ring/crypto/rsa/rsa_impl.c
Brian Smith 6f122c7f89 Add test vectors for minimum/maximum RSA key size checks.
Note that there are *two* maximum key size checks in the code, and the
one in rsa.rs subsumes the one in rsa_impl.c.
2016-06-21 12:35:45 -10:00

522 lines
15 KiB
C

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#include <openssl/rsa.h>
#include <assert.h>
#include <string.h>
#include <openssl/bn.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include "internal.h"
#include "../internal.h"
/* Declarations to avoid -Wmissing-prototypes warnings. */
int GFp_rsa_private_transform(RSA *rsa, uint8_t *inout, size_t len,
BN_BLINDING *blinding, RAND *rng);
static int check_modulus_and_exponent(const BIGNUM *n, const BIGNUM *e,
size_t min_bits, size_t max_bits) {
unsigned rsa_bits = BN_num_bits(n);
if (rsa_bits < min_bits) {
OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
return 0;
}
/* XXX: There's may be another check for the maximum length in rsa.rs that
* subsumes this; check that when investigating the code coverage. */
if (rsa_bits > 16 * 1024 || rsa_bits > max_bits) {
OPENSSL_PUT_ERROR(RSA, RSA_R_MODULUS_TOO_LARGE);
return 0;
}
/* Mitigate DoS attacks by limiting the exponent size. 33 bits was chosen as
* the limit based on the recommendations in [1] and [2]. Windows CryptoAPI
* doesn't support values larger than 32 bits [3], so it is unlikely that
* exponents larger than 32 bits are being used for anything Windows commonly
* does.
*
* [1] https://www.imperialviolet.org/2012/03/16/rsae.html
* [2] https://www.imperialviolet.org/2012/03/17/rsados.html
* [3] https://msdn.microsoft.com/en-us/library/aa387685(VS.85).aspx */
static const unsigned kMaxExponentBits = 33;
unsigned e_bits = BN_num_bits(e);
if (e_bits < 2) {
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE);
return 0;
}
if (e_bits > kMaxExponentBits) {
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE);
return 0;
}
if (!BN_is_odd(e)) {
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE);
return 0;
}
/* Verify |n > e|. Comparing |rsa_bits| to |kMaxExponentBits| is a small
* shortcut to comparing |n| and |e| directly. In reality, |kMaxExponentBits|
* is much smaller than the minimum RSA key size that any application should
* accept. */
if (rsa_bits <= kMaxExponentBits) {
OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
return 0;
}
assert(BN_ucmp(n, e) > 0);
return 1;
}
size_t RSA_size(const RSA *rsa) {
return BN_num_bytes(rsa->n);
}
/* GFp_rsa_public_decrypt decrypts the RSA signature |in| using the public key
* with modulus |public_key_n| and exponent |public_key_e|, leaving the
* decrypted signature in |out|. |out_len| and |in_len| must both be equal to
* |RSA_size(rsa)|. |min_bits| and |max_bits| are the minimum and maximum
* allowed public key modulus sizes, in bits. It returns one on success and
* zero on failure.
*
* When |rsa_public_decrypt| succeeds, the caller must then check the
* signature value (and padding) left in |out|. */
int GFp_rsa_public_decrypt(uint8_t *out, size_t out_len,
const uint8_t *public_key_n, size_t public_key_n_len,
const uint8_t *public_key_e, size_t public_key_e_len,
const uint8_t *in, size_t in_len, size_t min_bits,
size_t max_bits) {
BIGNUM n;
BN_init(&n);
BIGNUM e;
BN_init(&e);
BIGNUM f;
BN_init(&f);
BIGNUM result;
BN_init(&result);
BN_CTX *ctx = NULL;
int ret = 0;
if (BN_bin2bn(public_key_n, public_key_n_len, &n) == NULL ||
BN_bin2bn(public_key_e, public_key_e_len, &e) == NULL) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
unsigned rsa_size = BN_num_bytes(&n); /* RSA_size((n, e)); */
if (out_len != rsa_size) {
OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL);
goto err;
}
if (in_len != rsa_size) {
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_LEN_NOT_EQUAL_TO_MOD_LEN);
goto err;
}
if (!check_modulus_and_exponent(&n, &e, min_bits, max_bits)) {
goto err;
}
if (BN_bin2bn(in, in_len, &f) == NULL) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
if (BN_ucmp(&f, &n) >= 0) {
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS);
goto err;
}
ctx = BN_CTX_new();
if (ctx == NULL) {
goto err;
}
if (!BN_mod_exp_mont(&result, &f, &e, &n, ctx, NULL) ||
!BN_bn2bin_padded(out, out_len, &result)) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
ret = 1;
err:
BN_free(&n);
BN_free(&e);
BN_free(&f);
BN_free(&result);
BN_CTX_free(ctx);
return ret;
}
/* GFp_rsa_private_transform takes a big-endian integer from |inout|,
* calculates the d'th power of it, modulo the RSA modulus and writes the
* result as a big-endian integer back to |inout|. |inout| is |len| bytes long
* and |len| is always equal to |RSA_size(rsa)|. If the result of the transform
* can be represented in fewer than |len| bytes, then |out| must be zero padded
* on the left.
*
* It returns one on success and zero otherwise.
*/
int GFp_rsa_private_transform(RSA *rsa, uint8_t *inout, size_t len,
BN_BLINDING *blinding, RAND *rng) {
BN_CTX *ctx = BN_CTX_new();
if (ctx == NULL) {
return 0;
}
int ret = 0;
BIGNUM base, r, tmp, mp, mq, vrfy;
BN_init(&base);
BN_init(&r);
BN_init(&tmp);
BN_init(&mp);
BN_init(&mq);
BN_init(&vrfy);
if (BN_bin2bn(inout, len, &base) == NULL) {
goto err;
}
if (BN_ucmp(&base, rsa->n) >= 0) {
/* Usually the padding functions would catch this. */
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS);
goto err;
}
if (!BN_BLINDING_convert(&base, blinding, rsa, rng, ctx)) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
/* Extra reductions would be required if |p < q| and |p == q| is just plain
* wrong. */
assert(BN_cmp(rsa->q, rsa->p) < 0);
/* mp := base^dmp1 mod p.
*
* |p * q == n| and |p > q| implies |p < n < p**2|. Thus, the base is just
* reduced mod |p|. */
assert(BN_get_flags(rsa->p, BN_FLG_CONSTTIME));
assert(BN_get_flags(rsa->dmp1, BN_FLG_CONSTTIME));
if (!BN_reduce_montgomery(&tmp, &base, rsa->mont_p, ctx) ||
!BN_mod_exp_mont_consttime(&mp, &tmp, rsa->dmp1, rsa->p, ctx,
rsa->mont_p)) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
/* mq := base^dmq1 mod q.
*
* |p * q == n| and |p > q| implies |q < q**2 < n < q**3|. Thus, |base| is
* first reduced mod |q**2| and then reduced mod |q|. */
assert(BN_get_flags(rsa->q, BN_FLG_CONSTTIME));
assert(BN_get_flags(rsa->dmq1, BN_FLG_CONSTTIME));
if (!BN_reduce_montgomery(&tmp, &base, rsa->mont_qq, ctx) ||
!BN_reduce_montgomery(&tmp, &tmp, rsa->mont_q, ctx) ||
!BN_mod_exp_mont_consttime(&mq, &tmp, rsa->dmq1, rsa->q, ctx,
rsa->mont_q)) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
/* Combine them with Garner's algorithm.
*
* |0 <= mq < q < p| and |0 <= mp < p| implies |(-q) < (mp - mq) < p|, so
* |BN_mod_sub_quick| can be used.
*
* In each multiplication, the Montgomery factor cancels out because |tmp| is
* not Montgomery-encoded but the second input is.
*
* In the last multiplication, the reduction mod |n| isn't necessary because
* |tmp < p| and |p * q == n| implies |tmp * q < n|. Montgomery
* multiplication is used purely because it is implemented more efficiently.
*/
if (!BN_mod_sub_quick(&tmp, &mp, &mq, rsa->p) ||
!BN_mod_mul_montgomery(&tmp, &tmp, rsa->iqmp_mont, rsa->mont_p, ctx) ||
!BN_mod_mul_montgomery(&tmp, &tmp, rsa->qmn_mont, rsa->mont_n, ctx) ||
!BN_add(&r, &tmp, &mq)) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
/* Verify the result to protect against fault attacks as described in the
* 1997 paper "On the Importance of Checking Cryptographic Protocols for
* Faults" by Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. Some
* implementations do this only when the CRT is used, but we do it in all
* cases. Section 6 of the aforementioned paper describes an attack that
* works when the CRT isn't used. That attack is much less likely to succeed
* than the CRT attack, but there have likely been improvements since 1997.
*
* This check is very cheap assuming |e| is small, which it almost always is. */
if (!BN_mod_exp_mont(&vrfy, &r, rsa->e, rsa->n, ctx, rsa->mont_n)) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
if (vrfy.top != base.top ||
CRYPTO_memcmp(vrfy.d, base.d, (size_t)vrfy.top * sizeof(vrfy.d[0])) != 0) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
if (!BN_BLINDING_invert(&r, blinding, rsa->mont_n, ctx) ||
!BN_bn2bin_padded(inout, len, &r)) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
ret = 1;
err:
BN_CTX_free(ctx);
BN_free(&r);
BN_free(&tmp);
BN_free(&mp);
BN_free(&mq);
BN_free(&vrfy);
return ret;
}
RSA *RSA_generate(int bits, uint32_t e, RAND *rng, BN_GENCB *cb) {
RSA *rsa = rsa_new_begin();
if (rsa == NULL) {
OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE);
return NULL;
}
BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *r3 = NULL, *tmp;
int bitsp, bitsq, ok = -1, n = 0;
BN_CTX *ctx = NULL;
ctx = BN_CTX_new();
if (ctx == NULL) {
goto err;
}
BN_CTX_start(ctx);
r0 = BN_CTX_get(ctx);
r1 = BN_CTX_get(ctx);
r2 = BN_CTX_get(ctx);
r3 = BN_CTX_get(ctx);
if (r0 == NULL || r1 == NULL || r2 == NULL || r3 == NULL) {
goto err;
}
bitsp = (bits + 1) / 2;
bitsq = bits - bitsp;
rsa->e = BN_new();
if (rsa->e == NULL ||
!BN_set_word(rsa->e, e)) {
goto err;
}
/* generate p and q */
rsa->p = BN_new();
rsa->q = BN_new();
if (rsa->p == NULL ||
rsa->q == NULL) {
goto err;
}
for (;;) {
if (!BN_generate_prime_ex(rsa->p, bitsp, rng, cb) ||
!BN_sub(r2, rsa->p, BN_value_one()) ||
!BN_gcd(r1, r2, rsa->e, ctx)) {
goto err;
}
if (BN_is_one(r1)) {
break;
}
if (!BN_GENCB_call(cb, 2, n++)) {
goto err;
}
}
if (!BN_GENCB_call(cb, 3, 0)) {
goto err;
}
for (;;) {
/* When generating ridiculously small keys, we can get stuck
* continually regenerating the same prime values. Check for
* this and bail if it happens 3 times. */
unsigned int degenerate = 0;
do {
if (!BN_generate_prime_ex(rsa->q, bitsq, rng, cb)) {
goto err;
}
} while ((BN_cmp(rsa->p, rsa->q) == 0) && (++degenerate < 3));
if (degenerate == 3) {
ok = 0; /* we set our own err */
OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
goto err;
}
if (!BN_sub(r2, rsa->q, BN_value_one()) ||
!BN_gcd(r1, r2, rsa->e, ctx)) {
goto err;
}
if (BN_is_one(r1)) {
break;
}
if (!BN_GENCB_call(cb, 2, n++)) {
goto err;
}
}
if (!BN_GENCB_call(cb, 3, 1)) {
goto err;
}
if (BN_cmp(rsa->p, rsa->q) < 0) {
tmp = rsa->p;
rsa->p = rsa->q;
rsa->q = tmp;
}
BN_set_flags(rsa->p, BN_FLG_CONSTTIME);
BN_set_flags(rsa->q, BN_FLG_CONSTTIME);
/* calculate n */
rsa->n = BN_new();
if (rsa->n == NULL) {
goto err;
}
if (!BN_mul(rsa->n, rsa->p, rsa->q, ctx)) {
goto err;
}
/* calculate d */
if (!BN_sub(r1, rsa->p, BN_value_one())) {
goto err; /* p-1 */
}
if (!BN_sub(r2, rsa->q, BN_value_one())) {
goto err; /* q-1 */
}
if (!BN_mul(r0, r1, r2, ctx)) {
goto err; /* (p-1)(q-1) */
}
rsa->d = BN_new();
if (rsa->d == NULL) {
goto err;
}
BN_set_flags(r0, BN_FLG_CONSTTIME);
if (!BN_mod_inverse(rsa->d, rsa->e, r0, ctx)) {
goto err; /* d */
}
BN_set_flags(rsa->d, BN_FLG_CONSTTIME);
/* calculate d mod (p-1) */
rsa->dmp1 = BN_new();
if (rsa->dmp1 == NULL) {
goto err;
}
if (!BN_mod(rsa->dmp1, rsa->d, r1, ctx)) {
goto err;
}
BN_set_flags(rsa->dmp1, BN_FLG_CONSTTIME);
/* calculate d mod (q-1) */
rsa->dmq1 = BN_new();
if (rsa->dmq1 == NULL) {
goto err;
}
if (!BN_mod(rsa->dmq1, rsa->d, r2, ctx)) {
goto err;
}
BN_set_flags(rsa->dmq1, BN_FLG_CONSTTIME);
/* calculate inverse of q mod p */
rsa->iqmp = BN_new();
if (rsa->iqmp == NULL) {
goto err;
}
if (!BN_mod_inverse(rsa->iqmp, rsa->q, rsa->p, ctx)) {
goto err;
}
BN_set_flags(rsa->iqmp, BN_FLG_CONSTTIME);
if (!rsa_new_end(rsa)) {
goto err;
}
ok = 1;
err:
if (ok == -1) {
OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN);
ok = 0;
}
if (ctx != NULL) {
BN_CTX_end(ctx);
BN_CTX_free(ctx);
}
if (!ok) {
RSA_free(rsa);
return NULL;
}
return rsa;
}