ring/tests/rsa_tests.rs
Brian Smith f0cad0ad07 Remove BitLength, PublicModulus, PublicExponent from the public API.
Replace `rsa::PublicKey::{n,e}()` with an implementation of `From<&PublicKey>`
for `PublicKeyComponents`. This will fit better with the plans to do the same
for other public key cryptosystem types. This also allows us to remove
`BitLength` from the public API and also to remove some `Debug` implementations.
2021-09-29 13:01:25 -07:00

352 lines
13 KiB
Rust

// Copyright 2017 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#[cfg(feature = "alloc")]
use ring::{
error,
io::der,
rand, rsa,
signature::{self, KeyPair},
test, test_file,
};
use std::convert::TryFrom;
#[cfg(all(target_arch = "wasm32", feature = "wasm32_c"))]
use wasm_bindgen_test::{wasm_bindgen_test as test, wasm_bindgen_test_configure};
#[cfg(all(target_arch = "wasm32", feature = "wasm32_c"))]
wasm_bindgen_test_configure!(run_in_browser);
#[cfg(feature = "alloc")]
#[test]
fn rsa_from_pkcs8_test() {
test::run(
test_file!("rsa_from_pkcs8_tests.txt"),
|section, test_case| {
assert_eq!(section, "");
let input = test_case.consume_bytes("Input");
let error = test_case.consume_optional_string("Error");
match (rsa::KeyPair::from_pkcs8(&input), error) {
(Ok(_), None) => {}
(Err(e), None) => panic!("Failed with error \"{}\", but expected to succeed", e),
(Ok(_), Some(e)) => panic!("Succeeded, but expected error \"{}\"", e),
(Err(actual), Some(expected)) => assert_eq!(format!("{}", actual), expected),
};
Ok(())
},
);
}
#[cfg(feature = "alloc")]
#[test]
fn test_signature_rsa_pkcs1_sign() {
let rng = rand::SystemRandom::new();
test::run(
test_file!("rsa_pkcs1_sign_tests.txt"),
|section, test_case| {
assert_eq!(section, "");
let digest_name = test_case.consume_string("Digest");
let alg = match digest_name.as_ref() {
"SHA256" => &signature::RSA_PKCS1_SHA256,
"SHA384" => &signature::RSA_PKCS1_SHA384,
"SHA512" => &signature::RSA_PKCS1_SHA512,
_ => panic!("Unsupported digest: {}", digest_name),
};
let private_key = test_case.consume_bytes("Key");
let msg = test_case.consume_bytes("Msg");
let expected = test_case.consume_bytes("Sig");
let result = test_case.consume_string("Result");
let key_pair = rsa::KeyPair::from_der(&private_key);
if result == "Fail-Invalid-Key" {
assert!(key_pair.is_err());
return Ok(());
}
let key_pair = key_pair.unwrap();
// XXX: This test is too slow on Android ARM Travis CI builds.
// TODO: re-enable these tests on Android ARM.
let mut actual = vec![0u8; key_pair.public().modulus_len()];
key_pair
.sign(alg, &rng, &msg, actual.as_mut_slice())
.unwrap();
assert_eq!(actual.as_slice() == &expected[..], result == "Pass");
Ok(())
},
);
}
#[cfg(feature = "alloc")]
#[test]
fn test_signature_rsa_pss_sign() {
test::run(
test_file!("rsa_pss_sign_tests.txt"),
|section, test_case| {
assert_eq!(section, "");
let digest_name = test_case.consume_string("Digest");
let alg = match digest_name.as_ref() {
"SHA256" => &signature::RSA_PSS_SHA256,
"SHA384" => &signature::RSA_PSS_SHA384,
"SHA512" => &signature::RSA_PSS_SHA512,
_ => panic!("Unsupported digest: {}", digest_name),
};
let result = test_case.consume_string("Result");
let private_key = test_case.consume_bytes("Key");
let key_pair = rsa::KeyPair::from_der(&private_key);
if key_pair.is_err() && result == "Fail-Invalid-Key" {
return Ok(());
}
let key_pair = key_pair.unwrap();
let msg = test_case.consume_bytes("Msg");
let salt = test_case.consume_bytes("Salt");
let expected = test_case.consume_bytes("Sig");
let rng = test::rand::FixedSliceRandom { bytes: &salt };
let mut actual = vec![0u8; key_pair.public().modulus_len()];
key_pair.sign(alg, &rng, &msg, actual.as_mut_slice())?;
assert_eq!(actual.as_slice() == &expected[..], result == "Pass");
Ok(())
},
);
}
// `KeyPair::sign` requires that the output buffer is the same length as
// the public key modulus. Test what happens when it isn't the same length.
#[test]
fn test_signature_rsa_pkcs1_sign_output_buffer_len() {
// Sign the message "hello, world", using PKCS#1 v1.5 padding and the
// SHA256 digest algorithm.
const MESSAGE: &[u8] = b"hello, world";
let rng = rand::SystemRandom::new();
const PRIVATE_KEY_DER: &[u8] =
include_bytes!("../src/rsa/signature_rsa_example_private_key.der");
let key_pair = rsa::KeyPair::from_der(PRIVATE_KEY_DER).unwrap();
// The output buffer is one byte too short.
let mut signature = vec![0; key_pair.public().modulus_len() - 1];
assert!(key_pair
.sign(&signature::RSA_PKCS1_SHA256, &rng, MESSAGE, &mut signature)
.is_err());
// The output buffer is the right length.
signature.push(0);
assert!(key_pair
.sign(&signature::RSA_PKCS1_SHA256, &rng, MESSAGE, &mut signature)
.is_ok());
// The output buffer is one byte too long.
signature.push(0);
assert!(key_pair
.sign(&signature::RSA_PKCS1_SHA256, &rng, MESSAGE, &mut signature)
.is_err());
}
#[cfg(feature = "alloc")]
#[test]
fn test_signature_rsa_pkcs1_verify() {
let sha1_params = &[
(
&signature::RSA_PKCS1_1024_8192_SHA1_FOR_LEGACY_USE_ONLY,
1024,
),
(
&signature::RSA_PKCS1_2048_8192_SHA1_FOR_LEGACY_USE_ONLY,
2048,
),
];
let sha256_params = &[
(
&signature::RSA_PKCS1_1024_8192_SHA256_FOR_LEGACY_USE_ONLY,
1024,
),
(&signature::RSA_PKCS1_2048_8192_SHA256, 2048),
];
let sha384_params = &[
(&signature::RSA_PKCS1_2048_8192_SHA384, 2048),
(&signature::RSA_PKCS1_3072_8192_SHA384, 3072),
];
let sha512_params = &[
(
&signature::RSA_PKCS1_1024_8192_SHA512_FOR_LEGACY_USE_ONLY,
1024,
),
(&signature::RSA_PKCS1_2048_8192_SHA512, 2048),
];
test::run(
test_file!("rsa_pkcs1_verify_tests.txt"),
|section, test_case| {
assert_eq!(section, "");
let digest_name = test_case.consume_string("Digest");
let params: &[_] = match digest_name.as_ref() {
"SHA1" => sha1_params,
"SHA256" => sha256_params,
"SHA384" => sha384_params,
"SHA512" => sha512_params,
_ => panic!("Unsupported digest: {}", digest_name),
};
let public_key = test_case.consume_bytes("Key");
// Sanity check that we correctly DER-encoded the originally-
// provided separate (n, e) components. When we add test vectors
// for improperly-encoded signatures, we'll have to revisit this.
let key_bits = untrusted::Input::from(&public_key)
.read_all(error::Unspecified, |input| {
der::nested(input, der::Tag::Sequence, error::Unspecified, |input| {
let n_bytes =
der::positive_integer(input)?.big_endian_without_leading_zero();
let _e = der::positive_integer(input)?;
// Because `n_bytes` has the leading zeros stripped and is big-endian, there
// must be less than 8 leading zero bits.
let n_leading_zeros = usize::try_from(n_bytes[0].leading_zeros()).unwrap();
assert!(n_leading_zeros < 8);
Ok((n_bytes.len() * 8) - n_leading_zeros)
})
})
.expect("invalid DER");
let msg = test_case.consume_bytes("Msg");
let sig = test_case.consume_bytes("Sig");
let is_valid = test_case.consume_string("Result") == "P";
for &(alg, min_bits) in params {
let width_ok = key_bits >= min_bits;
let actual_result =
signature::UnparsedPublicKey::new(alg, &public_key).verify(&msg, &sig);
assert_eq!(actual_result.is_ok(), is_valid && width_ok);
}
Ok(())
},
);
}
#[cfg(feature = "alloc")]
#[test]
fn test_signature_rsa_pss_verify() {
test::run(
test_file!("rsa_pss_verify_tests.txt"),
|section, test_case| {
assert_eq!(section, "");
let digest_name = test_case.consume_string("Digest");
let alg = match digest_name.as_ref() {
"SHA256" => &signature::RSA_PSS_2048_8192_SHA256,
"SHA384" => &signature::RSA_PSS_2048_8192_SHA384,
"SHA512" => &signature::RSA_PSS_2048_8192_SHA512,
_ => panic!("Unsupported digest: {}", digest_name),
};
let public_key = test_case.consume_bytes("Key");
// Sanity check that we correctly DER-encoded the originally-
// provided separate (n, e) components. When we add test vectors
// for improperly-encoded signatures, we'll have to revisit this.
assert!(untrusted::Input::from(&public_key)
.read_all(error::Unspecified, |input| der::nested(
input,
der::Tag::Sequence,
error::Unspecified,
|input| {
let _ = der::positive_integer(input)?;
let _ = der::positive_integer(input)?;
Ok(())
}
))
.is_ok());
let msg = test_case.consume_bytes("Msg");
let sig = test_case.consume_bytes("Sig");
let is_valid = test_case.consume_string("Result") == "P";
let actual_result =
signature::UnparsedPublicKey::new(alg, &public_key).verify(&msg, &sig);
assert_eq!(actual_result.is_ok(), is_valid);
Ok(())
},
);
}
// Test for `primitive::verify()`. Read public key parts from a file
// and use them to verify a signature.
#[cfg(feature = "alloc")]
#[test]
fn test_signature_rsa_primitive_verification() {
test::run(
test_file!("rsa_primitive_verify_tests.txt"),
|section, test_case| {
assert_eq!(section, "");
let n = test_case.consume_bytes("n");
let e = test_case.consume_bytes("e");
let msg = test_case.consume_bytes("Msg");
let sig = test_case.consume_bytes("Sig");
let expected = test_case.consume_string("Result");
let public_key = signature::RsaPublicKeyComponents { n: &n, e: &e };
let result = public_key.verify(&signature::RSA_PKCS1_2048_8192_SHA256, &msg, &sig);
assert_eq!(result.is_ok(), expected == "Pass");
Ok(())
},
)
}
#[cfg(feature = "alloc")]
#[test]
fn rsa_test_keypair_coverage() {
const PRIVATE_KEY: &[u8] = include_bytes!("rsa_test_private_key_2048.p8");
let key_pair = rsa::KeyPair::from_pkcs8(PRIVATE_KEY).unwrap();
// Test that `signature::KeyPair::PublicKey` is `rsa::PublicKey`; if it
// were a separate type then it would need to be tested separately.
let _: &rsa::PublicKey = key_pair.public_key();
test_public_key_coverage(key_pair.public());
// Test clones.
test_public_key_coverage(&key_pair.public().clone());
// Test `Debug`
assert_eq!(
format!("RsaKeyPair {{ public: {:?} }}", key_pair.public_key()),
format!("{:?}", key_pair)
);
}
fn test_public_key_coverage(key: &rsa::PublicKey) {
// Test `AsRef<[u8]>`
const PUBLIC_KEY: &[u8] = include_bytes!("rsa_test_public_key_2048.der");
assert_eq!(key.as_ref(), PUBLIC_KEY);
// Test `Debug`.
const PUBLIC_KEY_DEBUG: &str = include_str!("rsa_test_public_key_2048_debug.txt");
assert_eq!(PUBLIC_KEY_DEBUG, format!("{:?}", key));
let components = rsa::PublicKeyComponents::<Vec<_>>::from(key);
const PUBLIC_KEY_MODULUS_BE_BYTES: &[u8] = include_bytes!("rsa_test_public_modulus.bin");
assert_eq!(PUBLIC_KEY_MODULUS_BE_BYTES, &components.n);
const _65537: &[u8] = &[0x01, 0x00, 0x01];
assert_eq!(_65537, &components.e);
}