Christopher Cole c6e4073af4 Implement FileHeader parsing with the Parse trait
Also move FileHeader into file.rs
2022-10-06 13:26:19 -07:00

817 lines
31 KiB
Rust

use gabi;
use parse::Parse;
use utils::{read_u16, read_u32, read_u64};
/// Encapsulates the contents of the ELF File Header
///
/// The ELF File Header starts off every ELF file and both identifies the
/// file contents and informs how to interpret said contents. This includes
/// the width of certain fields (32-bit vs 64-bit), the data endianness, the
/// file type, and more.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct FileHeader {
/// 32-bit vs 64-bit
pub class: Class,
/// little vs big endian
pub endianness: Endian,
/// elf version
pub version: u32,
/// OS ABI
pub osabi: OSABI,
/// Version of the OS ABI
pub abiversion: u8,
/// ELF file type
pub elftype: ObjectFileType,
/// Target machine architecture
pub arch: Architecture,
/// Virtual address of program entry point
/// This member gives the virtual address to which the system first transfers control,
/// thus starting the process. If the file has no associated entry point, this member holds zero.
///
/// Note: Type is Elf32_Addr or Elf64_Addr which are either 4 or 8 bytes. We aren't trying to zero-copy
/// parse the FileHeader since there's only one per file and its only ~45 bytes anyway, so we use
/// u64 for the three Elf*_Addr and Elf*_Off fields here.
pub e_entry: u64,
/// This member holds the program header table's file offset in bytes. If the file has no program header
/// table, this member holds zero.
pub e_phoff: u64,
/// This member holds the section header table's file offset in bytes. If the file has no section header
/// table, this member holds zero.
pub e_shoff: u64,
/// This member holds processor-specific flags associated with the file. Flag names take the form EF_machine_flag.
pub e_flags: u32,
/// This member holds the ELF header's size in bytes.
pub e_ehsize: u16,
/// This member holds the size in bytes of one entry in the file's program header table; all entries are the same size.
pub e_phentsize: u16,
/// This member holds the number of entries in the program header table. Thus the product of e_phentsize and e_phnum
/// gives the table's size in bytes. If a file has no program header table, e_phnum holds the value zero.
pub e_phnum: u16,
/// This member holds a section header's size in bytes. A section header is one entry in the section header table;
/// all entries are the same size.
pub e_shentsize: u16,
/// This member holds the number of entries in the section header table. Thus the product of e_shentsize and e_shnum
/// gives the section header table's size in bytes. If a file has no section header table, e_shnum holds the value zero.
///
/// If the number of sections is greater than or equal to SHN_LORESERVE (0xff00), this member has the value zero and
/// the actual number of section header table entries is contained in the sh_size field of the section header at index 0.
/// (Otherwise, the sh_size member of the initial entry contains 0.)
pub e_shnum: u16,
/// This member holds the section header table index of the entry associated with the section name string table. If the
/// file has no section name string table, this member holds the value SHN_UNDEF.
///
/// If the section name string table section index is greater than or equal to SHN_LORESERVE (0xff00), this member has
/// the value SHN_XINDEX (0xffff) and the actual index of the section name string table section is contained in the
/// sh_link field of the section header at index 0. (Otherwise, the sh_link member of the initial entry contains 0.)
pub e_shstrndx: u16,
}
// Read the platform-independent ident bytes
impl FileHeader {
fn parse_ident<R: std::io::Read>(
io_file: &mut R,
buf: &mut [u8; gabi::EI_NIDENT],
) -> Result<(), crate::ParseError> {
io_file.read_exact(buf)?;
// Verify the magic number
let magic = buf.split_at(gabi::EI_CLASS).0;
if magic != gabi::ELFMAGIC {
return Err(crate::ParseError(format!("Invalid Magic Bytes: {magic:?}")));
}
// Verify ELF Version
let version = buf[gabi::EI_VERSION];
if version != gabi::EV_CURRENT {
return Err(crate::ParseError(format!(
"Unsupported ELF Version: {version:?}"
)));
}
return Ok(());
}
}
impl<R> Parse<R> for FileHeader
where
R: std::io::Read,
{
fn parse(_endian: Endian, _class: Class, reader: &mut R) -> Result<Self, crate::ParseError> {
let mut ident = [0u8; gabi::EI_NIDENT];
Self::parse_ident(reader, &mut ident)?;
let class = Class(ident[gabi::EI_CLASS]);
let endian = Endian(ident[gabi::EI_DATA]);
let elftype = ObjectFileType(read_u16(endian, reader)?);
let arch = Architecture(read_u16(endian, reader)?);
let version = read_u32(endian, reader)?;
let entry: u64;
let phoff: u64;
let shoff: u64;
if class == gabi::ELFCLASS32 {
entry = read_u32(endian, reader)? as u64;
phoff = read_u32(endian, reader)? as u64;
shoff = read_u32(endian, reader)? as u64;
} else {
entry = read_u64(endian, reader)?;
phoff = read_u64(endian, reader)?;
shoff = read_u64(endian, reader)?;
}
let flags = read_u32(endian, reader)?;
let ehsize = read_u16(endian, reader)?;
let phentsize = read_u16(endian, reader)?;
let phnum = read_u16(endian, reader)?;
let shentsize = read_u16(endian, reader)?;
let shnum = read_u16(endian, reader)?;
let shstrndx = read_u16(endian, reader)?;
return Ok(FileHeader {
class: class,
endianness: endian,
version: version,
elftype: elftype,
arch: arch,
osabi: OSABI(ident[gabi::EI_OSABI]),
abiversion: ident[gabi::EI_ABIVERSION],
e_entry: entry,
e_phoff: phoff,
e_shoff: shoff,
e_flags: flags,
e_ehsize: ehsize,
e_phentsize: phentsize,
e_phnum: phnum,
e_shentsize: shentsize,
e_shnum: shnum,
e_shstrndx: shstrndx,
});
}
}
impl std::fmt::Display for FileHeader {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(
f,
"File Header for {} {} Elf {} for {} {}",
self.class, self.endianness, self.elftype, self.osabi, self.arch
)
}
}
/// Represents the ELF file class (32-bit vs 64-bit)
#[derive(Copy, Clone, PartialEq, Eq)]
pub struct Class(pub u8);
// Allows us to do things like (self.ehdr.class == gabi::ELFCLASS32)
impl PartialEq<u8> for Class {
fn eq(&self, other: &u8) -> bool {
self.0 == *other
}
}
impl std::fmt::Debug for Class {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "{:#x}", self.0)
}
}
impl std::fmt::Display for Class {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
let str = match self.0 {
gabi::ELFCLASSNONE => "Invalid",
gabi::ELFCLASS32 => "32-bit",
gabi::ELFCLASS64 => "64-bit",
_ => "Unknown",
};
write!(f, "{}", str)
}
}
/// Represents the ELF file data format (little-endian vs big-endian)
#[derive(Copy, Clone, PartialEq, Eq)]
pub struct Endian(pub u8);
impl std::fmt::Debug for Endian {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "{:#x}", self.0)
}
}
impl std::fmt::Display for Endian {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
let str = match self.0 {
gabi::ELFDATANONE => "Invalid",
gabi::ELFDATA2LSB => "2's complement, little endian",
gabi::ELFDATA2MSB => "2's complement, big endian",
_ => "Unknown",
};
write!(f, "{}", str)
}
}
/// Represents the ELF file OS ABI
#[derive(Copy, Clone, PartialEq, Eq)]
pub struct OSABI(pub u8);
impl std::fmt::Debug for OSABI {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "{:#x}", self.0)
}
}
impl std::fmt::Display for OSABI {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
let str = match self.0 {
gabi::ELFOSABI_SYSV => "UNIX System V",
gabi::ELFOSABI_HPUX => "HP-UX",
gabi::ELFOSABI_NETBSD => "NetBSD",
gabi::ELFOSABI_LINUX => "Linux with GNU extensions",
gabi::ELFOSABI_SOLARIS => "Solaris",
gabi::ELFOSABI_AIX => "AIX",
gabi::ELFOSABI_IRIX => "SGI Irix",
gabi::ELFOSABI_FREEBSD => "FreeBSD",
gabi::ELFOSABI_TRU64 => "Compaq TRU64 UNIX",
gabi::ELFOSABI_MODESTO => "Novell Modesto",
gabi::ELFOSABI_OPENBSD => "OpenBSD",
gabi::ELFOSABI_OPENVMS => "Open VMS",
gabi::ELFOSABI_NSK => "Hewlett-Packard Non-Stop Kernel",
gabi::ELFOSABI_AROS => "Amiga Research OS",
gabi::ELFOSABI_FENIXOS => "The FenixOS highly scalable multi-core OS",
gabi::ELFOSABI_CLOUDABI => "Nuxi CloudABI",
gabi::ELFOSABI_OPENVOS => "Stratus Technologies OpenVOS",
_ => "Unknown",
};
write!(f, "{}", str)
}
}
/// Represents the ELF file type (object, executable, shared lib, core)
#[derive(Copy, Clone, PartialEq, Eq)]
pub struct ObjectFileType(pub u16);
impl std::fmt::Debug for ObjectFileType {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "{:#x}", self.0)
}
}
impl std::fmt::Display for ObjectFileType {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
let str = match self.0 {
gabi::ET_NONE => "No file type",
gabi::ET_REL => "Relocatable file",
gabi::ET_EXEC => "Executable file",
gabi::ET_DYN => "Shared object file",
gabi::ET_CORE => "Core file",
_ => "Unknown",
};
write!(f, "{}", str)
}
}
/// Represents the ELF file machine architecture
#[derive(Copy, Clone, PartialEq, Eq)]
pub struct Architecture(pub u16);
impl std::fmt::Debug for Architecture {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "{:#x}", self.0)
}
}
impl std::fmt::Display for Architecture {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
let str = match self.0 {
gabi::EM_NONE => "No machine",
gabi::EM_M32 => "AT&T WE 32100",
gabi::EM_SPARC => "SPARC",
gabi::EM_386 => "Intel 80386",
gabi::EM_68K => "Motorola 68000",
gabi::EM_88K => "Motorola 88000",
gabi::EM_IAMCU => "Intel MCU",
gabi::EM_860 => "Intel 80860",
gabi::EM_MIPS => "MIPS I Architecture",
gabi::EM_S370 => "IBM System/370 Processor",
gabi::EM_MIPS_RS3_LE => "MIPS RS3000 Little-endian",
gabi::EM_PARISC => "Hewlett-Packard PA-RISC",
gabi::EM_VPP500 => "Fujitsu VPP500",
gabi::EM_SPARC32PLUS => "Enhanced instruction set SPARC",
gabi::EM_960 => "Intel 80960",
gabi::EM_PPC => "PowerPC",
gabi::EM_PPC64 => "64-bit PowerPC",
gabi::EM_S390 => "IBM System/390 Processor",
gabi::EM_SPU => "IBM SPU/SPC",
gabi::EM_V800 => "NEC V800",
gabi::EM_FR20 => "Fujitsu FR20",
gabi::EM_RH32 => "TRW RH-32",
gabi::EM_RCE => "Motorola RCE",
gabi::EM_ARM => "ARM 32-bit architecture (AARCH32)",
gabi::EM_ALPHA => "Digital Alpha",
gabi::EM_SH => "Hitachi SH",
gabi::EM_SPARCV9 => "SPARC Version 9",
gabi::EM_TRICORE => "Siemens TriCore embedded processor",
gabi::EM_ARC => "Argonaut RISC Core, Argonaut Technologies Inc.",
gabi::EM_H8_300 => "Hitachi H8/300",
gabi::EM_H8_300H => "Hitachi H8/300H",
gabi::EM_H8S => "Hitachi H8S",
gabi::EM_H8_500 => "Hitachi H8/500",
gabi::EM_IA_64 => "Intel IA-64 processor architecture",
gabi::EM_MIPS_X => "Stanford MIPS-X",
gabi::EM_COLDFIRE => "Motorola ColdFire",
gabi::EM_68HC12 => "Motorola M68HC12",
gabi::EM_MMA => "Fujitsu MMA Multimedia Accelerator",
gabi::EM_PCP => "Siemens PCP",
gabi::EM_NCPU => "Sony nCPU embedded RISC processor",
gabi::EM_NDR1 => "Denso NDR1 microprocessor",
gabi::EM_STARCORE => "Motorola Star*Core processor",
gabi::EM_ME16 => "Toyota ME16 processor",
gabi::EM_ST100 => "STMicroelectronics ST100 processor",
gabi::EM_TINYJ => "Advanced Logic Corp. TinyJ embedded processor family",
gabi::EM_X86_64 => "AMD x86-64 architecture",
gabi::EM_PDSP => "Sony DSP Processor",
gabi::EM_PDP10 => "Digital Equipment Corp. PDP-10",
gabi::EM_PDP11 => "Digital Equipment Corp. PDP-11",
gabi::EM_FX66 => "Siemens FX66 microcontroller",
gabi::EM_ST9PLUS => "STMicroelectronics ST9+ 8/16 bit microcontroller",
gabi::EM_ST7 => "STMicroelectronics ST7 8-bit microcontroller",
gabi::EM_68HC16 => "Motorola MC68HC16 Microcontroller",
gabi::EM_68HC11 => "Motorola MC68HC11 Microcontroller",
gabi::EM_68HC08 => "Motorola MC68HC08 Microcontroller",
gabi::EM_68HC05 => "Motorola MC68HC05 Microcontroller",
gabi::EM_SVX => "Silicon Graphics SVx",
gabi::EM_ST19 => "STMicroelectronics ST19 8-bit microcontroller",
gabi::EM_VAX => "Digital VAX",
gabi::EM_CRIS => "Axis Communications 32-bit embedded processor",
gabi::EM_JAVELIN => "Infineon Technologies 32-bit embedded processor",
gabi::EM_FIREPATH => "Element 14 64-bit DSP Processor",
gabi::EM_ZSP => "LSI Logic 16-bit DSP Processor",
gabi::EM_MMIX => "Donald Knuth's educational 64-bit processor",
gabi::EM_HUANY => "Harvard University machine-independent object files",
gabi::EM_PRISM => "SiTera Prism",
gabi::EM_AVR => "Atmel AVR 8-bit microcontroller",
gabi::EM_FR30 => "Fujitsu FR30",
gabi::EM_D10V => "Mitsubishi D10V",
gabi::EM_D30V => "Mitsubishi D30V",
gabi::EM_V850 => "NEC v850",
gabi::EM_M32R => "Mitsubishi M32R",
gabi::EM_MN10300 => "Matsushita MN10300",
gabi::EM_MN10200 => "Matsushita MN10200",
gabi::EM_PJ => "picoJava",
gabi::EM_OPENRISC => "OpenRISC 32-bit embedded processor",
gabi::EM_ARC_COMPACT => {
"ARC International ARCompact processor (old spelling/synonym: EM_ARC_A5)"
}
gabi::EM_XTENSA => "Tensilica Xtensa Architecture",
gabi::EM_VIDEOCORE => "Alphamosaic VideoCore processor",
gabi::EM_TMM_GPP => "Thompson Multimedia General Purpose Processor",
gabi::EM_NS32K => "National Semiconductor 32000 series",
gabi::EM_TPC => "Tenor Network TPC processor",
gabi::EM_SNP1K => "Trebia SNP 1000 processor",
gabi::EM_ST200 => "STMicroelectronics (www.st.com) ST200 microcontroller",
gabi::EM_IP2K => "Ubicom IP2xxx microcontroller family",
gabi::EM_MAX => "MAX Processor",
gabi::EM_CR => "National Semiconductor CompactRISC microprocessor",
gabi::EM_F2MC16 => "Fujitsu F2MC16",
gabi::EM_MSP430 => "Texas Instruments embedded microcontroller msp430",
gabi::EM_BLACKFIN => "Analog Devices Blackfin (DSP) processor",
gabi::EM_SE_C33 => "S1C33 Family of Seiko Epson processors",
gabi::EM_SEP => "Sharp embedded microprocessor",
gabi::EM_ARCA => "Arca RISC Microprocessor",
gabi::EM_UNICORE => {
"Microprocessor series from PKU-Unity Ltd. and MPRC of Peking University"
}
gabi::EM_EXCESS => "eXcess: 16/32/64-bit configurable embedded CPU",
gabi::EM_DXP => "Icera Semiconductor Inc. Deep Execution Processor",
gabi::EM_ALTERA_NIOS2 => "Altera Nios II soft-core processor",
gabi::EM_CRX => "National Semiconductor CompactRISC CRX microprocessor",
gabi::EM_XGATE => "Motorola XGATE embedded processor",
gabi::EM_C166 => "Infineon C16x/XC16x processor",
gabi::EM_M16C => "Renesas M16C series microprocessors",
gabi::EM_DSPIC30F => "Microchip Technology dsPIC30F Digital Signal Controller",
gabi::EM_CE => "Freescale Communication Engine RISC core",
gabi::EM_M32C => "Renesas M32C series microprocessors",
gabi::EM_TSK3000 => "Altium TSK3000 core",
gabi::EM_RS08 => "Freescale RS08 embedded processor",
gabi::EM_SHARC => "Analog Devices SHARC family of 32-bit DSP processors",
gabi::EM_ECOG2 => "Cyan Technology eCOG2 microprocessor",
gabi::EM_SCORE7 => "Sunplus S+core7 RISC processor",
gabi::EM_DSP24 => "New Japan Radio (NJR) 24-bit DSP Processor",
gabi::EM_VIDEOCORE3 => "Broadcom VideoCore III processor",
gabi::EM_LATTICEMICO32 => "RISC processor for Lattice FPGA architecture",
gabi::EM_SE_C17 => "Seiko Epson C17 family",
gabi::EM_TI_C6000 => "The Texas Instruments TMS320C6000 DSP family",
gabi::EM_TI_C2000 => "The Texas Instruments TMS320C2000 DSP family",
gabi::EM_TI_C5500 => "The Texas Instruments TMS320C55x DSP family",
gabi::EM_TI_ARP32 => {
"Texas Instruments Application Specific RISC Processor, 32bit fetch"
}
gabi::EM_TI_PRU => "Texas Instruments Programmable Realtime Unit",
gabi::EM_MMDSP_PLUS => "STMicroelectronics 64bit VLIW Data Signal Processor",
gabi::EM_CYPRESS_M8C => "Cypress M8C microprocessor",
gabi::EM_R32C => "Renesas R32C series microprocessors",
gabi::EM_TRIMEDIA => "NXP Semiconductors TriMedia architecture family",
gabi::EM_QDSP6 => "QUALCOMM DSP6 Processor",
gabi::EM_8051 => "Intel 8051 and variants",
gabi::EM_STXP7X => {
"STMicroelectronics STxP7x family of configurable and extensible RISC processors"
}
gabi::EM_NDS32 => "Andes Technology compact code size embedded RISC processor family",
gabi::EM_ECOG1X => "Cyan Technology eCOG1X family",
gabi::EM_MAXQ30 => "Dallas Semiconductor MAXQ30 Core Micro-controllers",
gabi::EM_XIMO16 => "New Japan Radio (NJR) 16-bit DSP Processor",
gabi::EM_MANIK => "M2000 Reconfigurable RISC Microprocessor",
gabi::EM_CRAYNV2 => "Cray Inc. NV2 vector architecture",
gabi::EM_RX => "Renesas RX family",
gabi::EM_METAG => "Imagination Technologies META processor architecture",
gabi::EM_MCST_ELBRUS => "MCST Elbrus general purpose hardware architecture",
gabi::EM_ECOG16 => "Cyan Technology eCOG16 family",
gabi::EM_CR16 => "National Semiconductor CompactRISC CR16 16-bit microprocessor",
gabi::EM_ETPU => "Freescale Extended Time Processing Unit",
gabi::EM_SLE9X => "Infineon Technologies SLE9X core",
gabi::EM_L10M => "Intel L10M",
gabi::EM_K10M => "Intel K10M",
gabi::EM_AARCH64 => "ARM 64-bit architecture (AARCH64)",
gabi::EM_AVR32 => "Atmel Corporation 32-bit microprocessor family",
gabi::EM_STM8 => "STMicroeletronics STM8 8-bit microcontroller",
gabi::EM_TILE64 => "Tilera TILE64 multicore architecture family",
gabi::EM_TILEPRO => "Tilera TILEPro multicore architecture family",
gabi::EM_MICROBLAZE => "Xilinx MicroBlaze 32-bit RISC soft processor core",
gabi::EM_CUDA => "NVIDIA CUDA architecture",
gabi::EM_TILEGX => "Tilera TILE-Gx multicore architecture family",
gabi::EM_CLOUDSHIELD => "CloudShield architecture family",
gabi::EM_COREA_1ST => "KIPO-KAIST Core-A 1st generation processor family",
gabi::EM_COREA_2ND => "KIPO-KAIST Core-A 2nd generation processor family",
gabi::EM_ARC_COMPACT2 => "Synopsys ARCompact V2",
gabi::EM_OPEN8 => "Open8 8-bit RISC soft processor core",
gabi::EM_RL78 => "Renesas RL78 family",
gabi::EM_VIDEOCORE5 => "Broadcom VideoCore V processor",
gabi::EM_78KOR => "Renesas 78KOR family",
gabi::EM_56800EX => "Freescale 56800EX Digital Signal Controller (DSC)",
gabi::EM_BA1 => "Beyond BA1 CPU architecture",
gabi::EM_BA2 => "Beyond BA2 CPU architecture",
gabi::EM_XCORE => "XMOS xCORE processor family",
gabi::EM_MCHP_PIC => "Microchip 8-bit PIC(r) family",
gabi::EM_INTEL205 => "Reserved by Intel",
gabi::EM_INTEL206 => "Reserved by Intel",
gabi::EM_INTEL207 => "Reserved by Intel",
gabi::EM_INTEL208 => "Reserved by Intel",
gabi::EM_INTEL209 => "Reserved by Intel",
gabi::EM_KM32 => "KM211 KM32 32-bit processor",
gabi::EM_KMX32 => "KM211 KMX32 32-bit processor",
gabi::EM_KMX16 => "KM211 KMX16 16-bit processor",
gabi::EM_KMX8 => "KM211 KMX8 8-bit processor",
gabi::EM_KVARC => "KM211 KVARC processor",
gabi::EM_CDP => "Paneve CDP architecture family",
gabi::EM_COGE => "Cognitive Smart Memory Processor",
gabi::EM_COOL => "Bluechip Systems CoolEngine",
gabi::EM_NORC => "Nanoradio Optimized RISC",
gabi::EM_CSR_KALIMBA => "CSR Kalimba architecture family",
gabi::EM_Z80 => "Zilog Z80",
gabi::EM_VISIUM => "Controls and Data Services VISIUMcore processor",
gabi::EM_FT32 => "FTDI Chip FT32 high performance 32-bit RISC architecture",
gabi::EM_MOXIE => "Moxie processor family",
gabi::EM_AMDGPU => "AMD GPU architecture",
gabi::EM_RISCV => "RISC-V",
gabi::EM_BPF => "Linux BPF",
_ => "Unknown Machine",
};
write!(f, "{}", str)
}
}
#[cfg(test)]
mod tests {
use file::{Architecture, Class, Endian, FileHeader, ObjectFileType, OSABI};
use gabi;
use parse::Parse;
#[test]
fn test_parse_ident_empty_buf_errors() {
let data: [u8; 0] = [];
let mut ident: [u8; gabi::EI_NIDENT] = [0u8; gabi::EI_NIDENT];
assert!(FileHeader::parse_ident(&mut data.as_ref(), &mut ident).is_err());
}
#[test]
fn test_parse_ident_valid() {
let data: [u8; gabi::EI_NIDENT] = [
gabi::ELFMAG0,
gabi::ELFMAG1,
gabi::ELFMAG2,
gabi::ELFMAG3,
gabi::ELFCLASS32,
gabi::ELFDATA2LSB,
gabi::EV_CURRENT,
gabi::ELFOSABI_LINUX,
0,
0,
0,
0,
0,
0,
0,
0,
];
let mut ident = [0u8; gabi::EI_NIDENT];
assert!(FileHeader::parse_ident(&mut data.as_ref(), &mut ident).is_ok());
}
#[test]
fn test_parse_ident_invalid_mag0() {
let data: [u8; gabi::EI_NIDENT] = [
42,
gabi::ELFMAG1,
gabi::ELFMAG2,
gabi::ELFMAG3,
gabi::ELFCLASS32,
gabi::ELFDATA2LSB,
gabi::EV_CURRENT,
gabi::ELFOSABI_LINUX,
0,
0,
0,
0,
0,
0,
0,
0,
];
let mut ident = [0u8; gabi::EI_NIDENT];
assert!(FileHeader::parse_ident(&mut data.as_ref(), &mut ident).is_err());
}
#[test]
fn test_parse_ident_invalid_mag1() {
let data: [u8; gabi::EI_NIDENT] = [
gabi::ELFMAG0,
42,
gabi::ELFMAG2,
gabi::ELFMAG3,
gabi::ELFCLASS32,
gabi::ELFDATA2LSB,
gabi::EV_CURRENT,
gabi::ELFOSABI_LINUX,
0,
0,
0,
0,
0,
0,
0,
0,
];
let mut ident = [0u8; gabi::EI_NIDENT];
assert!(FileHeader::parse_ident(&mut data.as_ref(), &mut ident).is_err());
}
#[test]
fn test_parse_ident_invalid_mag2() {
let data: [u8; gabi::EI_NIDENT] = [
gabi::ELFMAG0,
gabi::ELFMAG1,
42,
gabi::ELFMAG3,
gabi::ELFCLASS32,
gabi::ELFDATA2LSB,
gabi::EV_CURRENT,
gabi::ELFOSABI_LINUX,
0,
0,
0,
0,
0,
0,
0,
0,
];
let mut ident = [0u8; gabi::EI_NIDENT];
assert!(FileHeader::parse_ident(&mut data.as_ref(), &mut ident).is_err());
}
#[test]
fn test_parse_ident_invalid_mag3() {
let data: [u8; gabi::EI_NIDENT] = [
gabi::ELFMAG0,
gabi::ELFMAG1,
gabi::ELFMAG2,
42,
gabi::ELFCLASS32,
gabi::ELFDATA2LSB,
gabi::EV_CURRENT,
gabi::ELFOSABI_LINUX,
0,
0,
0,
0,
0,
0,
0,
0,
];
let mut ident = [0u8; gabi::EI_NIDENT];
assert!(FileHeader::parse_ident(&mut data.as_ref(), &mut ident).is_err());
}
#[test]
fn test_parse_ident_invalid_version() {
let data: [u8; gabi::EI_NIDENT] = [
gabi::ELFMAG0,
gabi::ELFMAG1,
gabi::ELFMAG2,
gabi::ELFMAG3,
gabi::ELFCLASS32,
gabi::ELFDATA2LSB,
42,
gabi::ELFOSABI_LINUX,
0,
0,
0,
0,
0,
0,
0,
0,
];
let mut ident = [0u8; gabi::EI_NIDENT];
assert!(FileHeader::parse_ident(&mut data.as_ref(), &mut ident).is_err());
}
#[test]
fn test_parse_ehdr32_works() {
let mut data: Vec<u8> = vec![
gabi::ELFMAG0,
gabi::ELFMAG1,
gabi::ELFMAG2,
gabi::ELFMAG3,
gabi::ELFCLASS32,
gabi::ELFDATA2LSB,
gabi::EV_CURRENT,
gabi::ELFOSABI_LINUX,
7,
0,
0,
0,
0,
0,
0,
0,
];
data.resize(gabi::EI_NIDENT + 36, 0u8);
for n in 0u8..36 {
data[gabi::EI_NIDENT + n as usize] = n;
}
let slice: &mut [u8] = data.as_mut_slice();
assert_eq!(
FileHeader::parse(
Endian(gabi::ELFDATANONE),
Class(gabi::ELFCLASSNONE),
&mut slice.as_ref()
)
.unwrap(),
FileHeader {
class: Class(gabi::ELFCLASS32),
endianness: Endian(gabi::ELFDATA2LSB),
version: 0x7060504,
osabi: OSABI(gabi::ELFOSABI_LINUX),
abiversion: 7,
elftype: ObjectFileType(0x100),
arch: Architecture(0x302),
e_entry: 0x0B0A0908,
e_phoff: 0x0F0E0D0C,
e_shoff: 0x13121110,
e_flags: 0x17161514,
e_ehsize: 0x1918,
e_phentsize: 0x1B1A,
e_phnum: 0x1D1C,
e_shentsize: 0x1F1E,
e_shnum: 0x2120,
e_shstrndx: 0x2322,
}
);
}
#[test]
fn test_parse_ehdr32_fuzz_too_short() {
let mut data: Vec<u8> = vec![
gabi::ELFMAG0,
gabi::ELFMAG1,
gabi::ELFMAG2,
gabi::ELFMAG3,
gabi::ELFCLASS32,
gabi::ELFDATA2LSB,
gabi::EV_CURRENT,
gabi::ELFOSABI_LINUX,
7,
0,
0,
0,
0,
0,
0,
0,
];
data.resize(gabi::EI_NIDENT + 36, 0u8);
for n in 0..36 {
let slice = data.as_mut_slice().split_at(gabi::EI_NIDENT + n).0;
assert!(FileHeader::parse(
Endian(gabi::ELFDATANONE),
Class(gabi::ELFCLASSNONE),
&mut slice.as_ref()
)
.is_err());
}
}
#[test]
fn test_parse_ehdr64_works() {
let mut data: Vec<u8> = vec![
gabi::ELFMAG0,
gabi::ELFMAG1,
gabi::ELFMAG2,
gabi::ELFMAG3,
gabi::ELFCLASS64,
gabi::ELFDATA2MSB,
gabi::EV_CURRENT,
gabi::ELFOSABI_LINUX,
7,
0,
0,
0,
0,
0,
0,
0,
];
data.resize(gabi::EI_NIDENT + 48, 0u8);
for n in 0u8..48 {
data[gabi::EI_NIDENT + n as usize] = n;
}
let slice: &mut [u8] = data.as_mut_slice();
assert_eq!(
FileHeader::parse(
Endian(gabi::ELFDATANONE),
Class(gabi::ELFCLASSNONE),
&mut slice.as_ref()
)
.unwrap(),
FileHeader {
class: Class(gabi::ELFCLASS64),
endianness: Endian(gabi::ELFDATA2MSB),
version: 0x04050607,
osabi: OSABI(gabi::ELFOSABI_LINUX),
abiversion: 7,
elftype: ObjectFileType(0x0001),
arch: Architecture(0x0203),
e_entry: 0x08090A0B0C0D0E0F,
e_phoff: 0x1011121314151617,
e_shoff: 0x18191A1B1C1D1E1F,
e_flags: 0x20212223,
e_ehsize: 0x2425,
e_phentsize: 0x2627,
e_phnum: 0x2829,
e_shentsize: 0x2A2B,
e_shnum: 0x2C2D,
e_shstrndx: 0x2E2F,
}
);
}
#[test]
fn test_parse_ehdr64_fuzz_too_short() {
let mut data: Vec<u8> = vec![
gabi::ELFMAG0,
gabi::ELFMAG1,
gabi::ELFMAG2,
gabi::ELFMAG3,
gabi::ELFCLASS64,
gabi::ELFDATA2LSB,
gabi::EV_CURRENT,
gabi::ELFOSABI_LINUX,
7,
0,
0,
0,
0,
0,
0,
0,
];
data.resize(gabi::EI_NIDENT + 48, 0u8);
for n in 0..48 {
let slice = data.as_mut_slice().split_at(gabi::EI_NIDENT + n).0;
assert!(FileHeader::parse(
Endian(gabi::ELFDATANONE),
Class(gabi::ELFCLASSNONE),
&mut slice.as_ref()
)
.is_err());
}
}
}