//! PKCS#1 v1.5 support as described in [RFC8017 § 8.2]. //! //! # Usage //! //! See [code example in the toplevel rustdoc](../index.html#pkcs1-v15-signatures). //! //! [RFC8017 § 8.2]: https://datatracker.ietf.org/doc/html/rfc8017#section-8.2 use alloc::{boxed::Box, string::ToString, vec::Vec}; use core::fmt::{Debug, Display, Formatter, LowerHex, UpperHex}; use core::marker::PhantomData; use digest::Digest; use num_bigint::BigUint; use pkcs8::{ spki::{ der::AnyRef, AlgorithmIdentifierRef, AssociatedAlgorithmIdentifier, SignatureAlgorithmIdentifier, }, AssociatedOid, Document, EncodePrivateKey, EncodePublicKey, SecretDocument, }; use rand_core::CryptoRngCore; use signature::{ hazmat::{PrehashSigner, PrehashVerifier}, DigestSigner, DigestVerifier, Keypair, RandomizedDigestSigner, RandomizedSigner, SignatureEncoding, Signer, Verifier, }; use zeroize::Zeroizing; use crate::algorithms::pkcs1v15::*; use crate::dummy_rng::DummyRng; use crate::errors::{Error, Result}; use crate::internals::{uint_to_be_pad, uint_to_zeroizing_be_pad}; use crate::key::{self, PublicKeyParts}; use crate::padding::{PaddingScheme, SignatureScheme}; use crate::traits::{Decryptor, EncryptingKeypair, RandomizedDecryptor, RandomizedEncryptor}; use crate::{RsaPrivateKey, RsaPublicKey}; /// Encryption using PKCS#1 v1.5 padding. #[derive(Clone, Copy, Debug, Default, Eq, PartialEq)] pub struct Pkcs1v15Encrypt; impl PaddingScheme for Pkcs1v15Encrypt { fn decrypt( self, rng: Option<&mut Rng>, priv_key: &RsaPrivateKey, ciphertext: &[u8], ) -> Result> { decrypt(rng, priv_key, ciphertext) } fn encrypt( self, rng: &mut Rng, pub_key: &RsaPublicKey, msg: &[u8], ) -> Result> { encrypt(rng, pub_key, msg) } } /// Digital signatures using PKCS#1 v1.5 padding. #[derive(Clone, Debug, Eq, PartialEq)] pub struct Pkcs1v15Sign { /// Length of hash to use. pub hash_len: Option, /// Prefix. pub prefix: Box<[u8]>, } impl Pkcs1v15Sign { /// Create new PKCS#1 v1.5 padding for the given digest. /// /// The digest must have an [`AssociatedOid`]. Make sure to enable the `oid` /// feature of the relevant digest crate. pub fn new() -> Self where D: Digest + AssociatedOid, { Self { hash_len: Some(::output_size()), prefix: pkcs1v15_generate_prefix::().into_boxed_slice(), } } /// Create new PKCS#1 v1.5 padding for computing an unprefixed signature. /// /// This sets `hash_len` to `None` and uses an empty `prefix`. pub fn new_unprefixed() -> Self { Self { hash_len: None, prefix: Box::new([]), } } /// Create new PKCS#1 v1.5 padding for computing an unprefixed signature. /// /// This sets `hash_len` to `None` and uses an empty `prefix`. #[deprecated(since = "0.9.0", note = "use Pkcs1v15Sign::new_unprefixed instead")] pub fn new_raw() -> Self { Self::new_unprefixed() } } impl SignatureScheme for Pkcs1v15Sign { fn sign( self, rng: Option<&mut Rng>, priv_key: &RsaPrivateKey, hashed: &[u8], ) -> Result> { if let Some(hash_len) = self.hash_len { if hashed.len() != hash_len { return Err(Error::InputNotHashed); } } sign(rng, priv_key, &self.prefix, hashed) } fn verify(self, pub_key: &RsaPublicKey, hashed: &[u8], sig: &[u8]) -> Result<()> { if let Some(hash_len) = self.hash_len { if hashed.len() != hash_len { return Err(Error::InputNotHashed); } } verify( pub_key, self.prefix.as_ref(), hashed, &BigUint::from_bytes_be(sig), ) } } /// PKCS#1 v1.5 signatures as described in [RFC8017 § 8.2]. /// /// [RFC8017 § 8.2]: https://datatracker.ietf.org/doc/html/rfc8017#section-8.2 #[derive(Clone, PartialEq, Eq)] pub struct Signature { inner: BigUint, } impl SignatureEncoding for Signature { type Repr = Box<[u8]>; } impl TryFrom<&[u8]> for Signature { type Error = signature::Error; fn try_from(bytes: &[u8]) -> signature::Result { Ok(Self { inner: BigUint::from_bytes_be(bytes), }) } } impl From for Box<[u8]> { fn from(signature: Signature) -> Box<[u8]> { signature.inner.to_bytes_be().into_boxed_slice() } } impl Debug for Signature { fn fmt(&self, fmt: &mut Formatter<'_>) -> core::result::Result<(), core::fmt::Error> { fmt.debug_tuple("Signature") .field(&self.to_string()) .finish() } } impl LowerHex for Signature { fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result { write!(f, "{:x}", &self.inner) } } impl UpperHex for Signature { fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result { write!(f, "{:X}", &self.inner) } } impl Display for Signature { fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result { write!(f, "{:X}", self) } } /// Encrypts the given message with RSA and the padding /// scheme from PKCS#1 v1.5. The message must be no longer than the /// length of the public modulus minus 11 bytes. #[inline] fn encrypt( rng: &mut R, pub_key: &RsaPublicKey, msg: &[u8], ) -> Result> { key::check_public(pub_key)?; let em = pkcs1v15_encrypt_pad(rng, msg, pub_key.size())?; let int = Zeroizing::new(BigUint::from_bytes_be(&em)); uint_to_be_pad(pub_key.raw_int_encryption_primitive(&int)?, pub_key.size()) } /// Decrypts a plaintext using RSA and the padding scheme from PKCS#1 v1.5. /// /// If an `rng` is passed, it uses RSA blinding to avoid timing side-channel attacks. /// /// Note that whether this function returns an error or not discloses secret /// information. If an attacker can cause this function to run repeatedly and /// learn whether each instance returned an error then they can decrypt and /// forge signatures as if they had the private key. See /// `decrypt_session_key` for a way of solving this problem. #[inline] fn decrypt( rng: Option<&mut R>, priv_key: &RsaPrivateKey, ciphertext: &[u8], ) -> Result> { key::check_public(priv_key)?; let em = priv_key.raw_int_decryption_primitive(rng, &BigUint::from_bytes_be(ciphertext))?; let em = uint_to_zeroizing_be_pad(em, priv_key.size())?; pkcs1v15_encrypt_unpad(em, priv_key.size()) } /// Calculates the signature of hashed using /// RSASSA-PKCS1-V1_5-SIGN from RSA PKCS#1 v1.5. Note that `hashed` must /// be the result of hashing the input message using the given hash /// function. If hash is `None`, hashed is signed directly. This isn't /// advisable except for interoperability. /// /// If `rng` is not `None` then RSA blinding will be used to avoid timing /// side-channel attacks. /// /// This function is deterministic. Thus, if the set of possible /// messages is small, an attacker may be able to build a map from /// messages to signatures and identify the signed messages. As ever, /// signatures provide authenticity, not confidentiality. #[inline] fn sign( rng: Option<&mut R>, priv_key: &RsaPrivateKey, prefix: &[u8], hashed: &[u8], ) -> Result> { let em = pkcs1v15_sign_pad(prefix, hashed, priv_key.size())?; uint_to_zeroizing_be_pad( priv_key.raw_int_decryption_primitive(rng, &BigUint::from_bytes_be(&em))?, priv_key.size(), ) } /// Verifies an RSA PKCS#1 v1.5 signature. #[inline] fn verify(pub_key: &RsaPublicKey, prefix: &[u8], hashed: &[u8], sig: &BigUint) -> Result<()> { let em = uint_to_be_pad(pub_key.raw_int_encryption_primitive(sig)?, pub_key.size())?; pkcs1v15_sign_unpad(prefix, hashed, &em, pub_key.size()) } /// Signing key for PKCS#1 v1.5 signatures as described in [RFC8017 § 8.2]. /// /// [RFC8017 § 8.2]: https://datatracker.ietf.org/doc/html/rfc8017#section-8.2 #[derive(Debug, Clone)] pub struct SigningKey where D: Digest, { inner: RsaPrivateKey, prefix: Vec, phantom: PhantomData, } impl SigningKey where D: Digest, { /// Create a new signing key from the give RSA private key with an empty prefix. /// /// ## Note: unprefixed signatures are uncommon /// /// In most cases you'll want to use [`SigningKey::new`]. pub fn new_unprefixed(key: RsaPrivateKey) -> Self { Self { inner: key, prefix: Vec::new(), phantom: Default::default(), } } /// Generate a new signing key with an empty prefix. pub fn random_unprefixed( rng: &mut R, bit_size: usize, ) -> Result { Ok(Self { inner: RsaPrivateKey::new(rng, bit_size)?, prefix: Vec::new(), phantom: Default::default(), }) } } impl AssociatedAlgorithmIdentifier for SigningKey where D: Digest, { type Params = AnyRef<'static>; const ALGORITHM_IDENTIFIER: AlgorithmIdentifierRef<'static> = pkcs1::ALGORITHM_ID; } impl SignatureAlgorithmIdentifier for SigningKey where D: Digest + oid::RsaSignatureAssociatedOid, { type Params = AnyRef<'static>; const SIGNATURE_ALGORITHM_IDENTIFIER: AlgorithmIdentifierRef<'static> = AlgorithmIdentifierRef { oid: D::OID, parameters: Some(AnyRef::NULL), }; } impl From for SigningKey where D: Digest, { fn from(key: RsaPrivateKey) -> Self { Self::new_unprefixed(key) } } impl From> for RsaPrivateKey where D: Digest, { fn from(key: SigningKey) -> Self { key.inner } } impl SigningKey where D: Digest + AssociatedOid, { /// Create a new signing key with a prefix for the digest `D`. pub fn new(key: RsaPrivateKey) -> Self { Self { inner: key, prefix: pkcs1v15_generate_prefix::(), phantom: Default::default(), } } /// Generate a new signing key with a prefix for the digest `D`. pub fn random(rng: &mut R, bit_size: usize) -> Result { Ok(Self { inner: RsaPrivateKey::new(rng, bit_size)?, prefix: pkcs1v15_generate_prefix::(), phantom: Default::default(), }) } /// Create a new signing key with a prefix for the digest `D`. #[deprecated(since = "0.9.0", note = "use SigningKey::new instead")] pub fn new_with_prefix(key: RsaPrivateKey) -> Self { Self::new(key) } /// Generate a new signing key with a prefix for the digest `D`. #[deprecated(since = "0.9.0", note = "use SigningKey::random instead")] pub fn random_with_prefix( rng: &mut R, bit_size: usize, ) -> Result { Self::random(rng, bit_size) } } impl AsRef for SigningKey where D: Digest, { fn as_ref(&self) -> &RsaPrivateKey { &self.inner } } impl EncodePrivateKey for SigningKey where D: Digest, { fn to_pkcs8_der(&self) -> pkcs8::Result { self.inner.to_pkcs8_der() } } impl Signer for SigningKey where D: Digest, { fn try_sign(&self, msg: &[u8]) -> signature::Result { sign::(None, &self.inner, &self.prefix, &D::digest(msg))? .as_slice() .try_into() } } impl RandomizedSigner for SigningKey where D: Digest, { fn try_sign_with_rng( &self, rng: &mut impl CryptoRngCore, msg: &[u8], ) -> signature::Result { sign(Some(rng), &self.inner, &self.prefix, &D::digest(msg))? .as_slice() .try_into() } } impl DigestSigner for SigningKey where D: Digest, { fn try_sign_digest(&self, digest: D) -> signature::Result { sign::(None, &self.inner, &self.prefix, &digest.finalize())? .as_slice() .try_into() } } impl RandomizedDigestSigner for SigningKey where D: Digest, { fn try_sign_digest_with_rng( &self, rng: &mut impl CryptoRngCore, digest: D, ) -> signature::Result { sign(Some(rng), &self.inner, &self.prefix, &digest.finalize())? .as_slice() .try_into() } } impl PrehashSigner for SigningKey where D: Digest, { fn sign_prehash(&self, prehash: &[u8]) -> signature::Result { sign::(None, &self.inner, &self.prefix, prehash)? .as_slice() .try_into() } } /// Verifying key for PKCS#1 v1.5 signatures as described in [RFC8017 § 8.2]. /// /// [RFC8017 § 8.2]: https://datatracker.ietf.org/doc/html/rfc8017#section-8.2 #[derive(Debug)] pub struct VerifyingKey where D: Digest, { inner: RsaPublicKey, prefix: Vec, phantom: PhantomData, } /* Implemented manually so we don't have to bind D with Clone */ impl Clone for VerifyingKey where D: Digest, { fn clone(&self) -> Self { Self { inner: self.inner.clone(), prefix: self.prefix.clone(), phantom: Default::default(), } } } impl VerifyingKey where D: Digest, { /// Create a new verifying key from an RSA public key with an empty prefix. /// /// ## Note: unprefixed signatures are uncommon /// /// In most cases you'll want to use [`VerifyingKey::new`] instead. pub fn new_unprefixed(key: RsaPublicKey) -> Self { Self { inner: key, prefix: Vec::new(), phantom: Default::default(), } } } impl AssociatedAlgorithmIdentifier for VerifyingKey where D: Digest, { type Params = AnyRef<'static>; const ALGORITHM_IDENTIFIER: AlgorithmIdentifierRef<'static> = pkcs1::ALGORITHM_ID; } impl SignatureAlgorithmIdentifier for VerifyingKey where D: Digest + oid::RsaSignatureAssociatedOid, { type Params = AnyRef<'static>; const SIGNATURE_ALGORITHM_IDENTIFIER: AlgorithmIdentifierRef<'static> = AlgorithmIdentifierRef { oid: D::OID, parameters: Some(AnyRef::NULL), }; } impl From for VerifyingKey where D: Digest, { fn from(key: RsaPublicKey) -> Self { Self::new_unprefixed(key) } } impl From> for RsaPublicKey where D: Digest, { fn from(key: VerifyingKey) -> Self { key.inner } } impl VerifyingKey where D: Digest + AssociatedOid, { /// Create a new verifying key with a prefix for the digest `D`. pub fn new(key: RsaPublicKey) -> Self { Self { inner: key, prefix: pkcs1v15_generate_prefix::(), phantom: Default::default(), } } /// Create a new verifying key with a prefix for the digest `D`. #[deprecated(since = "0.9.0", note = "use VerifyingKey::new instead")] pub fn new_with_prefix(key: RsaPublicKey) -> Self { Self::new(key) } } impl AsRef for VerifyingKey where D: Digest, { fn as_ref(&self) -> &RsaPublicKey { &self.inner } } impl Keypair for SigningKey where D: Digest, { type VerifyingKey = VerifyingKey; fn verifying_key(&self) -> Self::VerifyingKey { VerifyingKey { inner: self.inner.to_public_key(), prefix: self.prefix.clone(), phantom: Default::default(), } } } impl Verifier for VerifyingKey where D: Digest, { fn verify(&self, msg: &[u8], signature: &Signature) -> signature::Result<()> { verify( &self.inner, &self.prefix.clone(), &D::digest(msg), &signature.inner, ) .map_err(|e| e.into()) } } impl DigestVerifier for VerifyingKey where D: Digest, { fn verify_digest(&self, digest: D, signature: &Signature) -> signature::Result<()> { verify( &self.inner, &self.prefix, &digest.finalize(), &signature.inner, ) .map_err(|e| e.into()) } } impl PrehashVerifier for VerifyingKey where D: Digest, { fn verify_prehash(&self, prehash: &[u8], signature: &Signature) -> signature::Result<()> { verify(&self.inner, &self.prefix, prehash, &signature.inner).map_err(|e| e.into()) } } impl EncodePublicKey for VerifyingKey where D: Digest, { fn to_public_key_der(&self) -> pkcs8::spki::Result { self.inner.to_public_key_der() } } /// Encryption key for PKCS#1 v1.5 encryption as described in [RFC8017 § 7.2]. /// /// [RFC8017 § 7.2]: https://datatracker.ietf.org/doc/html/rfc8017#section-7.2 #[derive(Debug, Clone)] pub struct EncryptingKey { inner: RsaPublicKey, } impl EncryptingKey { /// Create a new verifying key from an RSA public key. pub fn new(key: RsaPublicKey) -> Self { Self { inner: key } } } impl RandomizedEncryptor for EncryptingKey { fn encrypt_with_rng( &self, rng: &mut R, msg: &[u8], ) -> Result> { encrypt(rng, &self.inner, msg) } } /// Decryption key for PKCS#1 v1.5 decryption as described in [RFC8017 § 7.2]. /// /// [RFC8017 § 7.2]: https://datatracker.ietf.org/doc/html/rfc8017#section-7.2 #[derive(Debug, Clone)] pub struct DecryptingKey { inner: RsaPrivateKey, } impl DecryptingKey { /// Create a new verifying key from an RSA public key. pub fn new(key: RsaPrivateKey) -> Self { Self { inner: key } } } impl Decryptor for DecryptingKey { fn decrypt(&self, ciphertext: &[u8]) -> Result> { decrypt::(None, &self.inner, ciphertext) } } impl RandomizedDecryptor for DecryptingKey { fn decrypt_with_rng( &self, rng: &mut R, ciphertext: &[u8], ) -> Result> { decrypt(Some(rng), &self.inner, ciphertext) } } impl EncryptingKeypair for DecryptingKey { type EncryptingKey = EncryptingKey; fn encrypting_key(&self) -> EncryptingKey { EncryptingKey { inner: self.inner.clone().into(), } } } mod oid { use const_oid::ObjectIdentifier; /// A trait which associates an RSA-specific OID with a type. pub(crate) trait RsaSignatureAssociatedOid { /// The OID associated with this type. const OID: ObjectIdentifier; } #[cfg(feature = "sha1")] impl RsaSignatureAssociatedOid for sha1::Sha1 { const OID: ObjectIdentifier = const_oid::ObjectIdentifier::new_unwrap("1.2.840.113549.1.1.5"); } #[cfg(feature = "sha2")] impl RsaSignatureAssociatedOid for sha2::Sha224 { const OID: ObjectIdentifier = const_oid::ObjectIdentifier::new_unwrap("1.2.840.113549.1.1.14"); } #[cfg(feature = "sha2")] impl RsaSignatureAssociatedOid for sha2::Sha256 { const OID: ObjectIdentifier = const_oid::ObjectIdentifier::new_unwrap("1.2.840.113549.1.1.11"); } #[cfg(feature = "sha2")] impl RsaSignatureAssociatedOid for sha2::Sha384 { const OID: ObjectIdentifier = const_oid::ObjectIdentifier::new_unwrap("1.2.840.113549.1.1.12"); } #[cfg(feature = "sha2")] impl RsaSignatureAssociatedOid for sha2::Sha512 { const OID: ObjectIdentifier = const_oid::ObjectIdentifier::new_unwrap("1.2.840.113549.1.1.13"); } } #[cfg(test)] mod tests { use super::*; use base64ct::{Base64, Encoding}; use hex_literal::hex; use num_bigint::BigUint; use num_traits::FromPrimitive; use num_traits::Num; use rand_chacha::{ rand_core::{RngCore, SeedableRng}, ChaCha8Rng, }; use sha1::{Digest, Sha1}; use sha2::Sha256; use sha3::Sha3_256; use signature::{RandomizedSigner, Signer, Verifier}; use crate::{PublicKeyParts, RsaPrivateKey, RsaPublicKey}; fn get_private_key() -> RsaPrivateKey { // In order to generate new test vectors you'll need the PEM form of this key: // -----BEGIN RSA PRIVATE KEY----- // MIIBOgIBAAJBALKZD0nEffqM1ACuak0bijtqE2QrI/KLADv7l3kK3ppMyCuLKoF0 // fd7Ai2KW5ToIwzFofvJcS/STa6HA5gQenRUCAwEAAQJBAIq9amn00aS0h/CrjXqu // /ThglAXJmZhOMPVn4eiu7/ROixi9sex436MaVeMqSNf7Ex9a8fRNfWss7Sqd9eWu // RTUCIQDasvGASLqmjeffBNLTXV2A5g4t+kLVCpsEIZAycV5GswIhANEPLmax0ME/ // EO+ZJ79TJKN5yiGBRsv5yvx5UiHxajEXAiAhAol5N4EUyq6I9w1rYdhPMGpLfk7A // IU2snfRJ6Nq2CQIgFrPsWRCkV+gOYcajD17rEqmuLrdIRexpg8N1DOSXoJ8CIGlS // tAboUGBxTDq3ZroNism3DaMIbKPyYrAqhKov1h5V // -----END RSA PRIVATE KEY----- RsaPrivateKey::from_components( BigUint::from_str_radix("9353930466774385905609975137998169297361893554149986716853295022578535724979677252958524466350471210367835187480748268864277464700638583474144061408845077", 10).unwrap(), BigUint::from_u64(65537).unwrap(), BigUint::from_str_radix("7266398431328116344057699379749222532279343923819063639497049039389899328538543087657733766554155839834519529439851673014800261285757759040931985506583861", 10).unwrap(), vec![ BigUint::from_str_radix("98920366548084643601728869055592650835572950932266967461790948584315647051443",10).unwrap(), BigUint::from_str_radix("94560208308847015747498523884063394671606671904944666360068158221458669711639", 10).unwrap() ], ).unwrap() } #[test] fn test_decrypt_pkcs1v15() { let priv_key = get_private_key(); let tests = [[ "gIcUIoVkD6ATMBk/u/nlCZCCWRKdkfjCgFdo35VpRXLduiKXhNz1XupLLzTXAybEq15juc+EgY5o0DHv/nt3yg==", "x", ], [ "Y7TOCSqofGhkRb+jaVRLzK8xw2cSo1IVES19utzv6hwvx+M8kFsoWQm5DzBeJCZTCVDPkTpavUuEbgp8hnUGDw==", "testing.", ], [ "arReP9DJtEVyV2Dg3dDp4c/PSk1O6lxkoJ8HcFupoRorBZG+7+1fDAwT1olNddFnQMjmkb8vxwmNMoTAT/BFjQ==", "testing.\n", ], [ "WtaBXIoGC54+vH0NH0CHHE+dRDOsMc/6BrfFu2lEqcKL9+uDuWaf+Xj9mrbQCjjZcpQuX733zyok/jsnqe/Ftw==", "01234567890123456789012345678901234567890123456789012", ]]; for test in &tests { let out = priv_key .decrypt(Pkcs1v15Encrypt, &Base64::decode_vec(test[0]).unwrap()) .unwrap(); assert_eq!(out, test[1].as_bytes()); } } #[test] fn test_encrypt_decrypt_pkcs1v15() { let mut rng = ChaCha8Rng::from_seed([42; 32]); let priv_key = get_private_key(); let k = priv_key.size(); for i in 1..100 { let mut input = vec![0u8; i * 8]; rng.fill_bytes(&mut input); if input.len() > k - 11 { input = input[0..k - 11].to_vec(); } let pub_key: RsaPublicKey = priv_key.clone().into(); let ciphertext = encrypt(&mut rng, &pub_key, &input).unwrap(); assert_ne!(input, ciphertext); let blind: bool = rng.next_u32() < (1u32 << 31); let blinder = if blind { Some(&mut rng) } else { None }; let plaintext = decrypt(blinder, &priv_key, &ciphertext).unwrap(); assert_eq!(input, plaintext); } } #[test] fn test_decrypt_pkcs1v15_traits() { let priv_key = get_private_key(); let decrypting_key = DecryptingKey::new(priv_key); let tests = [[ "gIcUIoVkD6ATMBk/u/nlCZCCWRKdkfjCgFdo35VpRXLduiKXhNz1XupLLzTXAybEq15juc+EgY5o0DHv/nt3yg==", "x", ], [ "Y7TOCSqofGhkRb+jaVRLzK8xw2cSo1IVES19utzv6hwvx+M8kFsoWQm5DzBeJCZTCVDPkTpavUuEbgp8hnUGDw==", "testing.", ], [ "arReP9DJtEVyV2Dg3dDp4c/PSk1O6lxkoJ8HcFupoRorBZG+7+1fDAwT1olNddFnQMjmkb8vxwmNMoTAT/BFjQ==", "testing.\n", ], [ "WtaBXIoGC54+vH0NH0CHHE+dRDOsMc/6BrfFu2lEqcKL9+uDuWaf+Xj9mrbQCjjZcpQuX733zyok/jsnqe/Ftw==", "01234567890123456789012345678901234567890123456789012", ]]; for test in &tests { let out = decrypting_key .decrypt(&Base64::decode_vec(test[0]).unwrap()) .unwrap(); assert_eq!(out, test[1].as_bytes()); } } #[test] fn test_encrypt_decrypt_pkcs1v15_traits() { let mut rng = ChaCha8Rng::from_seed([42; 32]); let priv_key = get_private_key(); let k = priv_key.size(); let decrypting_key = DecryptingKey::new(priv_key); for i in 1..100 { let mut input = vec![0u8; i * 8]; rng.fill_bytes(&mut input); if input.len() > k - 11 { input = input[0..k - 11].to_vec(); } let encrypting_key = decrypting_key.encrypting_key(); let ciphertext = encrypting_key.encrypt_with_rng(&mut rng, &input).unwrap(); assert_ne!(input, ciphertext); let blind: bool = rng.next_u32() < (1u32 << 31); let plaintext = if blind { decrypting_key .decrypt_with_rng(&mut rng, &ciphertext) .unwrap() } else { decrypting_key.decrypt(&ciphertext).unwrap() }; assert_eq!(input, plaintext); } } #[test] fn test_sign_pkcs1v15() { let priv_key = get_private_key(); let tests = [( "Test.\n", hex!( "a4f3fa6ea93bcdd0c57be020c1193ecbfd6f200a3d95c409769b029578fa0e33" "6ad9a347600e40d3ae823b8c7e6bad88cc07c1d54c3a1523cbbb6d58efc362ae" ), )]; for (text, expected) in &tests { let digest = Sha1::digest(text.as_bytes()).to_vec(); let out = priv_key.sign(Pkcs1v15Sign::new::(), &digest).unwrap(); assert_ne!(out, digest); assert_eq!(out, expected); let mut rng = ChaCha8Rng::from_seed([42; 32]); let out2 = priv_key .sign_with_rng(&mut rng, Pkcs1v15Sign::new::(), &digest) .unwrap(); assert_eq!(out2, expected); } } #[test] fn test_sign_pkcs1v15_signer() { let priv_key = get_private_key(); let tests = [( "Test.\n", hex!( "a4f3fa6ea93bcdd0c57be020c1193ecbfd6f200a3d95c409769b029578fa0e33" "6ad9a347600e40d3ae823b8c7e6bad88cc07c1d54c3a1523cbbb6d58efc362ae" ), )]; let signing_key = SigningKey::::new(priv_key); for (text, expected) in &tests { let out = signing_key.sign(text.as_bytes()).to_bytes(); assert_ne!(out.as_ref(), text.as_bytes()); assert_ne!(out.as_ref(), &Sha1::digest(text.as_bytes()).to_vec()); assert_eq!(out.as_ref(), expected); let mut rng = ChaCha8Rng::from_seed([42; 32]); let out2 = signing_key .sign_with_rng(&mut rng, text.as_bytes()) .to_bytes(); assert_eq!(out2.as_ref(), expected); } } #[test] fn test_sign_pkcs1v15_signer_sha2_256() { let priv_key = get_private_key(); let tests = [( "Test.\n", hex!( "2ffae3f3e130287b3a1dcb320e46f52e8f3f7969b646932273a7e3a6f2a182ea" "02d42875a7ffa4a148aa311f9e4b562e4e13a2223fb15f4e5bf5f2b206d9451b" ), )]; let signing_key = SigningKey::::new(priv_key); for (text, expected) in &tests { let out = signing_key.sign(text.as_bytes()).to_bytes(); assert_ne!(out.as_ref(), text.as_bytes()); assert_eq!(out.as_ref(), expected); let mut rng = ChaCha8Rng::from_seed([42; 32]); let out2 = signing_key .sign_with_rng(&mut rng, text.as_bytes()) .to_bytes(); assert_eq!(out2.as_ref(), expected); } } #[test] fn test_sign_pkcs1v15_signer_sha3_256() { let priv_key = get_private_key(); let tests = [( "Test.\n", hex!( "55e9fba3354dfb51d2c8111794ea552c86afc2cab154652c03324df8c2c51ba7" "2ff7c14de59a6f9ba50d90c13a7537cc3011948369f1f0ec4a49d21eb7e723f9" ), )]; let signing_key = SigningKey::::new(priv_key); for (text, expected) in &tests { let out = signing_key.sign(text.as_bytes()).to_bytes(); assert_ne!(out.as_ref(), text.as_bytes()); assert_eq!(out.as_ref(), expected); let mut rng = ChaCha8Rng::from_seed([42; 32]); let out2 = signing_key .sign_with_rng(&mut rng, text.as_bytes()) .to_bytes(); assert_eq!(out2.as_ref(), expected); } } #[test] fn test_sign_pkcs1v15_digest_signer() { let priv_key = get_private_key(); let tests = [( "Test.\n", hex!( "a4f3fa6ea93bcdd0c57be020c1193ecbfd6f200a3d95c409769b029578fa0e33" "6ad9a347600e40d3ae823b8c7e6bad88cc07c1d54c3a1523cbbb6d58efc362ae" ), )]; let signing_key = SigningKey::new(priv_key); for (text, expected) in &tests { let mut digest = Sha1::new(); digest.update(text.as_bytes()); let out = signing_key.sign_digest(digest).to_bytes(); assert_ne!(out.as_ref(), text.as_bytes()); assert_ne!(out.as_ref(), &Sha1::digest(text.as_bytes()).to_vec()); assert_eq!(out.as_ref(), expected); let mut rng = ChaCha8Rng::from_seed([42; 32]); let mut digest = Sha1::new(); digest.update(text.as_bytes()); let out2 = signing_key .sign_digest_with_rng(&mut rng, digest) .to_bytes(); assert_eq!(out2.as_ref(), expected); } } #[test] fn test_verify_pkcs1v15() { let priv_key = get_private_key(); let tests = [ ( "Test.\n", hex!( "a4f3fa6ea93bcdd0c57be020c1193ecbfd6f200a3d95c409769b029578fa0e33" "6ad9a347600e40d3ae823b8c7e6bad88cc07c1d54c3a1523cbbb6d58efc362ae" ), true, ), ( "Test.\n", hex!( "a4f3fa6ea93bcdd0c57be020c1193ecbfd6f200a3d95c409769b029578fa0e33" "6ad9a347600e40d3ae823b8c7e6bad88cc07c1d54c3a1523cbbb6d58efc362af" ), false, ), ]; let pub_key: RsaPublicKey = priv_key.into(); for (text, sig, expected) in &tests { let digest = Sha1::digest(text.as_bytes()).to_vec(); let result = pub_key.verify(Pkcs1v15Sign::new::(), &digest, sig); match expected { true => result.expect("failed to verify"), false => { result.expect_err("expected verifying error"); } } } } #[test] fn test_verify_pkcs1v15_signer() { let priv_key = get_private_key(); let tests = [ ( "Test.\n", hex!( "a4f3fa6ea93bcdd0c57be020c1193ecbfd6f200a3d95c409769b029578fa0e33" "6ad9a347600e40d3ae823b8c7e6bad88cc07c1d54c3a1523cbbb6d58efc362ae" ), true, ), ( "Test.\n", hex!( "a4f3fa6ea93bcdd0c57be020c1193ecbfd6f200a3d95c409769b029578fa0e33" "6ad9a347600e40d3ae823b8c7e6bad88cc07c1d54c3a1523cbbb6d58efc362af" ), false, ), ]; let pub_key: RsaPublicKey = priv_key.into(); let verifying_key = VerifyingKey::::new(pub_key); for (text, sig, expected) in &tests { let result = verifying_key.verify( text.as_bytes(), &Signature::try_from(sig.as_slice()).unwrap(), ); match expected { true => result.expect("failed to verify"), false => { result.expect_err("expected verifying error"); } } } } #[test] fn test_verify_pkcs1v15_digest_signer() { let priv_key = get_private_key(); let tests = [ ( "Test.\n", hex!( "a4f3fa6ea93bcdd0c57be020c1193ecbfd6f200a3d95c409769b029578fa0e33" "6ad9a347600e40d3ae823b8c7e6bad88cc07c1d54c3a1523cbbb6d58efc362ae" ), true, ), ( "Test.\n", hex!( "a4f3fa6ea93bcdd0c57be020c1193ecbfd6f200a3d95c409769b029578fa0e33" "6ad9a347600e40d3ae823b8c7e6bad88cc07c1d54c3a1523cbbb6d58efc362af" ), false, ), ]; let pub_key: RsaPublicKey = priv_key.into(); let verifying_key = VerifyingKey::new(pub_key); for (text, sig, expected) in &tests { let mut digest = Sha1::new(); digest.update(text.as_bytes()); let result = verifying_key.verify_digest(digest, &Signature::try_from(sig.as_slice()).unwrap()); match expected { true => result.expect("failed to verify"), false => { result.expect_err("expected verifying error"); } } } } #[test] fn test_unpadded_signature() { let msg = b"Thu Dec 19 18:06:16 EST 2013\n"; let expected_sig = Base64::decode_vec("pX4DR8azytjdQ1rtUiC040FjkepuQut5q2ZFX1pTjBrOVKNjgsCDyiJDGZTCNoh9qpXYbhl7iEym30BWWwuiZg==").unwrap(); let priv_key = get_private_key(); let sig = priv_key.sign(Pkcs1v15Sign::new_unprefixed(), msg).unwrap(); assert_eq!(expected_sig, sig); let pub_key: RsaPublicKey = priv_key.into(); pub_key .verify(Pkcs1v15Sign::new_unprefixed(), msg, &sig) .expect("failed to verify"); } #[test] fn test_unpadded_signature_hazmat() { let msg = b"Thu Dec 19 18:06:16 EST 2013\n"; let expected_sig = Base64::decode_vec("pX4DR8azytjdQ1rtUiC040FjkepuQut5q2ZFX1pTjBrOVKNjgsCDyiJDGZTCNoh9qpXYbhl7iEym30BWWwuiZg==").unwrap(); let priv_key = get_private_key(); let signing_key = SigningKey::::new_unprefixed(priv_key); let sig = signing_key .sign_prehash(msg) .expect("Failure during sign") .to_bytes(); assert_eq!(sig.as_ref(), expected_sig); let verifying_key = signing_key.verifying_key(); verifying_key .verify_prehash(msg, &Signature::try_from(expected_sig.as_slice()).unwrap()) .expect("failed to verify"); } }