Remove all the other ERR_R_MALLOC_FAILURES from the codebase. Also changes cbb to push to the error stack, to correctly report cbb failures instead of now only reporting malloc failures. Previously it turned all cbb failures into a malloc failure Bug: 564 Change-Id: Ic13208bf9d9aaa470e83b2f15782fc94946bbc7b Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/57046 Auto-Submit: Bob Beck <bbe@google.com> Commit-Queue: David Benjamin <davidben@google.com> Reviewed-by: David Benjamin <davidben@google.com>
618 lines
18 KiB
C
618 lines
18 KiB
C
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.] */
|
|
|
|
#include <openssl/mem.h>
|
|
|
|
#include <assert.h>
|
|
#include <errno.h>
|
|
#include <limits.h>
|
|
#include <stdarg.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
#include <openssl/err.h>
|
|
|
|
#if defined(OPENSSL_WINDOWS)
|
|
OPENSSL_MSVC_PRAGMA(warning(push, 3))
|
|
#include <windows.h>
|
|
OPENSSL_MSVC_PRAGMA(warning(pop))
|
|
#endif
|
|
|
|
#if defined(BORINGSSL_MALLOC_FAILURE_TESTING)
|
|
#include <errno.h>
|
|
#include <signal.h>
|
|
#include <unistd.h>
|
|
#endif
|
|
|
|
#include "internal.h"
|
|
|
|
|
|
#define OPENSSL_MALLOC_PREFIX 8
|
|
static_assert(OPENSSL_MALLOC_PREFIX >= sizeof(size_t), "size_t too large");
|
|
|
|
#if defined(OPENSSL_ASAN)
|
|
void __asan_poison_memory_region(const volatile void *addr, size_t size);
|
|
void __asan_unpoison_memory_region(const volatile void *addr, size_t size);
|
|
#else
|
|
static void __asan_poison_memory_region(const void *addr, size_t size) {}
|
|
static void __asan_unpoison_memory_region(const void *addr, size_t size) {}
|
|
#endif
|
|
|
|
// Windows doesn't really support weak symbols as of May 2019, and Clang on
|
|
// Windows will emit strong symbols instead. See
|
|
// https://bugs.llvm.org/show_bug.cgi?id=37598
|
|
#if defined(__ELF__) && defined(__GNUC__)
|
|
#define WEAK_SYMBOL_FUNC(rettype, name, args) \
|
|
rettype name args __attribute__((weak));
|
|
#else
|
|
#define WEAK_SYMBOL_FUNC(rettype, name, args) static rettype(*name) args = NULL;
|
|
#endif
|
|
|
|
// sdallocx is a sized |free| function. By passing the size (which we happen to
|
|
// always know in BoringSSL), the malloc implementation can save work. We cannot
|
|
// depend on |sdallocx| being available, however, so it's a weak symbol.
|
|
//
|
|
// This will always be safe, but will only be overridden if the malloc
|
|
// implementation is statically linked with BoringSSL. So, if |sdallocx| is
|
|
// provided in, say, libc.so, we still won't use it because that's dynamically
|
|
// linked. This isn't an ideal result, but its helps in some cases.
|
|
WEAK_SYMBOL_FUNC(void, sdallocx, (void *ptr, size_t size, int flags));
|
|
|
|
// The following three functions can be defined to override default heap
|
|
// allocation and freeing. If defined, it is the responsibility of
|
|
// |OPENSSL_memory_free| to zero out the memory before returning it to the
|
|
// system. |OPENSSL_memory_free| will not be passed NULL pointers.
|
|
//
|
|
// WARNING: These functions are called on every allocation and free in
|
|
// BoringSSL across the entire process. They may be called by any code in the
|
|
// process which calls BoringSSL, including in process initializers and thread
|
|
// destructors. When called, BoringSSL may hold pthreads locks. Any other code
|
|
// in the process which, directly or indirectly, calls BoringSSL may be on the
|
|
// call stack and may itself be using arbitrary synchronization primitives.
|
|
//
|
|
// As a result, these functions may not have the usual programming environment
|
|
// available to most C or C++ code. In particular, they may not call into
|
|
// BoringSSL, or any library which depends on BoringSSL. Any synchronization
|
|
// primitives used must tolerate every other synchronization primitive linked
|
|
// into the process, including pthreads locks. Failing to meet these constraints
|
|
// may result in deadlocks, crashes, or memory corruption.
|
|
WEAK_SYMBOL_FUNC(void *, OPENSSL_memory_alloc, (size_t size));
|
|
WEAK_SYMBOL_FUNC(void, OPENSSL_memory_free, (void *ptr));
|
|
WEAK_SYMBOL_FUNC(size_t, OPENSSL_memory_get_size, (void *ptr));
|
|
|
|
// kBoringSSLBinaryTag is a distinctive byte sequence to identify binaries that
|
|
// are linking in BoringSSL and, roughly, what version they are using.
|
|
static const uint8_t kBoringSSLBinaryTag[18] = {
|
|
// 16 bytes of magic tag.
|
|
0x8c,
|
|
0x62,
|
|
0x20,
|
|
0x0b,
|
|
0xd2,
|
|
0xa0,
|
|
0x72,
|
|
0x58,
|
|
0x44,
|
|
0xa8,
|
|
0x96,
|
|
0x69,
|
|
0xad,
|
|
0x55,
|
|
0x7e,
|
|
0xec,
|
|
// Current source iteration. Incremented ~monthly.
|
|
3,
|
|
0,
|
|
};
|
|
|
|
#if defined(BORINGSSL_MALLOC_FAILURE_TESTING)
|
|
static struct CRYPTO_STATIC_MUTEX malloc_failure_lock =
|
|
CRYPTO_STATIC_MUTEX_INIT;
|
|
static uint64_t current_malloc_count = 0;
|
|
static uint64_t malloc_number_to_fail = 0;
|
|
static int malloc_failure_enabled = 0, break_on_malloc_fail = 0,
|
|
any_malloc_failed = 0;
|
|
|
|
static void malloc_exit_handler(void) {
|
|
CRYPTO_STATIC_MUTEX_lock_read(&malloc_failure_lock);
|
|
if (any_malloc_failed) {
|
|
// Signal to the test driver that some allocation failed, so it knows to
|
|
// increment the counter and continue.
|
|
_exit(88);
|
|
}
|
|
CRYPTO_STATIC_MUTEX_unlock_read(&malloc_failure_lock);
|
|
}
|
|
|
|
static void init_malloc_failure(void) {
|
|
const char *env = getenv("MALLOC_NUMBER_TO_FAIL");
|
|
if (env != NULL && env[0] != 0) {
|
|
char *endptr;
|
|
malloc_number_to_fail = strtoull(env, &endptr, 10);
|
|
if (*endptr == 0) {
|
|
malloc_failure_enabled = 1;
|
|
atexit(malloc_exit_handler);
|
|
}
|
|
}
|
|
break_on_malloc_fail = getenv("MALLOC_BREAK_ON_FAIL") != NULL;
|
|
}
|
|
|
|
// should_fail_allocation returns one if the current allocation should fail and
|
|
// zero otherwise.
|
|
static int should_fail_allocation() {
|
|
static CRYPTO_once_t once = CRYPTO_ONCE_INIT;
|
|
CRYPTO_once(&once, init_malloc_failure);
|
|
if (!malloc_failure_enabled) {
|
|
return 0;
|
|
}
|
|
|
|
// We lock just so multi-threaded tests are still correct, but we won't test
|
|
// every malloc exhaustively.
|
|
CRYPTO_STATIC_MUTEX_lock_write(&malloc_failure_lock);
|
|
int should_fail = current_malloc_count == malloc_number_to_fail;
|
|
current_malloc_count++;
|
|
any_malloc_failed = any_malloc_failed || should_fail;
|
|
CRYPTO_STATIC_MUTEX_unlock_write(&malloc_failure_lock);
|
|
|
|
if (should_fail && break_on_malloc_fail) {
|
|
raise(SIGTRAP);
|
|
}
|
|
if (should_fail) {
|
|
errno = ENOMEM;
|
|
}
|
|
return should_fail;
|
|
}
|
|
|
|
void OPENSSL_reset_malloc_counter_for_testing(void) {
|
|
CRYPTO_STATIC_MUTEX_lock_write(&malloc_failure_lock);
|
|
current_malloc_count = 0;
|
|
CRYPTO_STATIC_MUTEX_unlock_write(&malloc_failure_lock);
|
|
}
|
|
|
|
#else
|
|
static int should_fail_allocation(void) { return 0; }
|
|
#endif
|
|
|
|
void *OPENSSL_malloc(size_t size) {
|
|
if (should_fail_allocation()) {
|
|
goto err;
|
|
}
|
|
|
|
if (OPENSSL_memory_alloc != NULL) {
|
|
assert(OPENSSL_memory_free != NULL);
|
|
assert(OPENSSL_memory_get_size != NULL);
|
|
void *ptr = OPENSSL_memory_alloc(size);
|
|
if (ptr == NULL && size != 0) {
|
|
goto err;
|
|
}
|
|
return ptr;
|
|
}
|
|
|
|
if (size + OPENSSL_MALLOC_PREFIX < size) {
|
|
// |OPENSSL_malloc| is a central function in BoringSSL thus a reference to
|
|
// |kBoringSSLBinaryTag| is created here so that the tag isn't discarded by
|
|
// the linker. The following is sufficient to stop GCC, Clang, and MSVC
|
|
// optimising away the reference at the time of writing. Since this
|
|
// probably results in an actual memory reference, it is put in this very
|
|
// rare code path.
|
|
uint8_t unused = *(volatile uint8_t *)kBoringSSLBinaryTag;
|
|
(void) unused;
|
|
goto err;
|
|
}
|
|
|
|
void *ptr = malloc(size + OPENSSL_MALLOC_PREFIX);
|
|
if (ptr == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
*(size_t *)ptr = size;
|
|
|
|
__asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
|
|
return ((uint8_t *)ptr) + OPENSSL_MALLOC_PREFIX;
|
|
|
|
err:
|
|
// This only works because ERR does not call OPENSSL_malloc.
|
|
OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE);
|
|
return NULL;
|
|
}
|
|
|
|
void OPENSSL_free(void *orig_ptr) {
|
|
if (orig_ptr == NULL) {
|
|
return;
|
|
}
|
|
|
|
if (OPENSSL_memory_free != NULL) {
|
|
OPENSSL_memory_free(orig_ptr);
|
|
return;
|
|
}
|
|
|
|
void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX;
|
|
__asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
|
|
|
|
size_t size = *(size_t *)ptr;
|
|
OPENSSL_cleanse(ptr, size + OPENSSL_MALLOC_PREFIX);
|
|
|
|
// ASan knows to intercept malloc and free, but not sdallocx.
|
|
#if defined(OPENSSL_ASAN)
|
|
(void)sdallocx;
|
|
free(ptr);
|
|
#else
|
|
if (sdallocx) {
|
|
sdallocx(ptr, size + OPENSSL_MALLOC_PREFIX, 0 /* flags */);
|
|
} else {
|
|
free(ptr);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void *OPENSSL_realloc(void *orig_ptr, size_t new_size) {
|
|
if (orig_ptr == NULL) {
|
|
return OPENSSL_malloc(new_size);
|
|
}
|
|
|
|
size_t old_size;
|
|
if (OPENSSL_memory_get_size != NULL) {
|
|
old_size = OPENSSL_memory_get_size(orig_ptr);
|
|
} else {
|
|
void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX;
|
|
__asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
|
|
old_size = *(size_t *)ptr;
|
|
__asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
|
|
}
|
|
|
|
void *ret = OPENSSL_malloc(new_size);
|
|
if (ret == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
size_t to_copy = new_size;
|
|
if (old_size < to_copy) {
|
|
to_copy = old_size;
|
|
}
|
|
|
|
memcpy(ret, orig_ptr, to_copy);
|
|
OPENSSL_free(orig_ptr);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void OPENSSL_cleanse(void *ptr, size_t len) {
|
|
#if defined(OPENSSL_WINDOWS)
|
|
SecureZeroMemory(ptr, len);
|
|
#else
|
|
OPENSSL_memset(ptr, 0, len);
|
|
|
|
#if !defined(OPENSSL_NO_ASM)
|
|
/* As best as we can tell, this is sufficient to break any optimisations that
|
|
might try to eliminate "superfluous" memsets. If there's an easy way to
|
|
detect memset_s, it would be better to use that. */
|
|
__asm__ __volatile__("" : : "r"(ptr) : "memory");
|
|
#endif
|
|
#endif // !OPENSSL_NO_ASM
|
|
}
|
|
|
|
void OPENSSL_clear_free(void *ptr, size_t unused) { OPENSSL_free(ptr); }
|
|
|
|
int CRYPTO_secure_malloc_init(size_t size, size_t min_size) { return 0; }
|
|
|
|
int CRYPTO_secure_malloc_initialized(void) { return 0; }
|
|
|
|
size_t CRYPTO_secure_used(void) { return 0; }
|
|
|
|
void *OPENSSL_secure_malloc(size_t size) { return OPENSSL_malloc(size); }
|
|
|
|
void OPENSSL_secure_clear_free(void *ptr, size_t len) {
|
|
OPENSSL_clear_free(ptr, len);
|
|
}
|
|
|
|
int CRYPTO_memcmp(const void *in_a, const void *in_b, size_t len) {
|
|
const uint8_t *a = in_a;
|
|
const uint8_t *b = in_b;
|
|
uint8_t x = 0;
|
|
|
|
for (size_t i = 0; i < len; i++) {
|
|
x |= a[i] ^ b[i];
|
|
}
|
|
|
|
return x;
|
|
}
|
|
|
|
uint32_t OPENSSL_hash32(const void *ptr, size_t len) {
|
|
// These are the FNV-1a parameters for 32 bits.
|
|
static const uint32_t kPrime = 16777619u;
|
|
static const uint32_t kOffsetBasis = 2166136261u;
|
|
|
|
const uint8_t *in = ptr;
|
|
uint32_t h = kOffsetBasis;
|
|
|
|
for (size_t i = 0; i < len; i++) {
|
|
h ^= in[i];
|
|
h *= kPrime;
|
|
}
|
|
|
|
return h;
|
|
}
|
|
|
|
uint32_t OPENSSL_strhash(const char *s) { return OPENSSL_hash32(s, strlen(s)); }
|
|
|
|
size_t OPENSSL_strnlen(const char *s, size_t len) {
|
|
for (size_t i = 0; i < len; i++) {
|
|
if (s[i] == 0) {
|
|
return i;
|
|
}
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
char *OPENSSL_strdup(const char *s) {
|
|
if (s == NULL) {
|
|
return NULL;
|
|
}
|
|
const size_t len = strlen(s) + 1;
|
|
char *ret = OPENSSL_malloc(len);
|
|
if (ret == NULL) {
|
|
return NULL;
|
|
}
|
|
OPENSSL_memcpy(ret, s, len);
|
|
return ret;
|
|
}
|
|
|
|
int OPENSSL_isalpha(int c) {
|
|
return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z');
|
|
}
|
|
|
|
int OPENSSL_isdigit(int c) { return c >= '0' && c <= '9'; }
|
|
|
|
int OPENSSL_isxdigit(int c) {
|
|
return OPENSSL_isdigit(c) || (c >= 'a' && c <= 'f') || (c >= 'A' && c <= 'F');
|
|
}
|
|
|
|
int OPENSSL_fromxdigit(uint8_t *out, int c) {
|
|
if (OPENSSL_isdigit(c)) {
|
|
*out = c - '0';
|
|
return 1;
|
|
}
|
|
if ('a' <= c && c <= 'f') {
|
|
*out = c - 'a' + 10;
|
|
return 1;
|
|
}
|
|
if ('A' <= c && c <= 'F') {
|
|
*out = c - 'A' + 10;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int OPENSSL_isalnum(int c) { return OPENSSL_isalpha(c) || OPENSSL_isdigit(c); }
|
|
|
|
int OPENSSL_tolower(int c) {
|
|
if (c >= 'A' && c <= 'Z') {
|
|
return c + ('a' - 'A');
|
|
}
|
|
return c;
|
|
}
|
|
|
|
int OPENSSL_isspace(int c) {
|
|
return c == '\t' || c == '\n' || c == '\v' || c == '\f' || c == '\r' ||
|
|
c == ' ';
|
|
}
|
|
|
|
int OPENSSL_strcasecmp(const char *a, const char *b) {
|
|
for (size_t i = 0;; i++) {
|
|
const int aa = OPENSSL_tolower(a[i]);
|
|
const int bb = OPENSSL_tolower(b[i]);
|
|
|
|
if (aa < bb) {
|
|
return -1;
|
|
} else if (aa > bb) {
|
|
return 1;
|
|
} else if (aa == 0) {
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
int OPENSSL_strncasecmp(const char *a, const char *b, size_t n) {
|
|
for (size_t i = 0; i < n; i++) {
|
|
const int aa = OPENSSL_tolower(a[i]);
|
|
const int bb = OPENSSL_tolower(b[i]);
|
|
|
|
if (aa < bb) {
|
|
return -1;
|
|
} else if (aa > bb) {
|
|
return 1;
|
|
} else if (aa == 0) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int BIO_snprintf(char *buf, size_t n, const char *format, ...) {
|
|
va_list args;
|
|
va_start(args, format);
|
|
int ret = BIO_vsnprintf(buf, n, format, args);
|
|
va_end(args);
|
|
return ret;
|
|
}
|
|
|
|
int BIO_vsnprintf(char *buf, size_t n, const char *format, va_list args) {
|
|
return vsnprintf(buf, n, format, args);
|
|
}
|
|
|
|
int OPENSSL_vasprintf_internal(char **str, const char *format, va_list args,
|
|
int system_malloc) {
|
|
void *(*allocate)(size_t) = system_malloc ? malloc : OPENSSL_malloc;
|
|
void (*deallocate)(void *) = system_malloc ? free : OPENSSL_free;
|
|
void *(*reallocate)(void *, size_t) =
|
|
system_malloc ? realloc : OPENSSL_realloc;
|
|
char *candidate = NULL;
|
|
size_t candidate_len = 64; // TODO(bbe) what's the best initial size?
|
|
|
|
if ((candidate = allocate(candidate_len)) == NULL) {
|
|
goto err;
|
|
}
|
|
va_list args_copy;
|
|
va_copy(args_copy, args);
|
|
int ret = vsnprintf(candidate, candidate_len, format, args_copy);
|
|
va_end(args_copy);
|
|
if (ret < 0) {
|
|
goto err;
|
|
}
|
|
if ((size_t)ret >= candidate_len) {
|
|
// Too big to fit in allocation.
|
|
char *tmp;
|
|
|
|
candidate_len = (size_t)ret + 1;
|
|
if ((tmp = reallocate(candidate, candidate_len)) == NULL) {
|
|
goto err;
|
|
}
|
|
candidate = tmp;
|
|
ret = vsnprintf(candidate, candidate_len, format, args);
|
|
}
|
|
// At this point this should not happen unless vsnprintf is insane.
|
|
if (ret < 0 || (size_t)ret >= candidate_len) {
|
|
goto err;
|
|
}
|
|
*str = candidate;
|
|
return ret;
|
|
|
|
err:
|
|
deallocate(candidate);
|
|
*str = NULL;
|
|
errno = ENOMEM;
|
|
return -1;
|
|
}
|
|
|
|
int OPENSSL_vasprintf(char **str, const char *format, va_list args) {
|
|
return OPENSSL_vasprintf_internal(str, format, args, /*system_malloc=*/0);
|
|
}
|
|
|
|
int OPENSSL_asprintf(char **str, const char *format, ...) {
|
|
va_list args;
|
|
va_start(args, format);
|
|
int ret = OPENSSL_vasprintf(str, format, args);
|
|
va_end(args);
|
|
return ret;
|
|
}
|
|
|
|
char *OPENSSL_strndup(const char *str, size_t size) {
|
|
size = OPENSSL_strnlen(str, size);
|
|
|
|
size_t alloc_size = size + 1;
|
|
if (alloc_size < size) {
|
|
// overflow
|
|
OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE);
|
|
return NULL;
|
|
}
|
|
char *ret = OPENSSL_malloc(alloc_size);
|
|
if (ret == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
OPENSSL_memcpy(ret, str, size);
|
|
ret[size] = '\0';
|
|
return ret;
|
|
}
|
|
|
|
size_t OPENSSL_strlcpy(char *dst, const char *src, size_t dst_size) {
|
|
size_t l = 0;
|
|
|
|
for (; dst_size > 1 && *src; dst_size--) {
|
|
*dst++ = *src++;
|
|
l++;
|
|
}
|
|
|
|
if (dst_size) {
|
|
*dst = 0;
|
|
}
|
|
|
|
return l + strlen(src);
|
|
}
|
|
|
|
size_t OPENSSL_strlcat(char *dst, const char *src, size_t dst_size) {
|
|
size_t l = 0;
|
|
for (; dst_size > 0 && *dst; dst_size--, dst++) {
|
|
l++;
|
|
}
|
|
return l + OPENSSL_strlcpy(dst, src, dst_size);
|
|
}
|
|
|
|
void *OPENSSL_memdup(const void *data, size_t size) {
|
|
if (size == 0) {
|
|
return NULL;
|
|
}
|
|
|
|
void *ret = OPENSSL_malloc(size);
|
|
if (ret == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
OPENSSL_memcpy(ret, data, size);
|
|
return ret;
|
|
}
|
|
|
|
void *CRYPTO_malloc(size_t size, const char *file, int line) {
|
|
return OPENSSL_malloc(size);
|
|
}
|
|
|
|
void *CRYPTO_realloc(void *ptr, size_t new_size, const char *file, int line) {
|
|
return OPENSSL_realloc(ptr, new_size);
|
|
}
|
|
|
|
void CRYPTO_free(void *ptr, const char *file, int line) { OPENSSL_free(ptr); }
|