ring/src/arithmetic/bigint/modulus.rs
Brian Smith ca043567e6 bigint: Stop implementing Debug for OwnedModulus.
This was necessary at some point in the past, but no longer is. It is
better to avoid depending on any of the `core::fmt` machinery in these
lower layers if we can avoid it.
2023-11-22 19:15:58 -08:00

247 lines
8.4 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2015-2023 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
use super::{super::n0::N0, BoxedLimbs, Elem, PublicModulus, SmallerModulus, Unencoded};
use crate::{
bits::BitLength,
cpu, error,
limb::{self, Limb, LimbMask, LIMB_BITS},
polyfill::LeadingZerosStripped,
};
use core::marker::PhantomData;
/// The x86 implementation of `bn_mul_mont`, at least, requires at least 4
/// limbs. For a long time we have required 4 limbs for all targets, though
/// this may be unnecessary. TODO: Replace this with
/// `n.len() < 256 / LIMB_BITS` so that 32-bit and 64-bit platforms behave the
/// same.
pub const MODULUS_MIN_LIMBS: usize = 4;
pub const MODULUS_MAX_LIMBS: usize = super::super::BIGINT_MODULUS_MAX_LIMBS;
/// The modulus *m* for a ring /m, along with the precomputed values needed
/// for efficient Montgomery multiplication modulo *m*. The value must be odd
/// and larger than 2. The larger-than-1 requirement is imposed, at least, by
/// the modular inversion code.
pub struct OwnedModulus<M> {
limbs: BoxedLimbs<M>, // Also `value >= 3`.
// n0 * N == -1 (mod r).
//
// r == 2**(N0::LIMBS_USED * LIMB_BITS) and LG_LITTLE_R == lg(r). This
// ensures that we can do integer division by |r| by simply ignoring
// `N0::LIMBS_USED` limbs. Similarly, we can calculate values modulo `r` by
// just looking at the lowest `N0::LIMBS_USED` limbs. This is what makes
// Montgomery multiplication efficient.
//
// As shown in Algorithm 1 of "Fast Prime Field Elliptic Curve Cryptography
// with 256 Bit Primes" by Shay Gueron and Vlad Krasnov, in the loop of a
// multi-limb Montgomery multiplication of a * b (mod n), given the
// unreduced product t == a * b, we repeatedly calculate:
//
// t1 := t % r |t1| is |t|'s lowest limb (see previous paragraph).
// t2 := t1*n0*n
// t3 := t + t2
// t := t3 / r copy all limbs of |t3| except the lowest to |t|.
//
// In the last step, it would only make sense to ignore the lowest limb of
// |t3| if it were zero. The middle steps ensure that this is the case:
//
// t3 == 0 (mod r)
// t + t2 == 0 (mod r)
// t + t1*n0*n == 0 (mod r)
// t1*n0*n == -t (mod r)
// t*n0*n == -t (mod r)
// n0*n == -1 (mod r)
// n0 == -1/n (mod r)
//
// Thus, in each iteration of the loop, we multiply by the constant factor
// n0, the negative inverse of n (mod r).
//
// TODO(perf): Not all 32-bit platforms actually make use of n0[1]. For the
// ones that don't, we could use a shorter `R` value and use faster `Limb`
// calculations instead of double-precision `u64` calculations.
n0: N0,
len_bits: BitLength,
cpu_features: cpu::Features,
}
impl<M: PublicModulus> Clone for OwnedModulus<M> {
fn clone(&self) -> Self {
Self {
limbs: self.limbs.clone(),
n0: self.n0,
len_bits: self.len_bits,
cpu_features: self.cpu_features,
}
}
}
impl<M> OwnedModulus<M> {
pub(crate) fn from_be_bytes(
input: untrusted::Input,
cpu_features: cpu::Features,
) -> Result<Self, error::KeyRejected> {
let limbs = BoxedLimbs::positive_minimal_width_from_be_bytes(input)?;
Self::from_boxed_limbs(limbs, cpu_features)
}
fn from_boxed_limbs(
n: BoxedLimbs<M>,
cpu_features: cpu::Features,
) -> Result<Self, error::KeyRejected> {
if n.len() > MODULUS_MAX_LIMBS {
return Err(error::KeyRejected::too_large());
}
if n.len() < MODULUS_MIN_LIMBS {
return Err(error::KeyRejected::unexpected_error());
}
if limb::limbs_are_even_constant_time(&n) != LimbMask::False {
return Err(error::KeyRejected::invalid_component());
}
if limb::limbs_less_than_limb_constant_time(&n, 3) != LimbMask::False {
return Err(error::KeyRejected::unexpected_error());
}
// n_mod_r = n % r. As explained in the documentation for `n0`, this is
// done by taking the lowest `N0::LIMBS_USED` limbs of `n`.
#[allow(clippy::useless_conversion)]
let n0 = {
prefixed_extern! {
fn bn_neg_inv_mod_r_u64(n: u64) -> u64;
}
// XXX: u64::from isn't guaranteed to be constant time.
let mut n_mod_r: u64 = u64::from(n[0]);
if N0::LIMBS_USED == 2 {
// XXX: If we use `<< LIMB_BITS` here then 64-bit builds
// fail to compile because of `deny(exceeding_bitshifts)`.
debug_assert_eq!(LIMB_BITS, 32);
n_mod_r |= u64::from(n[1]) << 32;
}
N0::from(unsafe { bn_neg_inv_mod_r_u64(n_mod_r) })
};
let len_bits = limb::limbs_minimal_bits(&n);
Ok(Self {
limbs: n,
n0,
len_bits,
cpu_features,
})
}
pub fn to_elem<L>(&self, l: &Modulus<L>) -> Elem<L, Unencoded>
where
M: SmallerModulus<L>,
{
let mut limbs = BoxedLimbs::zero(l.limbs.len());
limbs[..self.limbs.len()].copy_from_slice(&self.limbs);
Elem {
limbs,
encoding: PhantomData,
}
}
pub fn modulus(&self) -> Modulus<M> {
Modulus {
limbs: &self.limbs,
n0: self.n0,
len_bits: self.len_bits,
m: PhantomData,
cpu_features: self.cpu_features,
}
}
pub fn len_bits(&self) -> BitLength {
self.len_bits
}
}
impl<M: PublicModulus> OwnedModulus<M> {
pub fn be_bytes(&self) -> LeadingZerosStripped<impl ExactSizeIterator<Item = u8> + Clone + '_> {
LeadingZerosStripped::new(limb::unstripped_be_bytes(&self.limbs))
}
}
pub struct Modulus<'a, M> {
limbs: &'a [Limb],
n0: N0,
len_bits: BitLength,
m: PhantomData<M>,
cpu_features: cpu::Features,
}
impl<M> Modulus<'_, M> {
pub(super) fn oneR(&self, out: &mut [Limb]) {
assert_eq!(self.limbs.len(), out.len());
let r = self.limbs.len() * LIMB_BITS;
// out = 2**r - m where m = self.
limb::limbs_negative_odd(out, self.limbs);
let lg_m = self.len_bits().as_usize_bits();
let leading_zero_bits_in_m = r - lg_m;
// When m's length is a multiple of LIMB_BITS, which is the case we
// most want to optimize for, then we already have
// out == 2**r - m == 2**r (mod m).
if leading_zero_bits_in_m != 0 {
debug_assert!(leading_zero_bits_in_m < LIMB_BITS);
// Correct out to 2**(lg m) (mod m). `limbs_negative_odd` flipped
// all the leading zero bits to ones. Flip them back.
*out.last_mut().unwrap() &= (!0) >> leading_zero_bits_in_m;
// Now we have out == 2**(lg m) (mod m). Keep doubling until we get
// to 2**r (mod m).
for _ in 0..leading_zero_bits_in_m {
limb::limbs_double_mod(out, self.limbs)
}
}
// Now out == 2**r (mod m) == 1*R.
}
// TODO: XXX Avoid duplication with `Modulus`.
pub(super) fn zero<E>(&self) -> Elem<M, E> {
Elem {
limbs: BoxedLimbs::zero(self.limbs.len()),
encoding: PhantomData,
}
}
#[inline]
pub(super) fn limbs(&self) -> &[Limb] {
self.limbs
}
#[inline]
pub(super) fn n0(&self) -> &N0 {
&self.n0
}
pub fn len_bits(&self) -> BitLength {
self.len_bits
}
#[inline]
pub(crate) fn cpu_features(&self) -> cpu::Features {
self.cpu_features
}
}