_modulus::<M>(test_case, "m", cpu_features);
let a = consume_elem_unchecked::<O>(test_case, "a", m.modulus().limbs().len());
let expected_result = consume_elem::<M>(test_case, "r", &m.modulus());
let other_modulus_len_bits = m.modulus().len_bits();
let actual_result = elem_reduced_once(&a, &m.modulus(), other_modulus_len_bits);
assert_elem_eq(&actual_result, &expected_result);
Ok(())
},
)
}
#[test]
fn test_modulus_debug() {
let modulus = OwnedModulus::<M>::from_be_bytes(
untrusted::Input::from(&[0xff; LIMB_BYTES * MODULUS_MIN_LIMBS]),
cpu::features(),
)
.unwrap();
assert_eq!("Modulus", format!("{:?}", modulus));
}
fn consume_elem<M>(
test_case: &mut test::TestCase,
name: &str,
m: &Modulus<M>,
) -> Elem<M, Unencoded> {
let value = test_case.consume_bytes(name);
Elem::from_be_bytes_padded(untrusted::Input::from(&value), m).unwrap()
}
fn consume_elem_unchecked<M>(
test_case: &mut test::TestCase,
name: &str,
num_limbs: usize,
) -> Elem<M, Unencoded> {
let value = consume_nonnegative(test_case, name);
let mut limbs = BoxedLimbs::zero(num_limbs);
limbs[0..value.limbs().len()].copy_from_slice(value.limbs());
Elem {
limbs,
encoding: PhantomData,
}
}
fn consume_modulus<M>(
test_case: &mut test::TestCase,
name: &str,
cpu_features: cpu::Features,
) -> OwnedModulus<M> {
let value = test_case.consume_bytes(name);
OwnedModulus::from_be_bytes(untrusted::Input::from(&value), cpu_features).unwrap()
}
fn consume_nonnegative(test_case: &mut test::TestCase, name: &str) -> Nonnegative {
let bytes = test_case.consume_bytes(name);
let (r, _r_bits) =
Nonnegative::from_be_bytes_with_bit_length(untrusted::Input::from(&bytes)).unwrap();
r
}
fn assert_elem_eq<M, E>(a: &Elem<M, E>, b: &Elem<M, E>) {
if elem_verify_equal_consttime(a, b).is_err() {
panic!("{:x?} != {:x?}", &*a.limbs, &*b.limbs);
}
}
fn into_encoded<M>(a: Elem<M, Unencoded>, m: &Modulus<M>) -> Elem<M, R> {
let oneRR = One::newRR(m);
elem_mul(oneRR.as_ref(), a, m)
}
}