rsa/src/pkcs1v15.rs

376 lines
13 KiB
Rust
Raw Normal View History

use rand::Rng;
2019-02-20 18:50:46 +01:00
use subtle::{Choice, ConditionallySelectable, ConstantTimeEq};
use crate::errors::{Error, Result};
use crate::hash::Hash;
use crate::key::{self, PublicKey, RSAPrivateKey};
use crate::raw::DecryptionPrimitive;
// Encrypts the given message with RSA and the padding
// scheme from PKCS#1 v1.5. The message must be no longer than the
// length of the public modulus minus 11 bytes.
2018-07-24 14:31:06 +02:00
#[inline]
pub fn encrypt<R: Rng, K: PublicKey>(rng: &mut R, pub_key: &K, msg: &[u8]) -> Result<Vec<u8>> {
key::check_public(pub_key)?;
let k = pub_key.size();
if msg.len() > k - 11 {
2018-07-24 23:46:58 +02:00
return Err(Error::MessageTooLong);
}
// EM = 0x00 || 0x02 || PS || 0x00 || M
let mut em = vec![0u8; k];
em[1] = 2;
non_zero_random_bytes(rng, &mut em[2..k - msg.len() - 1]);
em[k - msg.len() - 1] = 0;
em[k - msg.len()..].copy_from_slice(msg);
pub_key.raw_encryption_primitive(&em)
}
/// Decrypts a plaintext using RSA and the padding scheme from PKCS#1 v1.5.
// If an `rng` is passed, it uses RSA blinding to avoid timing side-channel attacks.
//
// Note that whether this function returns an error or not discloses secret
// information. If an attacker can cause this function to run repeatedly and
// learn whether each instance returned an error then they can decrypt and
// forge signatures as if they had the private key. See
// `decrypt_session_key` for a way of solving this problem.
2018-07-24 14:31:06 +02:00
#[inline]
pub fn decrypt<R: Rng>(
rng: Option<&mut R>,
priv_key: &RSAPrivateKey,
ciphertext: &[u8],
) -> Result<Vec<u8>> {
key::check_public(priv_key)?;
let (valid, out, index) = decrypt_inner(rng, priv_key, ciphertext)?;
if valid == 0 {
2018-07-24 23:46:58 +02:00
return Err(Error::Decryption);
}
Ok(out[index as usize..].to_vec())
}
2018-07-24 14:31:06 +02:00
// Calculates the signature of hashed using
// RSASSA-PKCS1-V1_5-SIGN from RSA PKCS#1 v1.5. Note that `hashed` must
// be the result of hashing the input message using the given hash
// function. If hash is `None`, hashed is signed directly. This isn't
// advisable except for interoperability.
//
// If `rng` is not `None` then RSA blinding will be used to avoid timing
// side-channel attacks.
//
// This function is deterministic. Thus, if the set of possible
// messages is small, an attacker may be able to build a map from
// messages to signatures and identify the signed messages. As ever,
// signatures provide authenticity, not confidentiality.
#[inline]
pub fn sign<R: Rng, H: Hash>(
rng: Option<&mut R>,
priv_key: &RSAPrivateKey,
hash: Option<&H>,
hashed: &[u8],
) -> Result<Vec<u8>> {
let (hash_len, prefix) = hash_info(hash, hashed.len())?;
let t_len = prefix.len() + hash_len;
let k = priv_key.size();
if k < t_len + 11 {
2018-07-24 23:46:58 +02:00
return Err(Error::MessageTooLong);
2018-07-24 14:31:06 +02:00
}
// EM = 0x00 || 0x01 || PS || 0x00 || T
let mut em = vec![0xff; k];
em[0] = 0;
em[1] = 1;
em[k - t_len - 1] = 0;
em[k - t_len..k - hash_len].copy_from_slice(&prefix);
em[k - hash_len..k].copy_from_slice(hashed);
priv_key.raw_decryption_primitive(rng, &em)
2018-07-24 14:31:06 +02:00
}
/// Verifies an RSA PKCS#1 v1.5 signature.
#[inline]
pub fn verify<H: Hash, K: PublicKey>(
pub_key: &K,
hash: Option<&H>,
hashed: &[u8],
sig: &[u8],
) -> Result<()> {
let (hash_len, prefix) = hash_info(hash, hashed.len())?;
let t_len = prefix.len() + hash_len;
let k = pub_key.size();
if k < t_len + 11 {
2018-07-24 23:46:58 +02:00
return Err(Error::Verification);
}
let em = pub_key.raw_encryption_primitive(sig)?;
// EM = 0x00 || 0x01 || PS || 0x00 || T
let mut ok = em[0].ct_eq(&0u8);
2018-11-07 14:28:16 +01:00
ok &= em[1].ct_eq(&1u8);
ok &= em[k - hash_len..k].ct_eq(hashed);
ok &= em[k - t_len..k - hash_len].ct_eq(&prefix);
ok &= em[k - t_len - 1].ct_eq(&0u8);
for el in em.iter().skip(2).take(k - t_len - 3) {
2018-11-07 14:28:16 +01:00
ok &= el.ct_eq(&0xff)
}
if ok.unwrap_u8() != 1 {
2018-07-24 23:46:58 +02:00
return Err(Error::Verification);
}
Ok(())
}
2018-07-24 14:31:06 +02:00
#[inline]
fn hash_info<H: Hash>(hash: Option<&H>, digest_len: usize) -> Result<(usize, Vec<u8>)> {
match hash {
Some(hash) => {
let hash_len = hash.size();
if digest_len != hash_len {
2018-07-24 23:46:58 +02:00
return Err(Error::InputNotHashed);
2018-07-24 14:31:06 +02:00
}
Ok((hash_len, hash.asn1_prefix()))
}
// this means the data is signed directly
None => Ok((digest_len, Vec::new())),
}
}
/// Decrypts ciphertext using `priv_key` and blinds the operation if
/// `rng` is given. It returns one or zero in valid that indicates whether the
/// plaintext was correctly structured. In either case, the plaintext is
/// returned in em so that it may be read independently of whether it was valid
/// in order to maintain constant memory access patterns. If the plaintext was
/// valid then index contains the index of the original message in em.
#[inline]
fn decrypt_inner<R: Rng>(
rng: Option<&mut R>,
priv_key: &RSAPrivateKey,
ciphertext: &[u8],
) -> Result<(u8, Vec<u8>, u32)> {
let k = priv_key.size();
if k < 11 {
2018-07-24 23:46:58 +02:00
return Err(Error::Decryption);
}
let em = priv_key.raw_decryption_primitive(rng, ciphertext)?;
let first_byte_is_zero = em[0].ct_eq(&0u8);
let second_byte_is_two = em[1].ct_eq(&2u8);
// The remainder of the plaintext must be a string of non-zero random
// octets, followed by a 0, followed by the message.
// looking_for_index: 1 iff we are still looking for the zero.
// index: the offset of the first zero byte.
let mut looking_for_index = 1u8;
let mut index = 0u32;
for (i, el) in em.iter().enumerate().skip(2) {
let equals0 = el.ct_eq(&0u8);
index.conditional_assign(&(i as u32), Choice::from(looking_for_index) & equals0);
looking_for_index.conditional_assign(&0u8, equals0);
}
// The PS padding must be at least 8 bytes long, and it starts two
// bytes into em.
// TODO: WARNING: THIS MUST BE CONSTANT TIME CHECK:
// Ref: https://github.com/dalek-cryptography/subtle/issues/20
// This is currently copy & paste from the constant time impl in
// go, but very likely not sufficient.
let valid_ps = Choice::from((((2i32 + 8i32 - index as i32 - 1i32) >> 31) & 1) as u8);
let valid =
first_byte_is_zero & second_byte_is_two & Choice::from(!looking_for_index & 1) & valid_ps;
index = u32::conditional_select(&0, &(index + 1), valid);
Ok((valid.unwrap_u8(), em, index))
}
/// Fills the provided slice with random values, which are guranteed
/// to not be zero.
#[inline]
fn non_zero_random_bytes<R: Rng>(rng: &mut R, data: &mut [u8]) {
rng.fill(data);
for el in data {
if *el == 0u8 {
// TODO: break after a certain amount of time
2018-07-24 14:31:06 +02:00
while *el == 0u8 {
*el = rng.gen();
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use base64;
2018-07-24 14:31:06 +02:00
use hex;
use num_bigint::BigUint;
use num_traits::FromPrimitive;
use num_traits::Num;
2018-07-24 14:31:06 +02:00
use rand::thread_rng;
use sha1::{Digest, Sha1};
use crate::hash::Hashes;
use crate::key::RSAPublicKey;
use crate::padding::PaddingScheme;
#[test]
fn test_non_zero_bytes() {
for _ in 0..10 {
let mut rng = thread_rng();
let mut b = vec![0u8; 512];
non_zero_random_bytes(&mut rng, &mut b);
for el in &b {
assert_ne!(*el, 0u8);
}
}
}
fn get_private_key() -> RSAPrivateKey {
// In order to generate new test vectors you'll need the PEM form of this key:
// -----BEGIN RSA PRIVATE KEY-----
// MIIBOgIBAAJBALKZD0nEffqM1ACuak0bijtqE2QrI/KLADv7l3kK3ppMyCuLKoF0
// fd7Ai2KW5ToIwzFofvJcS/STa6HA5gQenRUCAwEAAQJBAIq9amn00aS0h/CrjXqu
// /ThglAXJmZhOMPVn4eiu7/ROixi9sex436MaVeMqSNf7Ex9a8fRNfWss7Sqd9eWu
// RTUCIQDasvGASLqmjeffBNLTXV2A5g4t+kLVCpsEIZAycV5GswIhANEPLmax0ME/
// EO+ZJ79TJKN5yiGBRsv5yvx5UiHxajEXAiAhAol5N4EUyq6I9w1rYdhPMGpLfk7A
// IU2snfRJ6Nq2CQIgFrPsWRCkV+gOYcajD17rEqmuLrdIRexpg8N1DOSXoJ8CIGlS
// tAboUGBxTDq3ZroNism3DaMIbKPyYrAqhKov1h5V
// -----END RSA PRIVATE KEY-----
RSAPrivateKey::from_components(
BigUint::from_str_radix("9353930466774385905609975137998169297361893554149986716853295022578535724979677252958524466350471210367835187480748268864277464700638583474144061408845077", 10).unwrap(),
BigUint::from_u64(65537).unwrap(),
BigUint::from_str_radix("7266398431328116344057699379749222532279343923819063639497049039389899328538543087657733766554155839834519529439851673014800261285757759040931985506583861", 10).unwrap(),
vec![
BigUint::from_str_radix("98920366548084643601728869055592650835572950932266967461790948584315647051443",10).unwrap(),
BigUint::from_str_radix("94560208308847015747498523884063394671606671904944666360068158221458669711639", 10).unwrap()
],
)
}
#[test]
fn test_decrypt_pkcs1v15() {
let priv_key = get_private_key();
let tests = [[
"gIcUIoVkD6ATMBk/u/nlCZCCWRKdkfjCgFdo35VpRXLduiKXhNz1XupLLzTXAybEq15juc+EgY5o0DHv/nt3yg==",
"x",
], [
"Y7TOCSqofGhkRb+jaVRLzK8xw2cSo1IVES19utzv6hwvx+M8kFsoWQm5DzBeJCZTCVDPkTpavUuEbgp8hnUGDw==",
"testing.",
], [
"arReP9DJtEVyV2Dg3dDp4c/PSk1O6lxkoJ8HcFupoRorBZG+7+1fDAwT1olNddFnQMjmkb8vxwmNMoTAT/BFjQ==",
"testing.\n",
], [
"WtaBXIoGC54+vH0NH0CHHE+dRDOsMc/6BrfFu2lEqcKL9+uDuWaf+Xj9mrbQCjjZcpQuX733zyok/jsnqe/Ftw==",
"01234567890123456789012345678901234567890123456789012",
]];
for test in &tests {
let out = priv_key
2018-07-24 14:31:06 +02:00
.decrypt(PaddingScheme::PKCS1v15, &base64::decode(test[0]).unwrap())
.unwrap();
assert_eq!(out, test[1].as_bytes());
}
}
#[test]
fn test_encrypt_decrypt_pkcs1v15() {
let mut rng = thread_rng();
let priv_key = get_private_key();
let k = priv_key.size();
for i in 1..100 {
let mut input: Vec<u8> = (0..i * 8).map(|_| rng.gen()).collect();
if input.len() > k - 11 {
input = input[0..k - 11].to_vec();
}
let pub_key: RSAPublicKey = priv_key.clone().into();
let ciphertext = encrypt(&mut rng, &pub_key, &input).unwrap();
assert_ne!(input, ciphertext);
let blind: bool = rng.gen();
let blinder = if blind { Some(&mut rng) } else { None };
let plaintext = decrypt(blinder, &priv_key, &ciphertext).unwrap();
assert_eq!(input, plaintext);
}
}
2018-07-24 14:31:06 +02:00
#[test]
fn test_sign_pkcs1v15() {
let priv_key = get_private_key();
let tests = [[
"Test.\n", "a4f3fa6ea93bcdd0c57be020c1193ecbfd6f200a3d95c409769b029578fa0e336ad9a347600e40d3ae823b8c7e6bad88cc07c1d54c3a1523cbbb6d58efc362ae"
]];
for test in &tests {
let digest = Sha1::digest(test[0].as_bytes()).to_vec();
let expected = hex::decode(test[1]).unwrap();
let out = priv_key
.sign(PaddingScheme::PKCS1v15, Some(&Hashes::SHA1), &digest)
.unwrap();
assert_ne!(out, digest);
assert_eq!(out, expected);
let mut rng = thread_rng();
let out2 = priv_key
.sign_blinded(
&mut rng,
PaddingScheme::PKCS1v15,
Some(&Hashes::SHA1),
&digest,
)
.unwrap();
assert_eq!(out2, expected);
}
}
#[test]
fn test_verify_pkcs1v15() {
let priv_key = get_private_key();
let tests = [[
"Test.\n", "a4f3fa6ea93bcdd0c57be020c1193ecbfd6f200a3d95c409769b029578fa0e336ad9a347600e40d3ae823b8c7e6bad88cc07c1d54c3a1523cbbb6d58efc362ae"
]];
let pub_key: RSAPublicKey = priv_key.into();
for test in &tests {
let digest = Sha1::digest(test[0].as_bytes()).to_vec();
let sig = hex::decode(test[1]).unwrap();
pub_key
.verify(PaddingScheme::PKCS1v15, Some(&Hashes::SHA1), &digest, &sig)
.expect("failed to verify");
}
}
2018-07-24 14:31:06 +02:00
#[test]
fn test_unpadded_signature() {
let msg = b"Thu Dec 19 18:06:16 EST 2013\n";
let expected_sig = base64::decode("pX4DR8azytjdQ1rtUiC040FjkepuQut5q2ZFX1pTjBrOVKNjgsCDyiJDGZTCNoh9qpXYbhl7iEym30BWWwuiZg==").unwrap();
let priv_key = get_private_key();
let sig = priv_key
.sign::<Hashes>(PaddingScheme::PKCS1v15, None, msg)
.unwrap();
assert_eq!(expected_sig, sig);
let pub_key: RSAPublicKey = priv_key.into();
pub_key
.verify::<Hashes>(PaddingScheme::PKCS1v15, None, msg, &sig)
.expect("failed to verify");
2018-07-24 14:31:06 +02:00
}
}