ring/crypto/fipsmodule/rand/internal.h
Alex Gough e79649ba4d Use ProcessPrng instead of RtlGenRandom on Windows
The Windows system RNG[1] lives in bcryptprimitives.dll which exports
the function ProcessPrng[2] to supply random bytes from its internal
generators. These are seeded and reseeded from the operating
system using a device connection to \\Device\CNG which is opened
when bcryptprimitives.dll is first loaded.

After this CL boringssl calls ProcessPrng() directly.

Before this CL boringssl got its system randomness (on non-UWP
desktop Windows) from calls to RtlGenRandom[3].
This function is undocumented and unsupported, but has always been
available by linking to SystemFunction036 in advadpi32.dll. In
Windows 10 and later, this export simply forwards to
cryptbase.dll!SystemFunction036 which calls ProcessPrng()
directly.

cryptbase!SystemFunction036 decompiled:

```
BOOLEAN SystemFunction036(PVOID RandomBuffer,ULONG RandomBufferLength)
{
  BOOL retval;
  retval = ProcessPrng(RandomBuffer,RandomBufferLength);
  return retval != 0;
}
```

Loading cryptbase.dll has the side effect of opening a device handle
to \\Device\KsecDD which is not used by boringssl's random number
wrappers. Calling ProcessPrng() directly allows sandboxed programs
such as Chromium to avoid having this handle if they do not need it.
ProcessPrng() also takes a size_t length rather than a u32 length,
allowing some simplification of the calling code.

After this CL we require bcryptprimitives to be loaded before the
first call to CRYPTO_srand(). Applications using the library should
either load the module themselves or call CRYPTO_pre_sandbox_init().
Before this CL boringssl required that advapi32, cryptbase and
bcryptprimitives were all loaded so this should not represent a
breaking change.

[1] https://learn.microsoft.com/en-us/windows/win32/seccng/processprng
[2] https://download.microsoft.com/download/1/c/9/1c9813b8-089c-4fef-b2ad-ad80e79403ba/Whitepaper%20-%20The%20Windows%2010%20random%20number%20generation%20infrastructure.pdf
[3] https://docs.google.com/document/d/13n1t5ak0yofzcadQCF7Ew5TewSUkNfQ3n-IYodjeRYc/edit

Bug: chromium:74242
Change-Id: Ifb1d6ef1a4539ff6e9a2c36cc119b7700ca2be8f
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/60825
Commit-Queue: David Benjamin <davidben@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
2023-06-22 19:51:36 +00:00

158 lines
5.8 KiB
C

/* Copyright (c) 2015, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#ifndef OPENSSL_HEADER_CRYPTO_RAND_INTERNAL_H
#define OPENSSL_HEADER_CRYPTO_RAND_INTERNAL_H
#include <openssl/aes.h>
#include <openssl/ctrdrbg.h>
#include "../../internal.h"
#include "../modes/internal.h"
#if defined(__cplusplus)
extern "C" {
#endif
#if !defined(OPENSSL_WINDOWS) && !defined(OPENSSL_FUCHSIA) && \
!defined(BORINGSSL_UNSAFE_DETERMINISTIC_MODE) && !defined(OPENSSL_TRUSTY)
#define OPENSSL_URANDOM
#endif
// RAND_bytes_with_additional_data samples from the RNG after mixing 32 bytes
// from |user_additional_data| in.
void RAND_bytes_with_additional_data(uint8_t *out, size_t out_len,
const uint8_t user_additional_data[32]);
#if defined(BORINGSSL_FIPS)
// We overread from /dev/urandom or RDRAND by a factor of 10 and XOR to whiten.
#define BORINGSSL_FIPS_OVERREAD 10
// CRYPTO_get_seed_entropy writes |out_entropy_len| bytes of entropy, suitable
// for seeding a DRBG, to |out_entropy|. It sets |*out_used_cpu| to one if the
// entropy came directly from the CPU and zero if it came from the OS. It
// actively obtains entropy from the CPU/OS and so should not be called from
// within the FIPS module.
void CRYPTO_get_seed_entropy(uint8_t *out_entropy, size_t out_entropy_len,
int *out_used_cpu);
// RAND_load_entropy supplies |entropy_len| bytes of entropy to the module. The
// |want_additional_input| parameter is true iff the entropy was obtained from
// a source other than the system, e.g. directly from the CPU.
void RAND_load_entropy(const uint8_t *entropy, size_t entropy_len,
int want_additional_input);
// RAND_need_entropy is implemented outside of the FIPS module and is called
// when the module has stopped because it has run out of entropy.
void RAND_need_entropy(size_t bytes_needed);
#endif // BORINGSSL_FIPS
// CRYPTO_sysrand fills |len| bytes at |buf| with entropy from the operating
// system.
void CRYPTO_sysrand(uint8_t *buf, size_t len);
// CRYPTO_sysrand_for_seed fills |len| bytes at |buf| with entropy from the
// operating system. It may draw from the |GRND_RANDOM| pool on Android,
// depending on the vendor's configuration.
void CRYPTO_sysrand_for_seed(uint8_t *buf, size_t len);
#if defined(OPENSSL_URANDOM) || defined(OPENSSL_WINDOWS)
// CRYPTO_init_sysrand initializes long-lived resources needed to draw entropy
// from the operating system.
void CRYPTO_init_sysrand(void);
#else
OPENSSL_INLINE void CRYPTO_init_sysrand(void) {}
#endif // defined(OPENSSL_URANDOM) || defined(OPENSSL_WINDOWS)
#if defined(OPENSSL_URANDOM)
// CRYPTO_sysrand_if_available fills |len| bytes at |buf| with entropy from the
// operating system, or early /dev/urandom data, and returns 1, _if_ the entropy
// pool is initialized or if getrandom() is not available and not in FIPS mode.
// Otherwise it will not block and will instead fill |buf| with all zeros and
// return 0.
int CRYPTO_sysrand_if_available(uint8_t *buf, size_t len);
#else
OPENSSL_INLINE int CRYPTO_sysrand_if_available(uint8_t *buf, size_t len) {
CRYPTO_sysrand(buf, len);
return 1;
}
#endif // defined(OPENSSL_URANDOM)
// rand_fork_unsafe_buffering_enabled returns whether fork-unsafe buffering has
// been enabled via |RAND_enable_fork_unsafe_buffering|.
int rand_fork_unsafe_buffering_enabled(void);
// CTR_DRBG_STATE contains the state of a CTR_DRBG based on AES-256. See SP
// 800-90Ar1.
struct ctr_drbg_state_st {
AES_KEY ks;
block128_f block;
ctr128_f ctr;
uint8_t counter[16];
uint64_t reseed_counter;
};
// CTR_DRBG_init initialises |*drbg| given |CTR_DRBG_ENTROPY_LEN| bytes of
// entropy in |entropy| and, optionally, a personalization string up to
// |CTR_DRBG_ENTROPY_LEN| bytes in length. It returns one on success and zero
// on error.
OPENSSL_EXPORT int CTR_DRBG_init(CTR_DRBG_STATE *drbg,
const uint8_t entropy[CTR_DRBG_ENTROPY_LEN],
const uint8_t *personalization,
size_t personalization_len);
#if defined(OPENSSL_X86_64) && !defined(OPENSSL_NO_ASM)
OPENSSL_INLINE int have_rdrand(void) {
return CRYPTO_is_RDRAND_capable();
}
// have_fast_rdrand returns true if RDRAND is supported and it's reasonably
// fast. Concretely the latter is defined by whether the chip is Intel (fast) or
// not (assumed slow).
OPENSSL_INLINE int have_fast_rdrand(void) {
return CRYPTO_is_RDRAND_capable() && CRYPTO_is_intel_cpu();
}
// CRYPTO_rdrand writes eight bytes of random data from the hardware RNG to
// |out|. It returns one on success or zero on hardware failure.
int CRYPTO_rdrand(uint8_t out[8]);
// CRYPTO_rdrand_multiple8_buf fills |len| bytes at |buf| with random data from
// the hardware RNG. The |len| argument must be a multiple of eight. It returns
// one on success and zero on hardware failure.
int CRYPTO_rdrand_multiple8_buf(uint8_t *buf, size_t len);
#else // OPENSSL_X86_64 && !OPENSSL_NO_ASM
OPENSSL_INLINE int have_rdrand(void) {
return 0;
}
OPENSSL_INLINE int have_fast_rdrand(void) {
return 0;
}
#endif // OPENSSL_X86_64 && !OPENSSL_NO_ASM
#if defined(__cplusplus)
} // extern C
#endif
#endif // OPENSSL_HEADER_CRYPTO_RAND_INTERNAL_H