Do it because BoringSSL does it. BoringSSL has some other headers it includes here but we intentionally do not have them and/or we intentionally do not include them here (string.h and assert.h).
534 lines
19 KiB
C
534 lines
19 KiB
C
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.]
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* openssl-core@openssl.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com). */
|
|
|
|
#ifndef OPENSSL_HEADER_CRYPTO_INTERNAL_H
|
|
#define OPENSSL_HEADER_CRYPTO_INTERNAL_H
|
|
|
|
#include <ring-core/base.h> // Must be first.
|
|
|
|
#include "ring-core/arm_arch.h"
|
|
#include "ring-core/check.h"
|
|
|
|
#if defined(__clang__)
|
|
// Don't require prototypes for functions defined in C that are only
|
|
// used from Rust.
|
|
#pragma GCC diagnostic ignored "-Wmissing-prototypes"
|
|
#endif
|
|
|
|
#if defined(__GNUC__) && \
|
|
(__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) < 40800
|
|
// |alignas| and |alignof| were added in C11. GCC added support in version 4.8.
|
|
// Testing for __STDC_VERSION__/__cplusplus doesn't work because 4.7 already
|
|
// reports support for C11.
|
|
#define alignas(x) __attribute__ ((aligned (x)))
|
|
#elif defined(_MSC_VER) && !defined(__clang__)
|
|
#define alignas(x) __declspec(align(x))
|
|
#else
|
|
#include <stdalign.h>
|
|
#endif
|
|
|
|
// Some C compilers require a useless cast when dealing with arrays for the
|
|
// reason explained in
|
|
// https://gustedt.wordpress.com/2011/02/12/const-and-arrays/
|
|
#if defined(__clang__) || defined(_MSC_VER)
|
|
#define RING_CORE_POINTLESS_ARRAY_CONST_CAST(cast)
|
|
#else
|
|
#define RING_CORE_POINTLESS_ARRAY_CONST_CAST(cast) cast
|
|
#endif
|
|
|
|
// `uint8_t` isn't guaranteed to be 'unsigned char' and only 'char' and
|
|
// 'unsigned char' are allowed to alias according to ISO C.
|
|
typedef unsigned char aliasing_uint8_t;
|
|
|
|
#if (!defined(_MSC_VER) || defined(__clang__)) && defined(OPENSSL_64_BIT)
|
|
#define BORINGSSL_HAS_UINT128
|
|
typedef __int128_t int128_t;
|
|
typedef __uint128_t uint128_t;
|
|
#endif
|
|
|
|
// Pointer utility functions.
|
|
|
|
// buffers_alias returns one if |a| and |b| alias and zero otherwise.
|
|
static inline int buffers_alias(const void *a, size_t a_bytes,
|
|
const void *b, size_t b_bytes) {
|
|
// Cast |a| and |b| to integers. In C, pointer comparisons between unrelated
|
|
// objects are undefined whereas pointer to integer conversions are merely
|
|
// implementation-defined. We assume the implementation defined it in a sane
|
|
// way.
|
|
uintptr_t a_u = (uintptr_t)a;
|
|
uintptr_t b_u = (uintptr_t)b;
|
|
return a_u + a_bytes > b_u && b_u + b_bytes > a_u;
|
|
}
|
|
|
|
|
|
// Constant-time utility functions.
|
|
//
|
|
// The following methods return a bitmask of all ones (0xff...f) for true and 0
|
|
// for false. This is useful for choosing a value based on the result of a
|
|
// conditional in constant time. For example,
|
|
//
|
|
// if (a < b) {
|
|
// c = a;
|
|
// } else {
|
|
// c = b;
|
|
// }
|
|
//
|
|
// can be written as
|
|
//
|
|
// crypto_word_t lt = constant_time_lt_w(a, b);
|
|
// c = constant_time_select_w(lt, a, b);
|
|
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wconversion"
|
|
#endif
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
#pragma warning(push)
|
|
// '=': conversion from 'crypto_word_t' to 'uint8_t', possible loss of data
|
|
#pragma warning(disable: 4242)
|
|
// 'initializing': conversion from 'crypto_word_t' to 'uint8_t', ...
|
|
#pragma warning(disable: 4244)
|
|
#endif
|
|
|
|
// crypto_word_t is the type that most constant-time functions use. Ideally we
|
|
// would like it to be |size_t|, but NaCl builds in 64-bit mode with 32-bit
|
|
// pointers, which means that |size_t| can be 32 bits when |BN_ULONG| is 64
|
|
// bits. Since we want to be able to do constant-time operations on a
|
|
// |BN_ULONG|, |crypto_word_t| is defined as an unsigned value with the native
|
|
// word length.
|
|
#if defined(OPENSSL_64_BIT)
|
|
typedef uint64_t crypto_word_t;
|
|
#define CRYPTO_WORD_BITS (64u)
|
|
#elif defined(OPENSSL_32_BIT)
|
|
typedef uint32_t crypto_word_t;
|
|
#define CRYPTO_WORD_BITS (32u)
|
|
#else
|
|
#error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
|
|
#endif
|
|
|
|
#define CONSTTIME_TRUE_W ~((crypto_word_t)0)
|
|
#define CONSTTIME_FALSE_W ((crypto_word_t)0)
|
|
|
|
// value_barrier_w returns |a|, but prevents GCC and Clang from reasoning about
|
|
// the returned value. This is used to mitigate compilers undoing constant-time
|
|
// code, until we can express our requirements directly in the language.
|
|
//
|
|
// Note the compiler is aware that |value_barrier_w| has no side effects and
|
|
// always has the same output for a given input. This allows it to eliminate
|
|
// dead code, move computations across loops, and vectorize.
|
|
static inline crypto_word_t value_barrier_w(crypto_word_t a) {
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
__asm__("" : "+r"(a) : /* no inputs */);
|
|
#endif
|
|
return a;
|
|
}
|
|
|
|
// |value_barrier_u8| could be defined as above, but compilers other than
|
|
// clang seem to still materialize 0x00..00MM instead of reusing 0x??..??MM.
|
|
|
|
// constant_time_msb_w returns the given value with the MSB copied to all the
|
|
// other bits.
|
|
static inline crypto_word_t constant_time_msb_w(crypto_word_t a) {
|
|
return 0u - (a >> (sizeof(a) * 8 - 1));
|
|
}
|
|
|
|
// constant_time_is_zero returns 0xff..f if a == 0 and 0 otherwise.
|
|
static inline crypto_word_t constant_time_is_zero_w(crypto_word_t a) {
|
|
// Here is an SMT-LIB verification of this formula:
|
|
//
|
|
// (define-fun is_zero ((a (_ BitVec 32))) (_ BitVec 32)
|
|
// (bvand (bvnot a) (bvsub a #x00000001))
|
|
// )
|
|
//
|
|
// (declare-fun a () (_ BitVec 32))
|
|
//
|
|
// (assert (not (= (= #x00000001 (bvlshr (is_zero a) #x0000001f)) (= a #x00000000))))
|
|
// (check-sat)
|
|
// (get-model)
|
|
return constant_time_msb_w(~a & (a - 1));
|
|
}
|
|
|
|
static inline crypto_word_t constant_time_is_nonzero_w(crypto_word_t a) {
|
|
return ~constant_time_is_zero_w(a);
|
|
}
|
|
|
|
// constant_time_eq_w returns 0xff..f if a == b and 0 otherwise.
|
|
static inline crypto_word_t constant_time_eq_w(crypto_word_t a,
|
|
crypto_word_t b) {
|
|
return constant_time_is_zero_w(a ^ b);
|
|
}
|
|
|
|
// constant_time_select_w returns (mask & a) | (~mask & b). When |mask| is all
|
|
// 1s or all 0s (as returned by the methods above), the select methods return
|
|
// either |a| (if |mask| is nonzero) or |b| (if |mask| is zero).
|
|
static inline crypto_word_t constant_time_select_w(crypto_word_t mask,
|
|
crypto_word_t a,
|
|
crypto_word_t b) {
|
|
// Clang recognizes this pattern as a select. While it usually transforms it
|
|
// to a cmov, it sometimes further transforms it into a branch, which we do
|
|
// not want.
|
|
//
|
|
// Hiding the value of the mask from the compiler evades this transformation.
|
|
mask = value_barrier_w(mask);
|
|
return (mask & a) | (~mask & b);
|
|
}
|
|
|
|
// constant_time_select_8 acts like |constant_time_select| but operates on
|
|
// 8-bit values.
|
|
static inline uint8_t constant_time_select_8(crypto_word_t mask, uint8_t a,
|
|
uint8_t b) {
|
|
// |mask| is a word instead of |uint8_t| to avoid materializing 0x000..0MM
|
|
// Making both |mask| and its value barrier |uint8_t| would allow the compiler
|
|
// to materialize 0x????..?MM instead, but only clang is that clever.
|
|
// However, vectorization of bitwise operations seems to work better on
|
|
// |uint8_t| than a mix of |uint64_t| and |uint8_t|, so |m| is cast to
|
|
// |uint8_t| after the value barrier but before the bitwise operations.
|
|
uint8_t m = value_barrier_w(mask);
|
|
return (m & a) | (~m & b);
|
|
}
|
|
|
|
// constant_time_conditional_memcpy copies |n| bytes from |src| to |dst| if
|
|
// |mask| is 0xff..ff and does nothing if |mask| is 0. The |n|-byte memory
|
|
// ranges at |dst| and |src| must not overlap, as when calling |memcpy|.
|
|
static inline void constant_time_conditional_memcpy(void *dst, const void *src,
|
|
const size_t n,
|
|
const crypto_word_t mask) {
|
|
debug_assert_nonsecret(!buffers_alias(dst, n, src, n));
|
|
uint8_t *out = (uint8_t *)dst;
|
|
const uint8_t *in = (const uint8_t *)src;
|
|
for (size_t i = 0; i < n; i++) {
|
|
out[i] = constant_time_select_8(mask, in[i], out[i]);
|
|
}
|
|
}
|
|
|
|
// constant_time_conditional_memxor xors |n| bytes from |src| to |dst| if
|
|
// |mask| is 0xff..ff and does nothing if |mask| is 0. The |n|-byte memory
|
|
// ranges at |dst| and |src| must not overlap, as when calling |memcpy|.
|
|
static inline void constant_time_conditional_memxor(void *dst, const void *src,
|
|
const size_t n,
|
|
const crypto_word_t mask) {
|
|
debug_assert_nonsecret(!buffers_alias(dst, n, src, n));
|
|
aliasing_uint8_t *out = dst;
|
|
const aliasing_uint8_t *in = src;
|
|
for (size_t i = 0; i < n; i++) {
|
|
out[i] ^= value_barrier_w(mask) & in[i];
|
|
}
|
|
}
|
|
|
|
#if defined(_MSC_VER) && !defined(__clang__)
|
|
// '=': conversion from 'int64_t' to 'int32_t', possible loss of data
|
|
#pragma warning(pop)
|
|
#endif
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
|
|
#if defined(BORINGSSL_CONSTANT_TIME_VALIDATION)
|
|
|
|
// CONSTTIME_SECRET takes a pointer and a number of bytes and marks that region
|
|
// of memory as secret. Secret data is tracked as it flows to registers and
|
|
// other parts of a memory. If secret data is used as a condition for a branch,
|
|
// or as a memory index, it will trigger warnings in valgrind.
|
|
#define CONSTTIME_SECRET(ptr, len) VALGRIND_MAKE_MEM_UNDEFINED(ptr, len)
|
|
|
|
// CONSTTIME_DECLASSIFY takes a pointer and a number of bytes and marks that
|
|
// region of memory as public. Public data is not subject to constant-time
|
|
// rules.
|
|
#define CONSTTIME_DECLASSIFY(ptr, len) VALGRIND_MAKE_MEM_DEFINED(ptr, len)
|
|
|
|
#else
|
|
|
|
#define CONSTTIME_SECRET(ptr, len)
|
|
#define CONSTTIME_DECLASSIFY(ptr, len)
|
|
|
|
#endif // BORINGSSL_CONSTANT_TIME_VALIDATION
|
|
|
|
static inline crypto_word_t constant_time_declassify_w(crypto_word_t v) {
|
|
// Return |v| through a value barrier to be safe. Valgrind-based constant-time
|
|
// validation is partly to check the compiler has not undone any constant-time
|
|
// work. Any place |BORINGSSL_CONSTANT_TIME_VALIDATION| influences
|
|
// optimizations, this validation is inaccurate.
|
|
//
|
|
// However, by sending pointers through valgrind, we likely inhibit escape
|
|
// analysis. On local variables, particularly booleans, we likely
|
|
// significantly impact optimizations.
|
|
//
|
|
// Thus, to be safe, stick a value barrier, in hopes of comparably inhibiting
|
|
// compiler analysis.
|
|
CONSTTIME_DECLASSIFY(&v, sizeof(v));
|
|
return value_barrier_w(v);
|
|
}
|
|
|
|
// Endianness conversions.
|
|
|
|
#if defined(__GNUC__) && __GNUC__ >= 2
|
|
static inline uint32_t CRYPTO_bswap4(uint32_t x) {
|
|
return __builtin_bswap32(x);
|
|
}
|
|
|
|
static inline uint64_t CRYPTO_bswap8(uint64_t x) {
|
|
return __builtin_bswap64(x);
|
|
}
|
|
#elif defined(_MSC_VER)
|
|
#pragma warning(push, 3)
|
|
#include <stdlib.h>
|
|
#pragma warning(pop)
|
|
#pragma intrinsic(_byteswap_uint64, _byteswap_ulong)
|
|
static inline uint32_t CRYPTO_bswap4(uint32_t x) {
|
|
return _byteswap_ulong(x);
|
|
}
|
|
|
|
static inline uint64_t CRYPTO_bswap8(uint64_t x) {
|
|
return _byteswap_uint64(x);
|
|
}
|
|
#endif
|
|
|
|
#if !defined(RING_CORE_NOSTDLIBINC)
|
|
#include <string.h>
|
|
#endif
|
|
|
|
static inline void *OPENSSL_memcpy(void *dst, const void *src, size_t n) {
|
|
#if !defined(RING_CORE_NOSTDLIBINC)
|
|
if (n == 0) {
|
|
return dst;
|
|
}
|
|
return memcpy(dst, src, n);
|
|
#else
|
|
aliasing_uint8_t *d = dst;
|
|
const aliasing_uint8_t *s = src;
|
|
for (size_t i = 0; i < n; ++i) {
|
|
d[i] = s[i];
|
|
}
|
|
return dst;
|
|
#endif
|
|
}
|
|
|
|
static inline void *OPENSSL_memset(void *dst, int c, size_t n) {
|
|
#if !defined(RING_CORE_NOSTDLIBINC)
|
|
if (n == 0) {
|
|
return dst;
|
|
}
|
|
return memset(dst, c, n);
|
|
#else
|
|
aliasing_uint8_t *d = dst;
|
|
for (size_t i = 0; i < n; ++i) {
|
|
d[i] = (aliasing_uint8_t)c;
|
|
}
|
|
return dst;
|
|
#endif
|
|
}
|
|
|
|
|
|
// Loads and stores.
|
|
//
|
|
// The following functions load and store sized integers with the specified
|
|
// endianness. They use |memcpy|, and so avoid alignment or strict aliasing
|
|
// requirements on the input and output pointers.
|
|
|
|
#if defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__)
|
|
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
|
|
#define RING_BIG_ENDIAN
|
|
#endif
|
|
#endif
|
|
|
|
static inline uint32_t CRYPTO_load_u32_le(const void *in) {
|
|
uint32_t v;
|
|
OPENSSL_memcpy(&v, in, sizeof(v));
|
|
#if defined(RING_BIG_ENDIAN)
|
|
return CRYPTO_bswap4(v);
|
|
#else
|
|
return v;
|
|
#endif
|
|
}
|
|
|
|
static inline void CRYPTO_store_u32_le(void *out, uint32_t v) {
|
|
#if defined(RING_BIG_ENDIAN)
|
|
v = CRYPTO_bswap4(v);
|
|
#endif
|
|
OPENSSL_memcpy(out, &v, sizeof(v));
|
|
}
|
|
|
|
static inline uint32_t CRYPTO_load_u32_be(const void *in) {
|
|
uint32_t v;
|
|
OPENSSL_memcpy(&v, in, sizeof(v));
|
|
#if !defined(RING_BIG_ENDIAN)
|
|
return CRYPTO_bswap4(v);
|
|
#else
|
|
return v;
|
|
#endif
|
|
}
|
|
|
|
static inline void CRYPTO_store_u32_be(void *out, uint32_t v) {
|
|
#if !defined(RING_BIG_ENDIAN)
|
|
v = CRYPTO_bswap4(v);
|
|
#endif
|
|
OPENSSL_memcpy(out, &v, sizeof(v));
|
|
}
|
|
|
|
static inline uint64_t CRYPTO_load_u64_le(const void *in) {
|
|
uint64_t v;
|
|
OPENSSL_memcpy(&v, in, sizeof(v));
|
|
#if defined(RING_BIG_ENDIAN)
|
|
return CRYPTO_bswap8(v);
|
|
#else
|
|
return v;
|
|
#endif
|
|
}
|
|
|
|
static inline void CRYPTO_store_u64_le(void *out, uint64_t v) {
|
|
#if defined(RING_BIG_ENDIAN)
|
|
v = CRYPTO_bswap8(v);
|
|
#endif
|
|
OPENSSL_memcpy(out, &v, sizeof(v));
|
|
}
|
|
|
|
static inline uint64_t CRYPTO_load_u64_be(const void *ptr) {
|
|
uint64_t ret;
|
|
OPENSSL_memcpy(&ret, ptr, sizeof(ret));
|
|
#if !defined(RING_BIG_ENDIAN)
|
|
return CRYPTO_bswap8(ret);
|
|
#else
|
|
return ret;
|
|
#endif
|
|
}
|
|
|
|
static inline void CRYPTO_store_u64_be(void *out, uint64_t v) {
|
|
#if !defined(RING_BIG_ENDIAN)
|
|
v = CRYPTO_bswap8(v);
|
|
#endif
|
|
OPENSSL_memcpy(out, &v, sizeof(v));
|
|
}
|
|
|
|
|
|
// Runtime CPU feature support
|
|
|
|
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
|
|
// OPENSSL_ia32cap_P contains the Intel CPUID bits when running on an x86 or
|
|
// x86-64 system.
|
|
//
|
|
// Index 0:
|
|
// EDX for CPUID where EAX = 1
|
|
// Bit 20 is always zero
|
|
// Bit 28 is adjusted to reflect whether the data cache is shared between
|
|
// multiple logical cores
|
|
// Bit 30 is used to indicate an Intel CPU
|
|
// Index 1:
|
|
// ECX for CPUID where EAX = 1
|
|
// Bit 11 is used to indicate AMD XOP support, not SDBG
|
|
// Index 2:
|
|
// EBX for CPUID where EAX = 7
|
|
// Index 3:
|
|
// ECX for CPUID where EAX = 7
|
|
//
|
|
// Note: the CPUID bits are pre-adjusted for the OSXSAVE bit and the YMM and XMM
|
|
// bits in XCR0, so it is not necessary to check those.
|
|
extern uint32_t OPENSSL_ia32cap_P[4];
|
|
#endif
|
|
|
|
#endif // OPENSSL_HEADER_CRYPTO_INTERNAL_H
|