ring/crypto/bn/bn_test.cc
Brian Smith 83b73724d8 Remove STATIC_BIGNUM and GFp_BN_value_one which uses it.
This removes one pointer cast, in particular a const-to-non-const cast.
2016-12-12 12:33:38 -10:00

997 lines
32 KiB
C++

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
*
* Portions of the attached software ("Contribution") are developed by
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
*
* The Contribution is licensed pursuant to the Eric Young open source
* license provided above.
*
* The binary polynomial arithmetic software is originally written by
* Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
* Laboratories. */
/* For BIGNUM format macros. */
#if !defined(__STDC_FORMAT_MACROS)
#define __STDC_FORMAT_MACROS
#endif
// rustc always links with the non-debug runtime, but when _DEBUG is defined
// MSVC's C++ standard library expects to be linked to the debug runtime.
#if defined(_DEBUG)
#undef _DEBUG
#endif
#include <assert.h>
#include <errno.h>
#include <limits.h>
#include <stdio.h>
#include <string.h>
#include <utility>
#include <openssl/bn.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include "../test/bn_test_lib.h"
#include "../crypto/test/file_test.h"
#include "../crypto/test/scoped_types.h"
#include "../test/bn_test_util.h"
/* Prototypes to avoid -Wmissing-prototypes warnings. */
extern "C" int bssl_bn_test_main(RAND *rng);
static int HexToBIGNUM(ScopedBIGNUM *out, const char *in) {
BIGNUM *raw = NULL;
int ret = BN_hex2bn(&raw, in);
out->reset(raw);
return ret;
}
static ScopedBIGNUM GetBIGNUM(FileTest *t, const char *attribute) {
std::string hex;
if (!t->GetAttribute(&hex, attribute)) {
return nullptr;
}
ScopedBIGNUM ret;
if (HexToBIGNUM(&ret, hex.c_str()) != static_cast<int>(hex.size())) {
t->PrintLine("Could not decode '", hex.c_str(), "'.");
return nullptr;
}
return ret;
}
static bool GetInt(FileTest *t, int *out, const char *attribute) {
ScopedBIGNUM ret = GetBIGNUM(t, attribute);
if (!ret) {
return false;
}
// This is |BN_get_word|, inlined and improved.
switch (ret->top) {
case 0:
*out = 0;
return 1;
case 1:
if (ret->d[0] > (BN_ULONG)INT_MAX) {
return false;
}
*out = static_cast<int>(ret->d[0]);
return true;
default:
return false;
}
}
static bool ExpectBIGNUMsEqual(FileTest *t, const char *operation,
const BIGNUM *expected, const BIGNUM *actual) {
if (GFp_BN_cmp(expected, actual) == 0) {
return true;
}
t->PrintLine("Got wrong value for ", operation);
return false;
}
static bool TestSum(FileTest *t) {
ScopedBIGNUM a = GetBIGNUM(t, "A");
ScopedBIGNUM b = GetBIGNUM(t, "B");
ScopedBIGNUM sum = GetBIGNUM(t, "Sum");
if (!a || !b || !sum) {
return false;
}
ScopedBIGNUM ret(GFp_BN_new());
if (!ret ||
!GFp_BN_add(ret.get(), a.get(), b.get()) ||
!ExpectBIGNUMsEqual(t, "A + B", sum.get(), ret.get()) ||
!GFp_BN_sub(ret.get(), sum.get(), a.get()) ||
!ExpectBIGNUMsEqual(t, "Sum - A", b.get(), ret.get()) ||
!GFp_BN_sub(ret.get(), sum.get(), b.get()) ||
!ExpectBIGNUMsEqual(t, "Sum - B", a.get(), ret.get())) {
return false;
}
// Test that the functions work when |r| and |a| point to the same |BIGNUM|,
// or when |r| and |b| point to the same |BIGNUM|. TODO: Test the case where
// all of |r|, |a|, and |b| point to the same |BIGNUM|.
if (!GFp_BN_copy(ret.get(), a.get()) ||
!GFp_BN_add(ret.get(), ret.get(), b.get()) ||
!ExpectBIGNUMsEqual(t, "A + B (r is a)", sum.get(), ret.get()) ||
!GFp_BN_copy(ret.get(), b.get()) ||
!GFp_BN_add(ret.get(), a.get(), ret.get()) ||
!ExpectBIGNUMsEqual(t, "A + B (r is b)", sum.get(), ret.get()) ||
!GFp_BN_copy(ret.get(), sum.get()) ||
!GFp_BN_sub(ret.get(), ret.get(), a.get()) ||
!ExpectBIGNUMsEqual(t, "Sum - A (r is a)", b.get(), ret.get()) ||
!GFp_BN_copy(ret.get(), a.get()) ||
!GFp_BN_sub(ret.get(), sum.get(), ret.get()) ||
!ExpectBIGNUMsEqual(t, "Sum - A (r is b)", b.get(), ret.get()) ||
!GFp_BN_copy(ret.get(), sum.get()) ||
!GFp_BN_sub(ret.get(), ret.get(), b.get()) ||
!ExpectBIGNUMsEqual(t, "Sum - B (r is a)", a.get(), ret.get()) ||
!GFp_BN_copy(ret.get(), b.get()) ||
!GFp_BN_sub(ret.get(), sum.get(), ret.get()) ||
!ExpectBIGNUMsEqual(t, "Sum - B (r is b)", a.get(), ret.get())) {
return false;
}
// Test |GFp_BN_uadd| and |GFp_BN_usub| with the prerequisites they are
// documented as having. Note that these functions are frequently used when
// the prerequisites don't hold. In those cases, they are supposed to work as
// if the prerequisite hold, but we don't test that yet. TODO: test that.
if (!GFp_BN_is_negative(a.get()) &&
!GFp_BN_is_negative(b.get()) && GFp_BN_cmp(a.get(), b.get()) >= 0) {
if (!GFp_BN_uadd(ret.get(), a.get(), b.get()) ||
!ExpectBIGNUMsEqual(t, "A +u B", sum.get(), ret.get()) ||
!GFp_BN_usub(ret.get(), sum.get(), a.get()) ||
!ExpectBIGNUMsEqual(t, "Sum -u A", b.get(), ret.get()) ||
!GFp_BN_usub(ret.get(), sum.get(), b.get()) ||
!ExpectBIGNUMsEqual(t, "Sum -u B", a.get(), ret.get())) {
return false;
}
// Test that the functions work when |r| and |a| point to the same |BIGNUM|,
// or when |r| and |b| point to the same |BIGNUM|. TODO: Test the case where
// all of |r|, |a|, and |b| point to the same |BIGNUM|.
if (!GFp_BN_copy(ret.get(), a.get()) ||
!GFp_BN_uadd(ret.get(), ret.get(), b.get()) ||
!ExpectBIGNUMsEqual(t, "A +u B (r is a)", sum.get(), ret.get()) ||
!GFp_BN_copy(ret.get(), b.get()) ||
!GFp_BN_uadd(ret.get(), a.get(), ret.get()) ||
!ExpectBIGNUMsEqual(t, "A +u B (r is b)", sum.get(), ret.get()) ||
!GFp_BN_copy(ret.get(), sum.get()) ||
!GFp_BN_usub(ret.get(), ret.get(), a.get()) ||
!ExpectBIGNUMsEqual(t, "Sum -u A (r is a)", b.get(), ret.get()) ||
!GFp_BN_copy(ret.get(), a.get()) ||
!GFp_BN_usub(ret.get(), sum.get(), ret.get()) ||
!ExpectBIGNUMsEqual(t, "Sum -u A (r is b)", b.get(), ret.get()) ||
!GFp_BN_copy(ret.get(), sum.get()) ||
!GFp_BN_usub(ret.get(), ret.get(), b.get()) ||
!ExpectBIGNUMsEqual(t, "Sum -u B (r is a)", a.get(), ret.get()) ||
!GFp_BN_copy(ret.get(), b.get()) ||
!GFp_BN_usub(ret.get(), sum.get(), ret.get()) ||
!ExpectBIGNUMsEqual(t, "Sum -u B (r is b)", a.get(), ret.get())) {
return false;
}
}
return true;
}
static bool TestLShift1(FileTest *t) {
ScopedBIGNUM a = GetBIGNUM(t, "A");
ScopedBIGNUM lshift1 = GetBIGNUM(t, "LShift1");
ScopedBIGNUM zero(GFp_BN_new());
if (!a || !lshift1 || !zero) {
return false;
}
GFp_BN_zero(zero.get());
ScopedBIGNUM ret(GFp_BN_new()), two(GFp_BN_new()), remainder(GFp_BN_new());
if (!ret || !two || !remainder ||
!GFp_BN_set_word(two.get(), 2) ||
!GFp_BN_add(ret.get(), a.get(), a.get()) ||
!ExpectBIGNUMsEqual(t, "A + A", lshift1.get(), ret.get()) ||
!GFp_BN_mul_no_alias(ret.get(), a.get(), two.get()) ||
!ExpectBIGNUMsEqual(t, "A * 2", lshift1.get(), ret.get()) ||
!GFp_BN_div(ret.get(), remainder.get(), lshift1.get(), two.get()) ||
!ExpectBIGNUMsEqual(t, "LShift1 / 2", a.get(), ret.get()) ||
!ExpectBIGNUMsEqual(t, "LShift1 % 2", zero.get(), remainder.get()) ||
!GFp_BN_lshift1(ret.get(), a.get()) ||
!ExpectBIGNUMsEqual(t, "A << 1", lshift1.get(), ret.get()) ||
!GFp_BN_rshift1(ret.get(), lshift1.get()) ||
!ExpectBIGNUMsEqual(t, "LShift >> 1", a.get(), ret.get()) ||
!GFp_BN_rshift1(ret.get(), lshift1.get()) ||
!ExpectBIGNUMsEqual(t, "LShift >> 1", a.get(), ret.get())) {
return false;
}
// Set the LSB to 1 and test rshift1 again.
if (!GFp_BN_set_bit(lshift1.get(), 0) ||
!GFp_BN_div(ret.get(), nullptr /* rem */, lshift1.get(), two.get()) ||
!ExpectBIGNUMsEqual(t, "(LShift1 | 1) / 2", a.get(), ret.get()) ||
!GFp_BN_rshift1(ret.get(), lshift1.get()) ||
!ExpectBIGNUMsEqual(t, "(LShift | 1) >> 1", a.get(), ret.get())) {
return false;
}
return true;
}
static bool TestLShift(FileTest *t) {
ScopedBIGNUM a = GetBIGNUM(t, "A");
ScopedBIGNUM lshift = GetBIGNUM(t, "LShift");
int n = 0;
if (!a || !lshift || !GetInt(t, &n, "N")) {
return false;
}
ScopedBIGNUM ret(GFp_BN_new());
if (!ret ||
!GFp_BN_lshift(ret.get(), a.get(), n) ||
!ExpectBIGNUMsEqual(t, "A << N", lshift.get(), ret.get()) ||
!GFp_BN_rshift(ret.get(), lshift.get(), n) ||
!ExpectBIGNUMsEqual(t, "A >> N", a.get(), ret.get())) {
return false;
}
return true;
}
static bool TestRShift(FileTest *t) {
ScopedBIGNUM a = GetBIGNUM(t, "A");
ScopedBIGNUM rshift = GetBIGNUM(t, "RShift");
int n = 0;
if (!a || !rshift || !GetInt(t, &n, "N")) {
return false;
}
ScopedBIGNUM ret(GFp_BN_new());
if (!ret ||
!GFp_BN_rshift(ret.get(), a.get(), n) ||
!ExpectBIGNUMsEqual(t, "A >> N", rshift.get(), ret.get())) {
return false;
}
return true;
}
static bool TestSquare(FileTest *t) {
ScopedBIGNUM a = GetBIGNUM(t, "A");
ScopedBIGNUM square = GetBIGNUM(t, "Square");
ScopedBIGNUM zero(GFp_BN_new());
if (!a || !square || !zero) {
return false;
}
GFp_BN_zero(zero.get());
ScopedBIGNUM ret(GFp_BN_new()), remainder(GFp_BN_new());
if (!ret ||
!GFp_BN_mul_no_alias(ret.get(), a.get(), a.get()) ||
!ExpectBIGNUMsEqual(t, "A * A", square.get(), ret.get()) ||
!GFp_BN_div(ret.get(), remainder.get(), square.get(), a.get()) ||
!ExpectBIGNUMsEqual(t, "Square / A", a.get(), ret.get()) ||
!ExpectBIGNUMsEqual(t, "Square % A", zero.get(), remainder.get())) {
return false;
}
return true;
}
static bool TestProduct(FileTest *t) {
ScopedBIGNUM a = GetBIGNUM(t, "A");
ScopedBIGNUM b = GetBIGNUM(t, "B");
ScopedBIGNUM product = GetBIGNUM(t, "Product");
ScopedBIGNUM zero(GFp_BN_new());
if (!a || !b || !product || !zero) {
return false;
}
GFp_BN_zero(zero.get());
ScopedBIGNUM ret(GFp_BN_new()), remainder(GFp_BN_new());
if (!ret || !remainder ||
!GFp_BN_mul_no_alias(ret.get(), a.get(), b.get()) ||
!ExpectBIGNUMsEqual(t, "A * B", product.get(), ret.get()) ||
!GFp_BN_div(ret.get(), remainder.get(), product.get(), a.get()) ||
!ExpectBIGNUMsEqual(t, "Product / A", b.get(), ret.get()) ||
!ExpectBIGNUMsEqual(t, "Product % A", zero.get(), remainder.get()) ||
!GFp_BN_div(ret.get(), remainder.get(), product.get(), b.get()) ||
!ExpectBIGNUMsEqual(t, "Product / B", a.get(), ret.get()) ||
!ExpectBIGNUMsEqual(t, "Product % B", zero.get(), remainder.get())) {
return false;
}
return true;
}
static bool TestQuotient(FileTest *t) {
ScopedBIGNUM a = GetBIGNUM(t, "A");
ScopedBIGNUM b = GetBIGNUM(t, "B");
ScopedBIGNUM quotient = GetBIGNUM(t, "Quotient");
ScopedBIGNUM remainder = GetBIGNUM(t, "Remainder");
if (!a || !b || !quotient || !remainder) {
return false;
}
ScopedBIGNUM ret(GFp_BN_new()), ret2(GFp_BN_new());
if (!ret || !ret2 ||
!GFp_BN_div(ret.get(), ret2.get(), a.get(), b.get()) ||
!ExpectBIGNUMsEqual(t, "A / B", quotient.get(), ret.get()) ||
!ExpectBIGNUMsEqual(t, "A % B", remainder.get(), ret2.get()) ||
!GFp_BN_mul_no_alias(ret.get(), quotient.get(), b.get()) ||
!GFp_BN_add(ret.get(), ret.get(), remainder.get()) ||
!ExpectBIGNUMsEqual(t, "Quotient * B + Remainder", a.get(), ret.get())) {
return false;
}
// Test GFp_BN_nnmod.
if (!GFp_BN_is_negative(b.get())) {
ScopedBIGNUM nnmod(GFp_BN_new());
if (!nnmod ||
!GFp_BN_copy(nnmod.get(), remainder.get()) ||
(GFp_BN_is_negative(nnmod.get()) &&
!GFp_BN_add(nnmod.get(), nnmod.get(), b.get())) ||
!GFp_BN_nnmod(ret.get(), a.get(), b.get()) ||
!ExpectBIGNUMsEqual(t, "A % B (non-negative)", nnmod.get(),
ret.get())) {
return false;
}
}
return true;
}
static bool TestModMul(FileTest *t) {
ScopedBIGNUM a = GetBIGNUM(t, "A");
ScopedBIGNUM b = GetBIGNUM(t, "B");
ScopedBIGNUM m = GetBIGNUM(t, "M");
ScopedBIGNUM mod_mul = GetBIGNUM(t, "ModMul");
if (!a || !b || !m || !mod_mul) {
return false;
}
ScopedBIGNUM ret(GFp_BN_new());
if (GFp_BN_is_odd(m.get())) {
// Reduce |a| and |b| and test the Montgomery version.
ScopedBN_MONT_CTX mont(GFp_BN_MONT_CTX_new());
ScopedBIGNUM a_tmp(GFp_BN_new()), b_tmp(GFp_BN_new());
if (!mont || !a_tmp || !b_tmp ||
!GFp_BN_MONT_CTX_set(mont.get(), m.get()) ||
!GFp_BN_nnmod(a_tmp.get(), a.get(), m.get()) ||
!GFp_BN_nnmod(b_tmp.get(), b.get(), m.get()) ||
!GFp_BN_to_mont(a_tmp.get(), a_tmp.get(), mont.get()) ||
!GFp_BN_to_mont(b_tmp.get(), b_tmp.get(), mont.get()) ||
!GFp_BN_mod_mul_mont(ret.get(), a_tmp.get(), b_tmp.get(), mont.get()) ||
!GFp_BN_from_mont(ret.get(), ret.get(), mont.get()) ||
!ExpectBIGNUMsEqual(t, "A * B (mod M) (Montgomery)",
mod_mul.get(), ret.get())) {
return false;
}
}
return true;
}
static bool TestModExp(FileTest *t) {
ScopedBIGNUM a = GetBIGNUM(t, "A");
ScopedBIGNUM e = GetBIGNUM(t, "E");
ScopedBIGNUM m = GetBIGNUM(t, "M");
ScopedBIGNUM mod_exp = GetBIGNUM(t, "ModExp");
if (!a || !e || !m || !mod_exp) {
return false;
}
ScopedBIGNUM ret(GFp_BN_new());
if (!ret) {
return false;
}
// |GFp_BN_mod_exp_mont_vartime| requires the input to already be reduced
// mod |m|. |GFp_BN_mod_exp_mont_consttime| doesn't have the same
// requirement simply because we haven't gotten around to it yet.
int expected_ok = GFp_BN_cmp(a.get(), m.get()) < 0;
ScopedBN_MONT_CTX mont(GFp_BN_MONT_CTX_new());
if (!mont ||
!GFp_BN_MONT_CTX_set(mont.get(), m.get())) {
return false;
}
int ok = GFp_BN_mod_exp_mont_vartime(ret.get(), a.get(), e.get(),
mont.get());
if (ok != expected_ok) {
return false;
}
if ((ok &&
!ExpectBIGNUMsEqual(t, "A ^ E (mod M) (Montgomery)", mod_exp.get(),
ret.get()))) {
return false;
}
if (!GFp_BN_mod_exp_mont_consttime(ret.get(), a.get(), e.get(),
mont.get()) ||
!ExpectBIGNUMsEqual(t, "A ^ E (mod M) (constant-time)", mod_exp.get(),
ret.get())) {
return false;
}
return true;
}
static bool TestModInv(FileTest *t) {
ScopedBIGNUM a = GetBIGNUM(t, "A");
ScopedBIGNUM m = GetBIGNUM(t, "M");
ScopedBIGNUM mod_inv = GetBIGNUM(t, "ModInv");
if (!a || !m || !mod_inv) {
return false;
}
ScopedBIGNUM ret(GFp_BN_new());
int no_inverse;
if (!ret ||
!GFp_BN_mod_inverse_odd(ret.get(), &no_inverse, a.get(), m.get()) ||
no_inverse ||
!ExpectBIGNUMsEqual(t, "inv(A) (mod M)", mod_inv.get(), ret.get())) {
return false;
}
return true;
}
struct Test {
const char *name;
bool (*func)(FileTest *t);
};
static const Test kTests[] = {
{"Sum", TestSum},
{"LShift1", TestLShift1},
{"LShift", TestLShift},
{"RShift", TestRShift},
{"Square", TestSquare},
{"Product", TestProduct},
{"Quotient", TestQuotient},
{"ModMul", TestModMul},
{"ModExp", TestModExp},
{"ModInv", TestModInv},
};
static bool RunTest(FileTest *t, void *) {
for (const Test &test : kTests) {
if (t->GetType() != test.name) {
continue;
}
return test.func(t);
}
t->PrintLine("Unknown test type: ", t->GetType().c_str());
return false;
}
static bool TestBN2BinPadded(RAND *rng) {
uint8_t zeros[256], out[256], reference[128];
memset(zeros, 0, sizeof(zeros));
// Test edge case at 0.
ScopedBIGNUM n(GFp_BN_new());
if (!n || !GFp_BN_bn2bin_padded(NULL, 0, n.get())) {
fprintf(stderr,
"GFp_BN_bn2bin_padded failed to encode 0 in an empty buffer.\n");
return false;
}
memset(out, -1, sizeof(out));
if (!GFp_BN_bn2bin_padded(out, sizeof(out), n.get())) {
fprintf(stderr,
"GFp_BN_bn2bin_padded failed to encode 0 in a non-empty buffer.\n");
return false;
}
if (memcmp(zeros, out, sizeof(out))) {
fprintf(stderr, "GFp_BN_bn2bin_padded did not zero buffer.\n");
return false;
}
// Test a random numbers at various byte lengths.
for (size_t bytes = 128 - 7; bytes <= 128; bytes++) {
if (!BN_rand(n.get(), bytes * 8, rng)) {
return false;
}
if (GFp_BN_num_bytes(n.get()) != bytes ||
BN_bn2bin(n.get(), reference) != bytes) {
fprintf(stderr, "Bad result from GFp_BN_rand; bytes.\n");
return false;
}
// Empty buffer should fail.
if (GFp_BN_bn2bin_padded(NULL, 0, n.get())) {
fprintf(stderr,
"GFp_BN_bn2bin_padded incorrectly succeeded on empty buffer.\n");
return false;
}
// One byte short should fail.
if (GFp_BN_bn2bin_padded(out, bytes - 1, n.get())) {
fprintf(stderr, "GFp_BN_bn2bin_padded incorrectly succeeded on short.\n");
return false;
}
// Exactly right size should encode.
if (!GFp_BN_bn2bin_padded(out, bytes, n.get()) ||
memcmp(out, reference, bytes) != 0) {
fprintf(stderr, "GFp_BN_bn2bin_padded gave a bad result.\n");
return false;
}
// Pad up one byte extra.
if (!GFp_BN_bn2bin_padded(out, bytes + 1, n.get()) ||
memcmp(out + 1, reference, bytes) || memcmp(out, zeros, 1)) {
fprintf(stderr, "GFp_BN_bn2bin_padded gave a bad result.\n");
return false;
}
// Pad up to 256.
if (!GFp_BN_bn2bin_padded(out, sizeof(out), n.get()) ||
memcmp(out + sizeof(out) - bytes, reference, bytes) ||
memcmp(out, zeros, sizeof(out) - bytes)) {
fprintf(stderr, "GFp_BN_bn2bin_padded gave a bad result.\n");
return false;
}
}
return true;
}
static int BN_is_word(const BIGNUM *bn, BN_ULONG w) {
return GFp_BN_abs_is_word(bn, w) && (w == 0 || bn->neg == 0);
}
static bool TestHex2BN() {
ScopedBIGNUM bn;
int ret = HexToBIGNUM(&bn, "0");
if (ret != 1 || !GFp_BN_is_zero(bn.get()) || GFp_BN_is_negative(bn.get())) {
fprintf(stderr, "GFp_BN_hex2bn gave a bad result.\n");
return false;
}
ret = HexToBIGNUM(&bn, "256");
if (ret != 3 || !BN_is_word(bn.get(), 0x256) ||
GFp_BN_is_negative(bn.get())) {
fprintf(stderr, "BN_hex2bn gave a bad result.\n");
return false;
}
ret = HexToBIGNUM(&bn, "-42");
if (ret != 3 || !GFp_BN_abs_is_word(bn.get(), 0x42) ||
!GFp_BN_is_negative(bn.get())) {
fprintf(stderr, "BN_hex2bn gave a bad result.\n");
return false;
}
ret = HexToBIGNUM(&bn, "-0");
if (ret != 2 || !GFp_BN_is_zero(bn.get()) || GFp_BN_is_negative(bn.get())) {
fprintf(stderr, "BN_hex2bn gave a bad result.\n");
return false;
}
ret = HexToBIGNUM(&bn, "abctrailing garbage is ignored");
if (ret != 3 || !BN_is_word(bn.get(), 0xabc) ||
GFp_BN_is_negative(bn.get())) {
fprintf(stderr, "BN_hex2bn gave a bad result.\n");
return false;
}
return true;
}
static bool TestRand(RAND *rng) {
ScopedBIGNUM bn(GFp_BN_new());
if (!bn) {
return false;
}
// Test GFp_BN_rand accounts for degenerate cases
if (!BN_rand(bn.get(), 0, rng) ||
!GFp_BN_is_zero(bn.get())) {
fprintf(stderr, "BN_rand gave a bad result.\n");
return false;
}
if (!BN_rand(bn.get(), 1, rng) ||
!BN_is_word(bn.get(), 1)) {
fprintf(stderr, "BN_rand gave a bad result.\n");
return false;
}
return true;
}
static bool TestNegativeZero() {
ScopedBIGNUM a(GFp_BN_new());
ScopedBIGNUM b(GFp_BN_new());
ScopedBIGNUM c(GFp_BN_new());
if (!a || !b || !c) {
return false;
}
// Test that GFp_BN_mul_no_alias never gives negative zero.
if (!GFp_BN_set_word(a.get(), 1)) {
return false;
}
BN_set_negative(a.get(), 1);
GFp_BN_zero(b.get());
if (!GFp_BN_mul_no_alias(c.get(), a.get(), b.get())) {
return false;
}
if (!GFp_BN_is_zero(c.get()) || GFp_BN_is_negative(c.get())) {
fprintf(stderr, "Multiplication test failed.\n");
return false;
}
ScopedBIGNUM numerator(GFp_BN_new()), denominator(GFp_BN_new());
if (!numerator || !denominator) {
return false;
}
// Test that GFp_BN_div never gives negative zero in the quotient.
if (!GFp_BN_set_word(numerator.get(), 1) ||
!GFp_BN_set_word(denominator.get(), 2)) {
return false;
}
BN_set_negative(numerator.get(), 1);
if (!GFp_BN_div(a.get(), b.get(), numerator.get(), denominator.get())) {
return false;
}
if (!GFp_BN_is_zero(a.get()) || GFp_BN_is_negative(a.get())) {
fprintf(stderr, "Incorrect quotient.\n");
return false;
}
// Test that GFp_BN_div never gives negative zero in the remainder.
if (!GFp_BN_set_word(denominator.get(), 1)) {
return false;
}
if (!GFp_BN_div(a.get(), b.get(), numerator.get(), denominator.get())) {
return false;
}
if (!GFp_BN_is_zero(b.get()) || GFp_BN_is_negative(b.get())) {
fprintf(stderr, "Incorrect remainder.\n");
return false;
}
// Test that BN_set_negative will not produce a negative zero.
GFp_BN_zero(a.get());
BN_set_negative(a.get(), 1);
if (GFp_BN_is_negative(a.get())) {
fprintf(stderr, "BN_set_negative produced a negative zero.\n");
return false;
}
return true;
}
static bool TestBadModulus() {
ScopedBIGNUM a(GFp_BN_new());
ScopedBIGNUM b(GFp_BN_new());
ScopedBIGNUM zero(GFp_BN_new());
ScopedBIGNUM one(GFp_BN_new());
ScopedBN_MONT_CTX mont(GFp_BN_MONT_CTX_new());
if (!a || !b || !zero || !one || !mont ||
!GFp_BN_set_word(one.get(), 1)) {
return false;
}
GFp_BN_zero(zero.get());
if (GFp_BN_div(a.get(), b.get(), one.get(), zero.get())) {
fprintf(stderr, "Division by zero unexpectedly succeeded.\n");
return false;
}
ERR_clear_error();
// |GFp_BN_mod_exp_mont_vartime| and |GFp_BN_mod_exp_mont_consttime| require
// this.
if (GFp_BN_MONT_CTX_set(mont.get(), zero.get())) {
fprintf(stderr,
"GFp_BN_MONT_CTX_set unexpectedly succeeded for zero modulus.\n");
return false;
}
ERR_clear_error();
// Some operations also may not be used with an even modulus.
if (!GFp_BN_set_word(b.get(), 16)) {
return false;
}
// |GFp_BN_mod_exp_mont_vartime| and |GFp_BN_mod_exp_mont_consttime| require
// this.
if (GFp_BN_MONT_CTX_set(mont.get(), b.get())) {
fprintf(stderr,
"GFp_BN_MONT_CTX_set unexpectedly succeeded for even modulus.\n");
return false;
}
ERR_clear_error();
return true;
}
static bool TestExpModRejectUnreduced() {
ScopedBIGNUM r(GFp_BN_new());
if (!r) {
return false;
}
static const BN_ULONG kBases[] = { 1, 3 };
static const BN_ULONG kExponents[] = { 1, 2, 3 };
static const BN_ULONG kModuli[] = { 1, 3 };
for (BN_ULONG mod_value : kModuli) {
ScopedBIGNUM mod(GFp_BN_new());
ScopedBN_MONT_CTX mont(GFp_BN_MONT_CTX_new());
if (!mod ||
!GFp_BN_set_word(mod.get(), mod_value) ||
!mont ||
!GFp_BN_MONT_CTX_set(mont.get(), mod.get())) {
return false;
}
for (BN_ULONG exp_value : kExponents) {
ScopedBIGNUM exp(GFp_BN_new());
if (!exp ||
!GFp_BN_set_word(exp.get(), exp_value)) {
return false;
}
for (BN_ULONG base_value : kBases) {
ScopedBIGNUM base(GFp_BN_new());
if (!base ||
!GFp_BN_set_word(base.get(), base_value)) {
return false;
}
if (base_value >= mod_value &&
GFp_BN_mod_exp_mont_vartime(r.get(), base.get(), exp.get(),
mont.get())) {
fprintf(stderr, "GFp_BN_mod_exp_mont_vartime(%d, %d, %d) succeeded!\n",
(int)base_value, (int)exp_value, (int)mod_value);
return false;
}
if (base_value >= mod_value &&
GFp_BN_mod_exp_mont_consttime(r.get(), base.get(), exp.get(),
mont.get())) {
fprintf(stderr, "GFp_BN_mod_exp_mont_consttime(%d, %d, %d) succeeded!\n",
(int)base_value, (int)exp_value, (int)mod_value);
return false;
}
BN_set_negative(base.get(), 1);
if (GFp_BN_mod_exp_mont_vartime(r.get(), base.get(), exp.get(),
mont.get())) {
fprintf(stderr, "GFp_BN_mod_exp_mont_vartime(%d, %d, %d) succeeded!\n",
-(int)base_value, (int)exp_value, (int)mod_value);
return false;
}
if (GFp_BN_mod_exp_mont_consttime(r.get(), base.get(), exp.get(),
mont.get())) {
fprintf(stderr, "GFp_BN_mod_exp_mont_consttime(%d, %d, %d) succeeded!\n",
-(int)base_value, (int)exp_value, (int)mod_value);
return false;
}
}
}
}
return true;
}
static bool TestModInvRejectUnreduced(RAND *rng) {
ScopedBIGNUM r(GFp_BN_new());
if (!r) {
return false;
}
static const BN_ULONG kBases[] = { 2, 4, 6 };
static const BN_ULONG kModuli[] = { 1, 3 };
for (BN_ULONG mod_value : kModuli) {
ScopedBIGNUM mod(GFp_BN_new());
ScopedBN_MONT_CTX mont(GFp_BN_MONT_CTX_new());
if (!mod ||
!GFp_BN_set_word(mod.get(), mod_value) ||
!mont ||
!GFp_BN_MONT_CTX_set(mont.get(), mod.get())) {
return false;
}
for (BN_ULONG base_value : kBases) {
ScopedBIGNUM base(GFp_BN_new());
if (!base ||
!GFp_BN_set_word(base.get(), base_value)) {
return false;
}
int no_inverse;
if (base_value >= mod_value &&
GFp_BN_mod_inverse_odd(r.get(), &no_inverse, base.get(), mod.get())) {
fprintf(stderr, "GFp_BN_mod_inverse_odd(%d, %d) succeeded!\n",
(int)base_value, (int)mod_value);
return false;
}
if (base_value >= mod_value &&
GFp_BN_mod_inverse_blinded(r.get(), &no_inverse, base.get(),
mont.get(), rng)) {
fprintf(stderr, "GFp_BN_mod_inverse_blinded(%d, %d) succeeded!\n",
(int)base_value, (int)mod_value);
return false;
}
BN_set_negative(base.get(), 1);
if (GFp_BN_mod_inverse_odd(r.get(), &no_inverse, base.get(), mod.get())) {
fprintf(stderr, "GFp_BN_mod_inverse_odd(%d, %d) succeeded!\n",
-(int)base_value, (int)mod_value);
return false;
}
if (GFp_BN_mod_inverse_blinded(r.get(), &no_inverse, base.get(),
mont.get(), rng)) {
fprintf(stderr, "GFp_BN_mod_inverse_blinded(%d, %d) succeeded!\n",
-(int)base_value, (int)mod_value);
return false;
}
}
}
return true;
}
static bool TestCmpWord() {
static const BN_ULONG kMaxWord = (BN_ULONG)-1;
ScopedBIGNUM one(GFp_BN_new());
ScopedBIGNUM r(GFp_BN_new());
if (!one ||
!GFp_BN_set_word(one.get(), 1) ||
!r) {
return false;
}
if (!GFp_BN_set_word(r.get(), 0)) {
return false;
}
if (GFp_BN_cmp_word(r.get(), 0) != 0 ||
GFp_BN_cmp_word(r.get(), 1) >= 0 ||
GFp_BN_cmp_word(r.get(), kMaxWord) >= 0) {
fprintf(stderr, "GFp_BN_cmp_word compared against 0 incorrectly.\n");
return false;
}
if (!GFp_BN_set_word(r.get(), 100)) {
return false;
}
if (GFp_BN_cmp_word(r.get(), 0) <= 0 ||
GFp_BN_cmp_word(r.get(), 99) <= 0 ||
GFp_BN_cmp_word(r.get(), 100) != 0 ||
GFp_BN_cmp_word(r.get(), 101) >= 0 ||
GFp_BN_cmp_word(r.get(), kMaxWord) >= 0) {
fprintf(stderr, "GFp_BN_cmp_word compared against 100 incorrectly.\n");
return false;
}
BN_set_negative(r.get(), 1);
if (GFp_BN_cmp_word(r.get(), 0) >= 0 ||
GFp_BN_cmp_word(r.get(), 100) >= 0 ||
GFp_BN_cmp_word(r.get(), kMaxWord) >= 0) {
fprintf(stderr, "GFp_BN_cmp_word compared against -100 incorrectly.\n");
return false;
}
if (!GFp_BN_set_word(r.get(), kMaxWord)) {
return false;
}
if (GFp_BN_cmp_word(r.get(), 0) <= 0 ||
GFp_BN_cmp_word(r.get(), kMaxWord - 1) <= 0 ||
GFp_BN_cmp_word(r.get(), kMaxWord) != 0) {
fprintf(stderr, "GFp_BN_cmp_word compared against kMaxWord incorrectly.\n");
return false;
}
if (!GFp_BN_add(r.get(), r.get(), one.get())) {
return false;
}
if (GFp_BN_cmp_word(r.get(), 0) <= 0 ||
GFp_BN_cmp_word(r.get(), kMaxWord) <= 0) {
fprintf(stderr, "GFp_BN_cmp_word compared against kMaxWord + 1 incorrectly.\n");
return false;
}
BN_set_negative(r.get(), 1);
if (GFp_BN_cmp_word(r.get(), 0) >= 0 ||
GFp_BN_cmp_word(r.get(), kMaxWord) >= 0) {
fprintf(stderr,
"GFp_BN_cmp_word compared against -kMaxWord - 1 incorrectly.\n");
return false;
}
return true;
}
extern "C" int bssl_bn_test_main(RAND *rng) {
if (!TestBN2BinPadded(rng) ||
!TestHex2BN() ||
!TestRand(rng) ||
!TestNegativeZero() ||
!TestBadModulus() ||
!TestExpModRejectUnreduced() ||
!TestModInvRejectUnreduced(rng) ||
!TestCmpWord()) {
return 1;
}
return FileTestMain(RunTest, nullptr, "crypto/bn/bn_tests.txt");
}