At the example of
extractps $0, %xmm0, %xmm0
insertps $0, %xmm0, %eax
(both having respectively the same mistake of using the wrong kind of
destination register) it is easy to see that current behavior is far
from ideal: The former results in "unsupported instruction" for 32-bit
code simply because the 2nd template we have is a Cpu64 one. Instead we
should aim at emitting the "best" possible error, which will typically
be the one where we passed the largest number of checks. Generalize the
original "specific_error" approach by making it apply to the entire
matching loop, utilizing that line numbers increase as we pass further
checks.
While in some cases deriving an AT&T-style suffix from an Intel syntax
memory operand size specifier is necessary, in many cases this is not
only pointless, but has led to the introduction of various workarounds:
Excessive use of IgnoreSize and NoRex64 as well as the ToDword and
ToQword attributes. Suppress suffix derivation when we can clearly tell
that the memory operand's size isn't going to be needed to infer the
possible need for the low byte/word opcode bit or an operand size prefix
(0x66 or REX.W).
As a result ToDword and ToQword can be dropped entirely, plus a fair
number of IgnoreSize and NoRex64 can also be got rid of. Note that
IgnoreSize needs to remain on legacy encoded SIMD insns with GPR
operand, to avoid emitting an operand size prefix in 16-bit mode. (Since
16-bit code using SIMD insns isn't well tested, clone an existing
testcase just enough to cover a few insns which are potentially
problematic but are being touched here.)
Note that while folding the VCVT{,T}S{S,D}2SI templates, VCVT{,T}SH2SI
isn't included there. This is to fulfill the request of not allowing L
and Q suffixes there, despite the inconsistency with VCVT{,T}S{S,D}2SI.
PR29397 PR29563: Add new configure option --with-zstd which defaults to
auto. If pkgconfig/libzstd.pc is found, define HAVE_ZSTD and support
zstd compressed debug sections for most tools.
* bfd: for addr2line, objdump --dwarf, gdb, etc
* gas: support --compress-debug-sections=zstd
* ld: support ELFCOMPRESS_ZSTD input and --compress-debug-sections=zstd
* objcopy: support ELFCOMPRESS_ZSTD input for
--decompress-debug-sections and --compress-debug-sections=zstd
* gdb: support ELFCOMPRESS_ZSTD input. The bfd change references zstd
symbols, so gdb has to link against -lzstd in this patch.
If zstd is not supported, ELFCOMPRESS_ZSTD input triggers an error. We
can avoid HAVE_ZSTD if binutils-gdb imports zstd/ like zlib/, but this
is too heavyweight, so don't do it for now.
```
% ld/ld-new a.o
ld/ld-new: a.o: section .debug_abbrev is compressed with zstd, but BFD is not built with zstd support
...
% ld/ld-new a.o --compress-debug-sections=zstd
ld/ld-new: --compress-debug-sections=zstd: ld is not built with zstd support
% binutils/objcopy --compress-debug-sections=zstd a.o b.o
binutils/objcopy: --compress-debug-sections=zstd: binutils is not built with zstd support
% binutils/objcopy b.o --decompress-debug-sections
binutils/objcopy: zstd.o: section .debug_abbrev is compressed with zstd, but BFD is not built with zstd support
...
```
This patch adds support for the Zawrs ISA extension
("wrs.nto" and "wrs.sto" instructions).
The specification can be found here:
https://github.com/riscv/riscv-zawrs/blob/main/zawrs.adoc
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
T-Head has a range of vendor-specific instructions.
Therefore it makes sense to group them into smaller chunks
in form of vendor extensions.
This patch adds the XTheadMemPair extension, a collection of T-Head specific
two-GP-register memory operations.
The 'th' prefix and the "XTheadMemPair" extension are documented in a PR
for the RISC-V toolchain conventions ([1]).
[1] https://github.com/riscv-non-isa/riscv-toolchain-conventions/pull/19
Co-developed-by: Lifang Xia <lifang_xia@linux.alibaba.com>
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
This patch introduces support for arbitrary literal instruction
arguments, that are not encoded in the opcode.
A typical use case for this feature would be an instruction that
applies an implicit shift by a constant value on an immediate
(that is a real operand). With this patch it is possible to make
this shift visible in the dissasembly and support such artificial
parameter as part of the asssembly code.
Co-developed-by: Lifang Xia <lifang_xia@linux.alibaba.com>
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
T-Head has a range of vendor-specific instructions.
Therefore it makes sense to group them into smaller chunks
in form of vendor extensions.
This patch adds the XTheadMemIdx extension, a collection of T-Head specific
GPR memory access instructions.
The 'th' prefix and the "XTheadMemIdx" extension are documented in a PR
for the RISC-V toolchain conventions ([1]).
In total XTheadCmo introduces the following 44 instructions
(BU,HU,WU only for loads (zero-extend instead of sign-extend)):
* {L,S}{D,W,WU,H,HU,B,BU}{IA,IB} rd, rs1, imm5, imm2
* {L,S}R{D,W,WU,H,HU,B,BU} rd, rs1, rs2, imm2
* {L,S}UR{D,W,WU,H,HU,B,BU} rd, rs1, rs2, imm2
[1] https://github.com/riscv-non-isa/riscv-toolchain-conventions/pull/19
Co-developed-by: Lifang Xia <lifang_xia@linux.alibaba.com>
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
T-Head has a range of vendor-specific instructions.
Therefore it makes sense to group them into smaller chunks
in form of vendor extensions.
This patch adds the XTheadFMemIdx extension, a collection of
T-Head-specific floating-point memory access instructions.
The 'th' prefix and the "XTheadFMemIdx" extension are documented
in a PR for the RISC-V toolchain conventions ([1]).
[1] https://github.com/riscv-non-isa/riscv-toolchain-conventions/pull/19
Co-developed-by: Lifang Xia <lifang_xia@linux.alibaba.com>
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
T-Head has a range of vendor-specific instructions.
Therefore it makes sense to group them into smaller chunks
in form of vendor extensions.
This patch adds the XTheadMac extension, a collection of
T-Head-specific multiply-accumulate instructions.
The 'th' prefix and the "XTheadMac" extension are documented
in a PR for the RISC-V toolchain conventions ([1]).
[1] https://github.com/riscv-non-isa/riscv-toolchain-conventions/pull/19
Co-developed-by: Lifang Xia <lifang_xia@linux.alibaba.com>
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
T-Head has a range of vendor-specific instructions.
Therefore it makes sense to group them into smaller chunks
in form of vendor extensions.
This patch adds the XTheadCondMov extension, a collection of
T-Head-specific conditional move instructions.
The 'th' prefix and the "XTheadCondMov" extension are documented
in a PR for the RISC-V toolchain conventions ([1]).
[1] https://github.com/riscv-non-isa/riscv-toolchain-conventions/pull/19
Co-developed-by: Lifang Xia <lifang_xia@linux.alibaba.com>
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
T-Head has a range of vendor-specific instructions.
Therefore it makes sense to group them into smaller chunks
in form of vendor extensions.
This patch adds the XThead{Ba,Bb,Bs} extensions, a collection of
T-Head-specific bitmanipulation instructions.
The 'th' prefix and the "XThead{Ba,Bb,Bs}" extension are documented
in a PR for the RISC-V toolchain conventions ([1]).
[1] https://github.com/riscv-non-isa/riscv-toolchain-conventions/pull/19
Co-developed-by: Lifang Xia <lifang_xia@linux.alibaba.com>
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
This patch introduces support for arbitrary signed or unsigned immediate
encoding formats. The formats have the form "XsN@S" and "XuN@S" with N
being the number of bits and S the LSB position.
For example an immediate field of 5 bytes that encodes a signed value
and is stored in the bits 24-20 of the instruction word can use the
format specifier "Xs5@20".
Co-developed-by: Lifang Xia <lifang_xia@linux.alibaba.com>
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
T-Head has a range of vendor-specific instructions.
Therefore it makes sense to group them into smaller chunks
in form of vendor extensions.
This patch adds the XTheadSync extension, a collection of
T-Head-specific multi-processor synchronization instructions.
The 'th' prefix and the "XTheadSync" extension are documented in a PR
for the RISC-V toolchain conventions ([1]).
[1] https://github.com/riscv-non-isa/riscv-toolchain-conventions/pull/19
Co-developed-by: Lifang Xia <lifang_xia@linux.alibaba.com>
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
T-Head has a range of vendor-specific instructions.
Therefore it makes sense to group them into smaller chunks
in form of vendor extensions.
This patch adds the XTheadCmo extension, a collection of T-Head specific
cache management operations.
The 'th' prefix and the "XTheadCmo" extension are documented in a PR
for the RISC-V toolchain conventions ([1]).
In total XTheadCmo introduces the following 21 instructions:
* DCACHE.{C,CI,I}ALL
* DCACHE.{C,CI,I}{PA,VA,SW} rs1
* DCACHE.C{PAL1,VAL1} rs1
* ICACHE.I{ALL,ALLS}
* ICACHE.I{PA,VA} rs1
* L2CACHE.{C,CI,I}ALL
Contrary to Zicbom, the XTheadCmo instructions don't have a constant
displacement, therefore we have a different syntax for the arguments.
To clarify this is intended behaviour, there is a set of negative test
for Zicbom-style arguments in x-thead-cmo-fail.s.
[1] https://github.com/riscv-non-isa/riscv-toolchain-conventions/pull/19
v2:
- Add missing DECLARE_INSN() list
- Fix ordering
Co-developed-by: Lifang Xia <lifang_xia@linux.alibaba.com>
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
This patch introduces changes that allow the integration of vendor ISA
extensions:
* Define a list of vendor extensions (riscv_supported_vendor_x_ext)
where vendor extensions can be added
* Introduce a section with a table in the documentation where vendor
extensions can be added
To add a vendor extension that consists of instructions only,
the following things need to be done:
* Add the extension to the riscv_supported_vendor_x_ext list
* Add lookup entry in riscv_multi_subset_supports
* Documenting the extension in c-riscv.texti
* Add test cases for all instructions
* Add MATCH*/MASK* constants and DECLARE_INSN() for all instructions
* Add new instruction class to enum riscv_insn_class
* Define the instructions in riscv_opcodes
* Additional changes if necessary (depending on the instructions)
Co-developed-by: Lifang Xia <lifang_xia@linux.alibaba.com>
Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu>
Although they are not (and should not be) reachable, following macro-only
operands are parsed in the `validate_riscv_insn' function and ignored.
That function also notes that they are macro-only.
- "A"
- "B"
- "I"
Following this convention, this commit adds three remaining macro-only
operands to this function. By doing this, we could instead choose to reject
those operands from appearing in regular instructions later.
- "c" (used by call, tail and jump macros)
- "VM" (used by vmsge.vx and vmsgeu.vx macros)
- "VT" (likewise)
gas/ChangeLog:
* config/tc-riscv.c (validate_riscv_insn): Add "c", "VM" and "VT"
macro-only operand types.
To avoid -Werror=strict-prototypes, this commit changes () to (void).
This is because "()" possibly means a function prototype with indeterminate
arguments on old C standards.
gas/ChangeLog:
* config/tc-riscv.c (riscv_set_tso): Fix declaration.
This is a minor fix to commit 96462b012988d35ebb1137a2ad9fd0a96547d79a
("RISC-V: Implement Ztso extension"). Currently, it sets EF_RISCV_TSO ELF
flag when initial ISA string contains the 'Ztso' extension. However, GAS
has a way to update the ISA string: ".option arch".
When the architecture is updated by ".option arch", EF_RISCV_RVC ELF flag
is set when the 'C' extension is detected. Analogously, this commit sets
the EF_RISCV_TSO when the 'Ztso' extension is detected.
gas/ChangeLog:
* config/tc-riscv.c (s_riscv_option): Set TSO ELF flag if the
'Ztso' extension is specified via ".option arch" directive.
This patch support ZTSO extension. It will turn on the tso flag for elf_flags
once we have enabled Ztso extension. This is intended to implement v0.1 of
the proposed specification which can be found in Chapter 25 of,
https://github.com/riscv/riscv-isa-manual/releases/download/draft-20220723-10eea63/riscv-spec.pdf.
bfd\ChangeLog:
* elfnn-riscv.c (_bfd_riscv_elf_merge_private_bfd_data): Set TSO flag.
* elfxx-riscv.c: Add Ztso's arch.
binutils\ChangeLog:
* readelf.c (get_machine_flags): Set TSO flag.
gas\ChangeLog:
* config/tc-riscv.c (riscv_set_tso): Ditto.
(riscv_set_arch): Ditto.
* testsuite/gas/riscv/ztso.d: New test.
include\ChangeLog:
* elf/riscv.h (EF_RISCV_TSO): Ditto.
Since we have the same behaviors of CALL and CALL_PLT relocs in linker for now,
3b1450b38c
And the psabi already deprecate the CALL reloc,
a0dced8501
Therefore, we should always generate R_RISCV_CALL_PLT reloc for call, even if
it has @plt postfix. I believe LLVM (https://reviews.llvm.org/D132530) already
support this, so GNU as should do the same thing.
gas/
* config/tc-riscv.c (riscv_ip): Always generate CALL_PLT reloc for
call, even if it has @plt postfix.
* testsuite/gas/riscv/no-relax-reloc.d: Updated CALL to CALL_PLT.
* testsuite/gas/riscv/relax-reloc.d: Likewise.
ld/
* testsuite/ld-riscv-elf/variant_cc-r.d: Updated CALL to CALL_PLT.
The last patch wasn't all that shiny. There are rather a lot more
relocations that can hit the assertion in md_apply_fix if the symbol
is local or absolute. Fix them all.
* config/tc-ppc.c (ppc_force_relocation): Add all relocs that
expect a symbol in md_apply_fix. Remove tls pcrel relocs
already covered in general tls match range.
Not that anyone would want to indirect via the GOT when an address can
be loaded directly with pla, the following:
pld 3,x@got@pcrel
x:
leads to "Internal error in md_apply_fix", because the generic parts
of assembler fixup handling convert the fx_pcrel fixup to one without
a symbol. Stop that happening.
* config/tc-ppc.c (ppc_force_relocation): Add PLT_PCREL34 and
assorted GOT_PCREL34 relocs.
Clang generates a warning on unused (technically, written but not read
thereafter) variables. By the default configuration (with "-Werror"), it
causes a build failure (unless "--disable-werror" is specified).
This commit adds ATTRIBUTE_UNUSED attribute to some of them, which means
they are *possibly* unused (can be used but no warnings occur when
unused) and removes others.
bfd/ChangeLog:
* elf32-lm32.c (lm32_elf_size_dynamic_sections): Mark unused
rgot_count variable.
* elf32-nds32.c (elf32_nds32_unify_relax_group): Remove unused
count variable.
* mmo.c (mmo_scan): Mark unused lineno variable.
binutils/ChangeLog:
* windmc.c (write_rc): Remove unused i variable.
gas/ChangeLog:
* config/tc-riscv.c (riscv_ip): Remove unused argnum variable.
ld/ChangeLog:
* pe-dll.c (generate_reloc): Remove unused bi and page_count
variables.
Some components of GNU Binutils will pass "-Wstack-usage=262144" when
"GCC >= 5.0" is detected. However, Clang does not support "-Wstack-usage",
despite that related configuration part in bfd/warning.m4 handles the latest
Clang (15.0.0 as of this writing) as "GCC >= 5.0".
The option "-Wstack-usage" was ignored when the first version of Clang is
released but even this "ignoring" behavior is removed before Clang 4.0.0.
So, if we give Clang "-Wstack-usage=262144", it generates a warning, making
the build failure.
This commit checks "__clang__" macro to prevent adding the option if the
compiler is identified as Clang.
bfd/ChangeLog:
* warning.m4: Stop appending "-Wstack-usage=262144" option when
compiled with Clang.
* configure: Regenerate.
binutils/ChangeLog:
* configure: Regenerate.
gas/ChangeLog:
* configure: Regenerate.
gold/ChangeLog:
* configure: Regenerate.
gprof/ChangeLog:
* configure: Regenerate.
ld/ChangeLog:
* configure: Regenerate.
opcodes/ChangeLog:
* configure: Regenerate.
The -mfuture and -Mfuture options which are used for adding potential
new ISA instructions were not documented. They also lacked a bitmask
so new instructions could not be enabled by those options. Fixed.
binutils/
* doc/binutils.texi: Document -Mfuture.
gas/
* config/tc-ppc.c: Document -mfuture
* doc/c-ppc.texi: Likewise.
include/
* opcode/ppc.h (PPC_OPCODE_FUTURE): Define.
opcodes/
* ppc-dis.c (ppc_opts) <future>: Use it.
* ppc-opc.c (FUTURE): Define.
It looks like I copied the SIZE init across from
binutils/testsuite/config/default.exp without some necessary editing.
* testsuite/config/default.exp (SIZE): Adjust relative path.
Vector CSRs are also required on smaller vector subsets.
Not only that the most of vector CSRs are general purpose (and must be
accessible for every vector subsets), current minimum vector subset 'Zve32x'
requires fixed point arithmetic, making remaining non-general purpose
(fixed point arithmetic only) CSRs mandatory for such subsets.
So, those CSRs must be accessible from 'Zve32x', not just from 'V'.
This commit fixes this issue which caused CSR accessibility warnings.
gas/ChangeLog:
* config/tc-riscv.c (riscv_csr_address): Change vector CSR
requirement from 'V' to 'Zve32x'.
* testsuite/gas/riscv/csr-version-1p9p1.l: Change vector CSR
requirement from 'V' to 'Zve32x'.
* testsuite/gas/riscv/csr-version-1p10.l: Likewise.
* testsuite/gas/riscv/csr-version-1p11.l: Likewise.
* testsuite/gas/riscv/csr-version-1p12.l: Likewise.
PR 29559
* dwarf2dbg.c (out_debug_info): Place DW_TAG_unspecified_type at
the end of the list of children, not at the start of the CU
information.
* testsuite/gas/elf/dwarf-3-func.d: Update expected output.
* testsuite/gas/elf/dwarf-5-func-global.d: Likewise.
* testsuite/gas/elf/dwarf-5-func-local.d: Likewise.
* testsuite/gas/elf/dwarf-5-func.d: Likewise.
This patch makes possible to print the highest address (-1) and the addresses
related to gp which value is -1. This is particularly useful if the highest
address space is used for I/O registers and corresponding symbols are defined.
Besides, despite that it is very rare to have GP the highest address, it would
be nice because we enabled highest address printing on regular cases.
gas/ChangeLog:
* testsuite/gas/riscv/dis-addr-topaddr.s: New test for the top
address (-1) printing.
* testsuite/gas/riscv/dis-addr-topaddr-32.d: Likewise.
* testsuite/gas/riscv/dis-addr-topaddr-64.d: Likewise.
* testsuite/gas/riscv/dis-addr-topaddr-gp.s: New test for
GP-relative addressing when GP is the highest address (-1).
* testsuite/gas/riscv/dis-addr-topaddr-gp-32.d: Likewise.
* testsuite/gas/riscv/dis-addr-topaddr-gp-64.d: Likewise.
opcodes/ChangeLog:
* riscv-dis.c (struct riscv_private_data): Add `to_print_addr' to
enable printing the highest address.
(maybe_print_address): Utilize `to_print_addr'.
(riscv_disassemble_insn): Likewise.
If either the base register is `zero', `tp' or `gp' and XLEN is 32, an
incorrectly sign-extended address is produced when printing. This commit
fixes this by fitting an address into a 32-bit value on RV32.
Besides, H. Peter Anvin discovered that we have wrong address computation
for JALR instruction (the initial bug is back in 2018). This commit also
fixes that based on the idea of Palmer Dabbelt.
gas/
pr29342
* testsuite/gas/riscv/lla32.d: Reflect RV32 address computation fix.
* testsuite/gas/riscv/dis-addr-overflow.s: New testcase.
* testsuite/gas/riscv/dis-addr-overflow-32.d: Likewise.
* testsuite/gas/riscv/dis-addr-overflow-64.d: Likewise.
opcodes/
pr29342
* riscv-dis.c (maybe_print_address): Fit address into 32-bit on RV32.
(print_insn_args): Fix JALR address by adding EXTRACT_ITYPE_IMM.
Address sequences involving ADDIW/C.ADDIW instructions require special
handling to sign-extend lower 32-bits of the original result.
This commit tests whether this sign-extension works.
gas/ChangeLog:
* testsuite/gas/riscv/dis-addr-addiw.s: New to test the address
computation with sign extension as used in ADDIW/C.ADDIW.
* testsuite/gas/riscv/dis-addr-addiw-a.d: Test PC sign bit 0.
* testsuite/gas/riscv/dis-addr-addiw-b.d: Test PC sign bit 1.
gas/ChangeLog:
* testsuite/gas/riscv/dis-addr-addiw-a.d: New test.
* testsuite/gas/riscv/dis-addr-addiw-b.d: New test.
* testsuite/gas/riscv/dis-addr-addiw.s: New test.
Running configure and make in binutils-gdb.
$ ./configure
$ make
In file included from ./as.h:37,
from ./config/loongarch-lex.l:21,
from config/loongarch-lex-wrapper.c:20:
./config.h:206: error: “PACKAGE” redefined [-Werror]
#define PACKAGE "gas"
...
gas/config
* loongarch-lex-wrapper.c
Three-part patch set from Tsukasa OI to support zmmul in assembler.
The 'Zmmul' is a RISC-V extension consisting of only multiply instructions
(a subset of 'M' which has multiply and divide instructions).
bfd/
* elfxx-riscv.c (riscv_implicit_subsets): Add 'Zmmul' implied by 'M'.
(riscv_supported_std_z_ext): Add 'Zmmul' extension.
(riscv_multi_subset_supports): Add handling for new instruction class.
gas/
* testsuite/gas/riscv/attribute-09.d: Updated implicit 'Zmmul' by 'M'.
* testsuite/gas/riscv/option-arch-02.d: Likewise.
* testsuite/gas/riscv/m-ext.s: New test.
* testsuite/gas/riscv/m-ext-32.d: New test (RV32).
* testsuite/gas/riscv/m-ext-64.d: New test (RV64).
* testsuite/gas/riscv/zmmul-32.d: New expected output.
* testsuite/gas/riscv/zmmul-64.d: Likewise.
* testsuite/gas/riscv/m-ext-fail-xlen-32.d: New test (failure
by using RV64-only instructions in RV32).
* testsuite/gas/riscv/m-ext-fail-xlen-32.l: Likewise.
* testsuite/gas/riscv/m-ext-fail-zmmul-32.d: New failure test
(RV32 + Zmmul but with no M).
* testsuite/gas/riscv/m-ext-fail-zmmul-32.l: Likewise.
* testsuite/gas/riscv/m-ext-fail-zmmul-64.d: New failure test
(RV64 + Zmmul but with no M).
* testsuite/gas/riscv/m-ext-fail-zmmul-64.l: Likewise.
* testsuite/gas/riscv/m-ext-fail-noarch-64.d: New failure test
(no Zmmul or M).
* testsuite/gas/riscv/m-ext-fail-noarch-64.l: Likewise.
include/
* opcode/riscv.h (enum riscv_insn_class): Added INSN_CLASS_ZMMUL.
ld/
* testsuite/ld-riscv-elf/attr-merge-arch-01.d: We don't care zmmul in
these testcases, so just replaced m by a.
* testsuite/ld-riscv-elf/attr-merge-arch-01a.s: Likewise.
* testsuite/ld-riscv-elf/attr-merge-arch-01b.s: Likewise.
* testsuite/ld-riscv-elf/attr-merge-arch-02.d: Likewise.
* testsuite/ld-riscv-elf/attr-merge-arch-02a.s: Likewise.
* testsuite/ld-riscv-elf/attr-merge-arch-03.d: Likewise.
* testsuite/ld-riscv-elf/attr-merge-arch-03a.s: Likewise.
* testsuite/ld-riscv-elf/attr-merge-user-ext-01.d: Likewise.
* testsuite/ld-riscv-elf/attr-merge-user-ext-rv32i2p1_a2p0.s: Renamed.
* testsuite/ld-riscv-elf/attr-merge-user-ext-rv32i2p1_a2p1.s: Renamed.
opcodes/
* riscv-opc.c (riscv_opcodes): Updated multiply instructions to zmmul.
out_inc_line_addr and relax_inc_line_addr are passed INT_MAX as
line_delta to flag end of section. This filters its way down to
size_inc_line_addr and emit_inc_line_addr. Pass line_delta on to
scale_addr_delta where it can be used to omit an unaligned opcode
error.
PR 29494
* dwarf2dbg.c (scale_addr_delta): Delete unnecessary forward decl.
Add line_delta param. Don't print error at end of section, just
round the address down.
(size_inc_line_addr, emit_inc_line_addr): Adjust calls.
PR 29517
* dwarf2dbg.c (GAS_ABBREV_COMP_UNIT): New defined constant.
(GAS_ABBREV_SUBPROG): New defined constant.
(GAS_ABBREV_NO_TYPE): New defined constant.
(out_debug_abbrev): Use the new defined constants when emitting
abbreviation numbers. Generate an abbreviation for an unspecified
type.
(out_debug_info): Use the new defined constants when referring to
abbreviations. Generate a use of the no_type abbreviation.
Reference the use when generating DIEs for functions.
* testsuite/gas/elf/dwarf-3-func.d: Update to allow for newly
extended output from the assembler.
* testsuite/gas/elf/dwarf-5-func-global.d: Likewise.
* testsuite/gas/elf/dwarf-5-func-local.d: Likewise.
* testsuite/gas/elf/dwarf-5-func.d: Likewise.
PR 29519
* config/tc-aarch64.c (s_unreq): Use find_end_of_line().
(s_aarch64_cpu): Likewise.
(s_aarch64_arch): Likewise.
(s_aarch64_arch_extension): Likewise.
* testsuite/gas/aarch64/pr29519.d: New test driver file.
* testsuite/gas/aarch64/pr29519.s: New test source file.